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Quantum mechanics and relativity are not compatible at the structural level, and
this makes it very difficult to unify them. The incompatibility might mean that
a complete quantum theory unified with relativity exists, but is unknown, while
standard quantum mechanics, as a special case, cannot be relativistic. If so, search-
ing for generalizations is well justified, but the question is how. An old idea is to
substitute a structurally richer algebra for the field of complex numbers, but such
attempts have not brought the theory closer to relativity in the past. The present
work is also based on this idea, but, unlike previous attempts, is not searching for
new number systems among existing mathematical structures. From general consid-
erations developed in the first two parts of this work, a new mathematical structure,
referred to as the quantionic algebra, is derived as a theorem in the present paper.
It is unique, manifestly relativistic, and generalizes the field of complex numbers in
a manner consistent with quantum theory.
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1. Introduction

The research program undertaken in the four-part work, of which the present
article is the third, is being essentially completed in the sequel with the formula-
tion of a new mathematical structure, D, that generalizes the field C of complex
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numbers.1 We call it the quantionic algebra, and its elements quantions.2 The
general procedure consists in extracting the quantionic algebra embedded in a given
quantal algebra. This statement is to be clarified and motivated before the technical
work can begin in Section 2.

The quantal algebra {O, σ, α; e}, axiomatically defined in Ref. [2], is a two-
product real algebraic structure satisfying the Jacobi, Leibnitz and association
identities:

(fαg) αh + (gαh) αf + (hαf) αg ≡ 0, (1)

fα (gσh) ≡ (fαg) σh + gσ (fαh) , (2)

[f, g, h] ≡ agα (hαf) . (3)

The element e ∈ O is the unit, eσf ≡ f. This abstract structure contains three
variants:

The case a = 1 corresponds to quantum mechanics. Additionally, in standard
quantum mechanics the Lie substructure {O, α} is semi-simple (i.e., the metric is
non-singular) and central (meaning that there are no unnecessary constants, i.e.,
that eαf ≡ 0 is the only such identity).

The case a = 0 corresponds to classical mechanics.
The case a = −1 corresponds to no physical theory.3

As there is no need in the sequel to refer to the general principles at the source
of the identities (1), (2) and (3), we now take these identities, including the two
restrictions stated for a = 1, to be the postulates of quantal algebra.

Intuitively, quantal algebra is the real algebra of quantum-mechanical observ-
ables stripped of their representation by Hermitian matrices. Its intended role is to
provide a framework for seeking new versions of quantum mechanics that might be
compatible with relativity. It was proved in Ref. [3] that if such versions exist, they
can be found only among a few very specific candidates (the “non-unitary realiza-
tions” of quantal algebra). These possibilities are further pared down in this section
to a single one (referred to as “the non-unitary quantal algebra”). This structure
is built on the real underlying linear space L (2, 4) . Its two products, α and σ,
represented by tensors of valence 3 in L (2, 4) , are derived in the next section.

1The last of these articles, to be published under the title “Inherently Relativistic Quantum
Theory — Part IV, Quantionic Theorems”, is a compilation of theorems that will be needed
in physical applications of quantionic mathematics. The conceptual construction of quantions is
completed in the present article.

2In the first paper on the subject, [1], this algebra was called “quantal ring”, and its elements
“quantals”. By renaming it to “quantionic algebra” (on the model of “quaternionic algebra”),
one avoids the risk of confusion with the abstract meaning of “quantal”, as in “quantal algebra”.
Moreover, the term “quantion” (a noun, like “quaternion”) is more appropriate a name for the
elements of the algebra than “quantal” (an adjective, as in “real” number). As for “algebra”
instead of “ring”, both terms are acceptable, but the former is preferable for being extensively
used in physics.

3But we remain open-minded to the possibility that the cases of a = 0 and a = −1 might have
other interpretations in the generalization of quantum mechanics we are developing.
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But there is more to quantum mechanics than its real algebra of observables.
What distinguishes it fundamentally from classical physics is that it describes the
world in terms of complex “amplitudes”, rather than directly in terms of mathe-
matical objects made of real variables with immediate intuitive and observational
meaning. Two different views of the amplitudes suggest different approaches to the
search for a generalization of quantum mechanics.4 One attitude considers as es-
sential what the amplitudes structurally are (they are complex numbers), the other
what the amplitudes functionally do (they factorize the states).

Taking the field C of complex numbers as axiomatic, the first attitude leads to
the search for generalizations of quantum mechanics in modifications of Hilbert
space. It appears that only one such mathematically structural and physically
meaningful modification is possible. It is based on Penrose’s theory of twistors
[4, 5]. Its limitations in physical applications stem from the indefiniteness of the
norm. On the other hand, if one requires that the norm be positive-definite, Hilbert
space seems to allow no modifications whatsoever. Whence the general conclusion
that quantum mechanics and relativity are structurally incompatible.

The second attitude allow us to look for generalizations of quantum mechanics
based on generalizations of its underlying complex number system. This idea is
very old and suggests itself rather naturally, but, as an ad hoc idea, it comes with
no guidelines and no “no-go theorems”. Hence, all known mathematical structures
that in some respect generalize the complex numbers (specifically, the other division
algebras, Clifford algebras, and Grassmann algebras) are candidates a priori if they
can be put to work. They have all been explored (the quaternions extensively), but
did not yield any new interesting generalization of quantum theory.

In the present work we revisit the second attitude, but not by the trial and error
approach. Our approach is based on the following requirements or observations:

(1) Quantal algebra is to be the abstract structure of any generalization of
quantum mechanics. The reasons are given in Ref. [2].

(2) The generalization of the complex numbers we are seeking should preserve
the Hilbert space structure. Thus, formal Hermiticity of matrices, H† = H, should
also be meaningful in the generalization of the complex numbers.

(3) Since commutators and anticommutators of ordinary Hermitian matrices,
interpreted as the products α and σ, respectively, satisfy the identities (2) to (3),
so should the generalized Hermitian matrices.

(4) Taking this requirement to the lowest dimension, n = 1, it follows that a
generalization of the complex numbers compatible with quantum mechanics must
be a quantal algebra if expressed in terms of “real” and “imaginary” parts.

This last conclusion is both a “no-go” theorem5 and a map to the discovery of
the number system that works, if one exists — regardless of whether or not this

4By “generalization” we mean “new concrete version, structurally richer than the original”. It
is in this sense that we are seeking generalizations of the field of complex numbers and of quan-
tum mechanics. Quantal algebra, on the other hand, is an “abstract generalization” of quantum
mechanics.

5It immediately eliminates quaternions, octonions and Clifford algebras as candidate number
systems for a new version of quantum mechanics.
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system happens to be a known mathematical structure. Candidates are associative
algebras that can be extracted out of concrete quantal algebras. We shall see that
exactly one non-trivial solution exists.

To derive it, we exploit the idea of internal complexification introduced in
Ref. [2]. We briefly review it as a sequence of conceptual steps.

(1) Given a concrete quantal algebra, identify in it, if any exists, all subalgebras
isomorphic with the field C of complex numbers. This means finding all solutions
J ∈ O of the equation JσJ + e = 0 (note: J = ie is not a solution, since we want
J to be an observable, and observables are real). Clearly, if J is a solution, so is
J∗ def= −J. For such a J, the subalgebra isomorphic to C is eR ⊕ JR, provided J
and J∗ are inequivalent, i.e., not related by a continuous transformation.

(2) A generalization of C now suggests itself as the centralizer of eR⊕ JR. The
centralizer is the set of “algebraic constants”, i.e., of all elements fixed under the
group of automorphisms. In the quantal algebra O, the centralizer is isomorphic
to the field R of real numbers (the linear subspace eR spanned by the unit e). To
expand it to eR ⊕ JR, we are to find the centralizer of J, i.e., the linear subspace
OJ ∈ O of all observables f such that Jαf = 0. As it happens, OJ is also a quantal
algebra, i.e., {OJ , σ, α; e, J}.6 Hence, no further reduction of the set of observables
is required.

(3) The quantal algebra {OJ , σ, α; e, J} generalizes the field C, but with a two-
product structure, while C has a single associative product. To eliminate this ob-
jection, we define in OJ a new product,

fβg
def= fσg + Jσ (fαg) ,

for which one directly verifies, by the identities (2) to (3), that it is associative.
Hence, the quantal generalization of the field C is the associative algebra {OJ , β}.

(4) Since J commutes with all elements of OJ , every element f ∈ OJ is of the
form

f = fr + Jβfi,

where the uniquely defined observables fr, fi are J-real, i.e., fixed under the oper-
ator C. The eigenspaces of C are the linear subspaces R and JβR defined by the
conditions

C : R → R
C : JβR → −JβR

Clearly, dim (R) = dim (JβR) .

6Indeed, if f, g, h ∈ OJ , then, by (1), (fαg) ∈ OJ , and, by (2), (fσg) ∈ OJ , so that OJ is stable
under the quantal products σ, α.
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(5) Generalize complex conjugation to the conjugation operator C defined by
the mappings

C : e 7−→ e,

C : J 7−→ −J.

It remains to be verified explicitly that C is a “true” involution in OJ . The reason is
that the algebra of observable, being much richer than C, might contain a contin-
uous group of transformations that could undo the action of C, i.e., bring −J back
to J — in which case there would be no stable separation of objects into “real”
and “imaginary”.

We see from its construction that the algebra {OJ , β} is a generalization of
the field of complex numbers with roots in quantum mechanics. We introduce the
following definition:

Definition 1 If, for a given quantal algebra {O, σ, α; e}, an associative algebra
{OJ , β; e,J } exists, we refer to is as the quantionic algebra embedded in the
given quantal algebra, and to its elements as quantions.

The formal problem of generalizing quantum mechanics is now solved in princi-
ple. Obviously, to generalize the field C of complex numbers, a quantionic algebra
must be richer than C, i.e., not isomorphic with it. We call it “trivial” if it is. Thus,
we will be searching for non-trivial quantionic algebras.

According to the classification of realizations, Ref. [3], all semi-simple quantal
algebras fall into two classes: (1) The infinite family based on unitary Lie algebras,
where {O, α} = su (n) (referred to as the unitary quantal algebras), and, (2) the two
quantal algebras for which {O, α} = so (p, q) , with p + q = 3 or p + q = 6 (referred
to as the non-unitary quantal algebras). As standard quantum mechanics belongs
to the unitary class and does not contain a generalization of C,7 generalizations of
the theory are to be sought only among the non-unitary realizations.

Of the two candidates, the three-dimensional solution is eliminated by the fol-
lowing result:

Lemma 2 The quantal algebra built over the Lie algebra so (p, q) , where p+q = 3,
contains no non-trivial quantionic algebra.

Proof. Let ηAB = diag {1,−1,−1} be the metric tensor in the representation
space (reversing the signs has no structural effect), and let E1, E2, E3 form an
orthonormal basis. Then, (E1, E1) = 1, (E2, E2) = (E3, E3) = −1. The underlying
linear space of the quantal algebra is O = {e, e1, e2, e3} , where e1 = E2 ∧ E3,
e2 = E3∧E1, e3 = E1∧E2, are the generators of the orthogonal group SO (1, 2). The

7No square root of −I can be a Hermitian matrix, since, for H Hermitian, Tr
(
H2

)
> 0, while

Tr(−I) < 0).
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Lie algebra {O, α} and the Jordan algebra {O, σ} are defined by the multiplication
tables:

α e1 e2 e3

e1 0 −e3 e2

e2 e3 0 e1

e3 −e2 −e1 0

,

σ e1 e2 e3

e1 e 0 0
e2 0 −e 0
e3 0 0 −e

.

Thus, a square root of −e exists, for example, J = e3. But since only e and J
commute with J, the quantionic algebra is OJ = {e, J} . It is isomorphic to C —
hence trivial.

This leaves only the six-dimensional case as a candidate. We analyze it in the
next section.

2. The quantal algebra O (2, 4)

Let ηAB denote the metric tensor in a 6-dimensional linear space V 6. Working
in an orthonormal basis, we shall also use the notation ηA

def= ηAA. In terms of
an orthonormal hexad {EA} = {E0, E1, ..., E5} in V 6, the generators of the 15-
dimensional orthogonal group are the exterior products of basis vectors, i.e., they
are the simple bi-vectors,

eAB
def= EA ∧ EB . (4)

As proved in Ref. [3], they form, together with the unit e, the real 16-dimensional
space, O, of a quantal algebra {O, σ, α}. But the proof in question did not generate
the algorithm for the Jordan product σ (the Lie product α is known). It only
guaranteed its existence. We derive it in this section.

The Lie product in the subalgebra {O, α} is given by the universal expression

ePQ α eRS = ηPR eQS − ηQR ePS − ηPS eQR + ηQS ePR. (5)

We are now to derive the expression for the Jordan product σ. In the next three
lemmata, the six labels A,B, · · · , F from the beginning of the alphabet are assumed
to be different, the lexicographic order is defined as positive, and summation over
repeated labels is not used.

Lemma 3 If the Lie product of two generators is different from zero, their Jordan
product vanishes, i.e.,

eXA σ eXB = 0. (6)

Proof. According to the expression (5), only the pairs of generators that have
one label in common have a non-vanishing Lie product. Specifically,

eXA α eXB = ηX eAB .
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The Jacobi product eXAσeXB , being symmetric in the free labels AB, can only be
of the form

eXA σ eXB = fXAB e,

for some real coefficients fXAB = fXBA. Computing the associator

[eXA, eXB , eXC ] = a eXB α (eXC α eXA)

for A,B,C,X all different yields

fXAB eXC − fXBC eXA = a ηX eXB α eCA = 0.

Since eXC and eXA are basis elements in O, the only solution is, fXAB = 0. Hence,
eXA α eXB = 0, proving the statement.

Lemma 4 The square of a generator is proportional to the unit,

eAB σ eAB = a ηA ηB e. (7)

Proof. The expression eXY α (eAB σ eAB) vanishes unless the pairs XY and
AB have exactly one label in common, in which case it vanishes by the identity
(2):

eAC α (eAB σ eAB) = 2 ηA eCB σ eAB = 0.

Hence, for every f ∈ O, fα (eAB σ eAB) = 0, implying eAB σ eAB = hAB e for
some real constant hAB . Computing the associator [eAB , eAB , eAC ] in both ways,
by its definition and by relation (3), one obtains

hAB eAC = a ηA eAB α eCB = a ηA ηB eAC .

This implies hAB = a ηA ηB, proving the statement.

Lemma 5 The Jordan product of generators without common label is proportional
to the unique generator which has no common label with either factor. Specifically,

eAB σ eCD = Θ ηE ηF eEF , (8)

where Θ = ±1.

Proof. Relation (3) implies (eAB σ eCD) σ eEF = eAB (σ eCD σ eEF ) , which
can be satisfied only if eAB σ eCD = kEF eEF , where kEF is an unknown real coef-
ficient. The same relation also implies (eAB σ eAB) σ eCD = eAB σ (eAB σ eCD) ,
which expands to

a ηA ηB eCD = kEF eAB σ eEF = kEF ΘηC ηD eCD,
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implying kEF kCD ηA ηB = a. Symmetry under all permutations of the labels yields
kAB = Θ ηA ηB and ηA ηB ηC ηD ηE ηF = a. The first of these two equations proves
relation (8). The second, obtained in passing, is important enough to be stated
separately as theorem Theorem 7.

Collecting these results, on obtains the following general expression for the
Jordan product (we now use the summation convention):

Theorem 6 Without restrictions on the labels, the Jordan product of two genera-
tors is

ePQ σ eRS =
1
2

ΘεPQRSTU eTU + a (ηPR ηQS − ηPS ηQR) e. (9)

Proof. We have ηE ηF eEF = eEF , while the Levi-Civitta symbol collects the
results (6), (7) and (8). The factor 1/2 compensates for the summation of two equal
terms.

Theorem 7 The determinant of the metric tensor is equal to the association pa-
rameter a,

det (ηAB) = a. (10)

Proof. Clearly, det (ηAB) = ηA ηB ηC ηD ηE ηF = a, obtained in proving
Lemma 5.

This last result implies the following fundamental theorem of quantionic algebra:

Theorem 8 There exists exactly one physical non-trivial non-unitary quantal al-
gebra. It is O (2, 4) .

Proof. Referring to the introduction, there is only one candidate. It is based on
the orthogonal Lie algebras in six dimensions. Taking each assertion of the theorem
in turn, the existence of quantal algebras O (p, q), with p + q = 6, has been proved
by exhibiting the expressions for the Lie and Jacobi products, relations (5), (9). Of
these, two are physical, i.e., characterized by a = 1. By Theorem 7, they are O (6, 0)
and O (2, 4) . The other two possibilities, with p and q exchanged, are structurally
indistinguishable. Of these solutions, only O (2, 4) is non-unitary, the reason being
that SO (6) is isomorphic to SU (4) . To prove that O (2, 4) is non-trivial, we need
to exhibit an observable J, such that JσJ = −e, whose centralizer is not isomorphic
with C, i.e., contains at least one element linearly independent of e and J. Clearly,
there are many solutions. For example, taking J = eAB for A and B such that
ηAηB = −1, we see that eCD is at least one element of the centralizer linearly
independent of e and J . Hence, O (2, 4) is non-trivial.

Having established that the pseudo-orthogonal group SO (2, 4) is subjacent to
the unique physical non-trivial quantal algebra O (2, 4) , we note that this group
already has a well-known physical meaning. It is the invariance group of the con-
formal compactification of Minkowski space, M4, discovered and investigated by
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Roger Penrose [4]. It is remarkable that a structure, meaning SO (2, 4) , with his-
torical origin in strictly geometric considerations rooted in relativity theory should
also make its appearance as the unique solution to strictly algebraic considerations
rooted in quantum theory. This bolsters our expectation that the quantal approach
ought to lead to a structural unification of quantum theory and relativity.

3. The quantionic algebra

In the next subsections we shall extract all quantionic algebras from the quantal
algebra O (2, 4) by following the strategy outlined in the Introduction.

3.1. Complex conjugation

As the ordinary conjugation of complex numbers is not directly transferrable
to real linear spaces, we are to find an equivalent defining property that can be
applied to the space L (2, 4) .

The operator C in the algebra O (2, 4) is meant to be the analogue of ordinary
complex conjugation, but since the algebra O (2, 4) is real, we will need an inter-
pretation of conjugation in terms of real linear concepts. To recognize it in the field
of complex numbers, consider an algebra O (2) spanned by the unit matrix and
the antisymmetric matrix (the single generator of rotations in a real 2-dimensional
linear space, L2):

O (2) =
(

1 0
0 1

)
R ⊕

(
0 −1
1 0

)
R.

Clearly, O (2) is isomorphic to the field C of complex numbers. The operator C is
represented by matrix transposition. Since the unit antisymmetric matrix in two
dimensions can be written as a bivector, say ~m ∧ ~n, the vectors ~m and ~n being
orthonormal in L2, one can also write

O (2) = eR ⊕ (~m ∧ ~n) R.

In this formalism, C is represented by a mirror reflection in the plane L2, for
example

C : ~m 7−→ −~m,

C : ~n 7−→ ~n.

The vectors ~m and ~n are uniquely defined as the eigenvectors of the operator C,
but there is an infinity of such operators mutually equivalent under rotations in L2.
By selecting the vectors ~m and ~n first, one uniquely specifies the conjugation.

This is the interpretation of complex conjugation we shall use in the algebra
O (2, 4) . Since O (2, 4) and L(2,4) are, respectively, the generalizations of O (2)
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and L2, the conjugation operator C in O (2, 4) will be defined in terms of mirror
reflections in L(2,4). Our next task is to identify the operator C within the group of
discrete transformations in L(2,4).

3.2. The conditions defining J ∈ O (2, 4)

To extract a quantionic algebra OJ (2, 4) from the non-unitary quantal algebra
O (2, 4) , one needs an element J ∈ O (2, 4) which, as reviewed in the Introduction,
is characterized by the following properties: It is a real square-root of minus unity,

JσJ = −e, (11)

and behaves like an imaginary unit with respect to a true conjugation operator C,
i.e.,

C : e 7−→ e∗ = e, (12)

C : J 7−→ J∗ = −J. (13)

By “true”, we mean that the action of the operator C cannot be undone by a
continuous transformation from the group SO (2, 4) .

In addition to these conditions on J, an additional condition is given by the
following lemma:

Lemma 9 The quantionic imaginary unit J is a simple bivector,

J = V ∧ W , (14)

where V,W ∈ L(2,4) are mutually orthogonal vectors — one of positive unit norm,
the other of negative unit norm.

Proof. Reminder: A simple bivector (or special bivector) is the exterior prod-
uct of two vectors. Thus, the generators eAB , defined by expression (4), are simple
bivectors. A general bivector is a sum of simple bivectors. In six dimensions, refer-
ring to the linear space L(2,4), a bivector is either simple, or a sum of at most three
simple bivectors. We shall prove that J is a simple bivector.

By definition, J is an observable, hence, a linear combination of the 16 basis
observables e, eRS , i.e., J = xe +

∑
R,S uRS eRS , where x and uRS are real co-

efficients. One first observes that J cannot contain e, as conditions (12) and (13)
don’t mix. Hence, J =

∑
R,S uRS eRS is the most general expression. Computing

the square of this expression by substitution into the definition (9) of σ, one gets
(using the summation convention),

JσJ = uABuCDeAB σ eCD

=
1
2

uABuCDεABCDTU eTU + uABuAB e.
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Condition (11) implies uABuAB = −1 and uABuCDεABCDTU = 0. This last rela-
tion further implies that all eAB in the expansion of J have one label in common,
say A. Thus,

J = EA ∧
∑
R

uARER,

without summation over A. Since the sum is a vector, J is a simple bivector. Hence,
if J exists, there exist in L(2,4) two vectors, say V and W (which can be taken to
be orthogonal, (V,W ) = 0), so that J is of the form (14), i.e., it is a simple bivector.
The first relation, uABuAB = −1, implies that one vector is of positive, the other
of negative norm, e.g., (V, V ) = −1, (W,W ) = 1.

In the next section we analyze the group of discrete transformations in L(2,4),
as we need it to derive the solutions for J .

3.3. The CPT group

The orthogonal transformations in L(2,4) consist of the group SO (2, 4) of con-
tinuous transformations (“rotations” for short) and of a finite group of discrete
transformations, i.e., transformations that cannot be undone by rotations. Two per-
manencies are at play in separating these two groups: The sign of the determinant,
and the sign of the norm. Hence, there are two independent reflections in L(2,4):
The reversal of a vector, P ∈ L(2,4) of positive norm, (P, P ) = 1, and the reversal
of a vector, N ∈ L(2,4) of negative norm, (N,N) = −1. Independence is expressed
as orthogonality, (P,N) = 0. Anticipating the interpretation of these reflections
(established at the end of this section), we denote them by T and P, respectively:

T : P 7−→ −P, (15)

P : N 7−→ −N. (16)

They are involutions, T 2 = P 2 = I, and their product T P = PT , is the only
additional metric-related discrete transformation.8 We denote it by C, i.e., C def= T P.
Clearly,

CPT = I.

The discrete transformations form the dihedral group, {I, C,P, T }.
We shall now distinguish the two orthonormal vectors P and N, i.e., consider

them fixed in L(2,4). This splits the space L(2,4) into two parts: a 2-plane L(1,1),
spanned by P and N, and its orthogonal complement L(1,3) — which is a linear

8In addition to these metric-related discrete transformations, there is an additional one which
changes the orientation of the space, i.e., the definition of the measure. Let’s denote it by E.
Linear objects (scalars, vectors and tensors) that change sign under the action of E are referred
to as pseudo-objects. We now disregard this transformation, as it plays no role in the derivation
of J.
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Minkowski space. We refer to this splitting as the Lorentz splitting, for it extracts
the Lorentz group from the orthogonal group O (2, 4) .

In addition, we shall need a second splitting of the space L(2,4) into two sub-
spaces of definite metric, L2 and L4. We call it the structural splitting. To define
L2, we use the already distinguished vector P . The second defining vector may be
selected arbitrarily on the two-sheeted hyperboloid in the Minkowski space L(1,3).
We denote it by Ω, and refer to it as the structure vector. Thus, (Ω,Ω) = 1 and
(Ω, P ) = 0. The hyperplane in L(1,3) orthogonal to Ω is a three-dimensional Eu-
clidean space. We denote it by Π, and refer to it as the structure space. Conse-
quently, the subspace L4 is spanned by N and Π. While the structural splitting is
far from unique, it is completely determined once the structure vector Ω has been
selected.

These two independent splittings are illustrated together in the following dia-
gram:

L(1,3) L(1,1)

L2 Ω P
L4 Π N

Returning to the reflections, we note that T , defined by (15), is equivalently
defined as

T : Ω 7−→ −Ω. (17)

The reason is that P and Ω are related by a continuous transformation from
SO (2, 4), specifically, a rotation in L2. Similarly, by a rotation in L4, P can
be equivalently defined as a reversal of any vector in Π. But since L4 is even-
dimensional, all vectors in Π can be reversed simultaneously — which is more
elegant, as it does not require selecting for reversal any particular vector in Π.
Hence, P, defined by (16), is equivalently defined as

P : Π 7−→ −Π. (18)

With the redefinitions (17) and (18), the discrete group {I, C,P, T } has been
transferred to the linear Minkowski space L(1,3) — making it co-resident with the
Lorentz group SO (1, 3) . The transfer required the introduction of the structure
vector Ω. Lets discuss the reason.

Time reversal is intuitively defined as the reversal of the flow of time. This is
well-defined in non-relativistic physics, where time is absolute, and is also mean-
ingful in the affine Minkowski space, where the time direction is global. But the
Minkowski space L(1,3) we have is linear, not affine (i.e., it is not a Riemannian
manifold that happens to be flat). Thus, there is no externally defined direction of
time that L(1,3) could inherit. By selecting the structure vector Ω, we introduce a
time direction.

Given Ω, an {Ω,Π}-frame is automatically defined (with whatever basis in Π),
and quantionic relations are often conveniently written in this frame. But Ω and
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Π are themselves defined in the arbitrary basis tetrad {Eα} , so that covariance is
not lost. Since the frames {Eα} and {Ω,Π} will be used interchangeably, we shall
need an appropriate terminology to refer to both. A frame {Eα} will be called a
Lorentz frame, and, as usual, properly formed tensorial expressions in it will be
said to be covariant. The name structural frame will be used for an {Ω,Π}-frame,
and properly formed quantionic expressions in it will be said to be structural.

3.4. The covariant formalism

The splitting of the linear space L(2,4) into the pair of vectors N,P and the
linear Minkowski space L(1,3) induce a corresponding splitting of the quantal tensor
algebra. With Greek indices running from 0 to 3, we rename the basis of observables
eAB as follows:

eαβ
def= Eα ∧ Eβ ,

nα
def= N ∧ Eα ,

pα
def= P ∧ Eα ,

j
def= N ∧ P .




(19)

The transcription of the expression (5) for the Lie product into this covariant
formalism leads to the following expressions (listing only the non-vanishing prod-
ucts):

eαβ α eγδ = ηαγ eβδ − ηαδ eβγ − ηβγ eαδ + ηβδ eαγ ,
eαβ α nγ = ηαγ nβ − ηβγ nα ,
eαβ α pγ = ηαγ pβ − ηβγ pα ,


 (20)

nα α nβ = −eαβ ,
pα α pβ = eαβ ,

nα α pβ = ηαβ j ,


 (21)

nα α j = pα ,
pα α j = nα .

}
(22)

To transcribe the Jordan product (9), we specify as {E0, E1, E2, E3, N, P} the
positive orientation of the basis vectors in L(2,4), thus identifying N and P with
the fourth and fifth basis vectors. The non-vanishing entries for this product are
given by the following relations:

eαβ σ eγδ = εαβγδ j + (ηαγ ηβδ − ηαδ ηβγ) e ,
eαβ σ nγ = εαβγδ pδ ,
eαβ σ pγ = εαβγδ nδ ,

eαβ σ j = − 1
2 εαβγδ eγδ = − ∗eαβ ,




(23)
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nα σ nβ = −ηαβ e ,
pα σ pβ = ηαβ e ,

nα σ pβ = − 1
2εαβγδ eγδ = − ∗eαβ .

j σ j = −e .


 (24)

These two sets of multiplication rules now supersede the general algorithms (5)
and (9).

This completes the preparations needed to identify all possible solutions for J,
encapsulated in the following theorem:

Theorem 10 The most general expression for J is

J = Ωρnρ, (25)

where the coefficients Ωρ are the components of the structure vector Ω,

Ω = ΩρEρ. (26)

Proof. Taking (17) and (18) as the definitions of T and P, the conjugation C
reverses Ω, and Π,

C : Ω → −Ω,

C : Π → −Π,

but does not affect P and N . Hence, only two expressions for J satisfy the require-
ments of Lemma 9 and of conjugation

C : J → −J. (27)

They are
J = N ∧ Ω (28)

and
J = P ∧ π,

where π is an arbitrary unit space-like vector, π ∈ Π. This latter expression drops
out, however, because it is not a true involution, i.e., J and −J are equivalent,
in the sense of being related by a continuous Lorentz transformation (because π
and −π are on the single sheeted unit hyperboloid, which is an orbit of the Lorentz
group). By contrast, Ω is on the double sheeted unit hyperboloid, so that expression
28 is a true involution. It is the only solution for J.

Expressing Ω in the Lorentz frame, expression (12), one obtains

J = N ∧ ΩρEρ = Ωρnρ, (29)

which proves the relation (11).
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3.5. The centralizer of J

Once J ∈ O (2, 4) has been specified by fixing the vector Ω, one derives the
centralizer OJ (2, 4) by expressing the general observable f ∈ O (2, 4) as a linear
combination of the basis observables introduced above, and then imposing the
condition Jαf = 0. The linear space of coefficients which satisfy this condition
identically is, by definition, the underlying linear space of the quantionic algebra.
The products in OJ (2, 4) follow from the expressions for the products in O (2, 4) .

With upper case letters denoting the coefficients (scalars, vectors, and tensor),
the expansion for the most general observable f is

f = Ae + Bj + V µnµ + Wµpµ + Tµνeµν . (30)

To impose the condition (Ωρnρ) αf = 0, one considers each term separately. Clearly,
A is arbitrary. We compute the other coefficients in turn using the relations (20)
to (22).

Computing B : The condition

(Ωρnρ) α (Bj) = BΩρpρ = 0

implies B = 0.

Computing V µnµ : The condition

(Ωρnρ) α (V µnµ) = ΩρV µ (nραnµ) = −ΩρV µeρµ = 0

implies that V µ is proportional to Ωµ. Hence,

V µnµ = V J ,

where V is an arbitrary scalar.
Computing Wµpµ : The condition

(Ωρnρ) α (Wµpµ) = ΩρWµ (nραpµ) = (Ω,W ) j = 0

implies that Wµ is an arbitrary vector in Π.
Computing Tµνeµν : The condition

(Ωρnρ) α (Tµνeµν) = ΩρTµν (nραeµν) = 2ΩρTµνηρνnµ = 0

implies that the most general solution is

Tµνeµν =
1
2
εµνστΩσTτeµν ,

where T ν is an arbitrary vector in Π (the factor 1/2 is cosmetic).
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Collecting these partial results, we see that the most general quantion f ∈
OJ (2, 4) is of the form

f = Ae + V Ωµnµ + Wµpµ +
1
2
εστµνΩσTτeµν . (31)

We now observe that the first and last terms are invariant under conjugation.
The first by definition, since A is a real number. In the last term, the direction
represented by each index is reversed (σ by T , the other three by P, as they belong
to Π), so that the eigenvalue of C is (−1)4 = 1. Hence, these two terms belong to
the J-real part R of O (2, 4) :

Ae +
1
2
εστµνΩσTτeµν ∈ R . (32)

The second and third terms in expression (31) are reversed by conjugation (the
second is reversed by T due to the presence of Ω, the third by P because Wµ ∈ Π).
Thus, these terms are J-imaginary. We still have to verify, as a matter of consistency,
that they belong to the J-imaginary part JβR of O (2, 4) . For V Ωµnµ, which, by
relation (25), is equal to V J, this is evident. For the second term, the question is
whether a vector Xτ exists such that

Wµpµ =
1
2
JβεστµνΩσXτeµν .

Let’s expand JβεστµνΩσeµν using the second of relations (23):

1
2
JβεστµνΩσeµν =

1
2
ΩρnρβεστµνΩσeµν =

1
2
ΩρεστµνΩσ (nρβeµν)

=
1
2
ΩρεστµνΩσεµνρδp

δ =
(
δσ
δ δτ

ρ − δσ
ρ δτ

δ

)
ΩρΩσpδ

= (ΩτΩδ − δτ
δ ) pδ. (33)

Hence
Wδ = (ΩτΩδ − δτ

δ ) Xτ , (34)

but since Xτ ∈ Π, the second term vanishes due to ΩτXτ = 0. Hence, Xτ = −Wτ .
Consequently,

V Ωµnµ + Wµpµ ∈ JβR .

This verifies that the quantionic algebra OJ (2, 4) splits into a J-real and a J-
imaginary part,

OJ (2, 4) = R⊕ JβR , (35)

in analogy with the field of complex numbers.
We can now prove the key theorem of inherent unification:
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Theorem 11 The linear space of real coefficients spanning the linear space R of
real quantions is isomorphic to the linear Minkowski space, M0.

Proof. By relations (32), the J-real quantions are of the form

u = Ue +
1
2
εστµνΩσuτeµν , (36)

where U ∈ R and uµ ∈ Π, i.e., Ωµuµ = 0. But this last condition need not be
imposed, as the Ω-component of uµ is destroyed in the construction εστµνΩσuτ .
Thus, by allowing uτ to be an arbitrary 4-vector, and defining U as U = Ωµuµ, one
obtains the following relation between R and M0 :

u =
(

eΩτ +
1
2
εστµνΩσeµν

)
uτ . (37)

This proves the isomorphism Ru ↔ uτ ∈ M0.

It will prove convenient to have a simple symbol, ωτ , for the hybrid object
(observable and 4-vector) that defines the mapping (37):

ωτ def= eΩτ +
1
2
εστµνΩσeµν . (38)

Then, u = ωτuτ .

By taking u = e in relation (37) and solving for uµ, one obtains uµ = Ωµ. Hence,
the unit e ∈ R is represented in M0 by the vector Ωµ. Let’s emphasize this new
insight:

The algebraic unit e ∈ OJ and the time direction Ωµ ∈ L(1,3) are the same
object. From the algebraic, or quantum mechanical, viewpoint, this object manifests
itself as the unit. From the geometric, or relativistic, viewpoint it manifests itself
as the direction of time.

It is this total merging in the vector Ω of two fundamentally different concepts
that justifies calling Ω the structure vector.

Extending these results to the entire quantionic algebra OJ , the complex linear
Minkowski space, M0 (C) def= M0 ⊕ iM0, becomes the space of coefficients. In the
next sections, we transfer the expressions for the product β from the algebra OJ to
the coefficients M0 (C) . Since both the Lorentz frame and the structural frame are
distinguished in the quantionic algebra, we shall express the product β in both.

3.6. The product β

Since the real quantions, R, are defined by real 4-vectors, two real 4-vectors are
needed to specify a general quantion u ∈ OJ . We write

u = ωτUτ + JσωτU ′
τ , (39)

FIZIKA B 10 (2001) 4, 187–210 203



grgin: inherently relativistic quantum theory. part iii . . .

where Uτ , U ′
τ ∈ M0. We collect these two real 4-vectors into one complex 4-vector,

uτ def= Uτ + iU ′
τ ∈ M0 (C) . (40)

The next theorem expresses the quantionic product β in tensorial form, the
quantions being represented by complex 4-vectors. In this formalism, the machinery
of tensor algebra is put to the service of algebraic computations. It also condenses
into a single formula, (41) or (42), the multiplication tables for β, which were given
by cases in the algebraic frames.

Theorem 12 In covariant form, the product β reads

(uβv)ρ = (Ω, v) uρ + (Ω, u) vρ − (u, v) Ωρ − iηρσεσαβγΩαuβvγ , (41)

or, in coordinate-free notation,

uβv = (Ω, v) u + (Ω, u) v − (u, v) Ω − i ∗ (Ω ∧ u ∧ v) . (42)

Proof. We write the product w = uβv, where u, v, w ∈ OJ , in the expansion
(39):

(ωτWτ + JσωτW ′
τ ) =

(
ωρUρ + JσωρU ′

ρ

)
β (ωσVσ + JσωσV ′

σ) . (43)

To expand the right-hand side as a product of binomials,

r.h.s = (ωρβωσ)
(
UρVσ − U ′

ρV
′
σ

)
+ Jσ (ωρβωσ)

(
UρV

′
σ + U ′

ρVσ

)
, (44)

one needs the expressions for ωρβωσ and Jσ (ωρβωσ) ,

ωρβωσ = ωρσωσ + Jσ (ωραωσ) ,

Jσ (ωρβωσ) = Jσ (ωρσωσ) − ωραωσ.

By separating the real an imaginary parts in relation (43), one obtains

ωτwτ = (ωρσωσ)
(
UρVσ − U ′

ρV
′
σ

)
− (ωραωσ)

(
UρV

′
σ + U ′

ρVσ

)
, (45)

ωτWτ = (ωραωσ)
(
UρVσ − U ′

ρV
′
σ

)
+ (ωρσωσ)

(
UρV

′
σ + U ′

ρVσ

)
. (46)

In the transition from the quantionic algebra to the tensorial algebra of coeffi-
cients isomorphic to it, the imaginary unit J is eliminated, and its role taken over
by the ordinary imaginary unit i. Beginning with the substitutions

ωρσ def= (ωρσωσ) + iε (ωραωσ) , (47)

where ε = ±1, relations (45) and (46) are compacted into a single complex equation

ωτwτ = ωρσuρvσ . (48)
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The next task is to compute ωρσ beginning with ωρσωσ and ωραωσ.

ωρσωσ =
(

eΩρ +
1
2
εγτµνΩγ eµν

)
σ

(
eΩσ +

1
2
εδσαβΩδ eαβ

)

= eΩρΩσ + ε
1
2
εγτµνΩγΩσeµν + ε

1
2
εδσαβΩδΩρeαβ

+
1
4
εγρµνεδσαβΩδΩγ (eµν σ eαβ) .

The last term, computed separately, is:

1
4
εγρµνεδσαβΩγΩδεµναβj − 1

4
εγρµνεδσαβΩγΩδ (ηµα ηνβ − ηµβ ηνα) e

= (ΩρΩσ − ηρσ) e.

Hence,

ωρσωσ = (2ΩρΩσ − ηρσ) e +
1
2

(
εγραβΩσ + εγσαβΩρ

)
Ωγeαβ . (49)

Next, we compute ωραωσ :

ωραωσ =
1
4
ΩγΩδε

γρµνεδσαβ (eµν α eαβ)

= ΩγΩδε
γρµνεδσαβηµαeνβ

=
(
ηρβηνσ − ηνσΩρΩβ + ηνρΩσΩβ

)
eνβ . (50)

Combining these partial results into the expression (47), one obtains

ωρσ = (2ΩρΩσ − ηρσ) e +
1
2
εγταβ (Ωσδρ

τ + Ωρδσ
τ ) Ωγeαβ

+εi
(
ηρβηασ − ηασΩρΩβ + ηαρΩσΩβ

)
eαβ . (51)

We now make the substitutions (37) for ωτ and (51) for ωρσ into relation (48),
separating the e-component from the eαβ-component:

Ωτwτ = (2ΩρΩσ − ηρσ) uρvσ = 2 (Ω, u) (Ω, v) − (u, v) . (52)

1
2
εσταβΩσwτ =

1
2
εγταβ (Ωσδρ

τ + Ωρδσ
τ ) Ωγuρvσ

+iε
(
ηρβηασ − ηασΩρΩβ + ηαρΩσΩβ

)
uρvσ . (53)
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Contracting both sides by 2εκλαβ yields

(δσ
λδτ

κ − δσ
κδτ

λ) Ωσwτ = (δγ
λδτ

κ − δγ
κδτ

λ) (Ωσδρ
τ + Ωρδσ

τ ) Ωγuρvσ

+ε2iεκλαβ

(
ηρβηασ − ηασΩρΩβ + ηαρΩσΩβ

)
uρvσ.

Hence

Ωλwκ − Ωκwλ = (Ω, v) uκΩλ + (Ω, u) vκΩλ − (Ω, v) uλΩκ − (Ω, u) vλΩκ

+ε2iεκλαβ

(
ηρβηασ − ηασΩρΩβ + ηαρΩσΩβ

)
uρvσ .

This relation can be separated into two simpler ones, specifically, the relation

Ωλwκ = (Ω, v) uκΩλ + (Ω, u) vκΩλ

+εiεκλαβ

(
ηρβηασ − ηασΩρΩβ + ηαρΩσΩβ

)
uρvσ + Sλκ

and its symmetric counterpart obtained by interchanging κ and λ. The term Sλκ =
Sκλ is arbitrary but symmetric. Contracting both sides by Ωλ, one obtains

wκ = (Ω, v) uκ + (Ω, u) vκ + εiεκλαβΩλuβvα + ΩλSλκ.

To determine the last arbitrary term, contracting by Ωκ and comparing the result
with relation (52) yields

(Ω, w) = 2 (Ω, v) (Ω, u) + ΩκΩλSλκ = 2 (Ω, u) (Ω, v) − (u, v) .

Hence, ΩλSλκ = − (u, v) Ωκ. To write the final expression, (41), we select the
orientation ε = −1 for a minor cosmetic advantage.

We see that the 4-tensor Ω plays the role of the algebraic unit in (41), i.e.,
Ωβf ≡ f.

The next theorem gives β in the structural frame, where we write u = UΩ + ~u.
In this expression, U and ~u are the projections of the complex 4-vector u on Ω and
Π respectively:

C U = (Ω, u) , (54)

Π ~u = u − (Ω, u) . (55)

Theorem 13 In structural form, the product β reads

(UΩ + ~u) β (V Ω + ~v) = (UV + ~u · ~v) Ω + U~v + ~uV + i~u × ~v . (56)

Proof. The substitutions u = UΩ + ~u and v = V Ω + ~v into the formula (42)
immediately yield this result.
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The next theorem serves two purposes. By proving the associativity of the
product β directly, it verifies the integrity of the algebraic calculations that led to
the expression (41), but, more importantly, it shows that associativity is not linked
to there existing a unit in the quantionic algebra. A structure vector Ω is needed,
but this vector need not have the interpretation of an algebraic unit.

Theorem 14 The product β, defined by the relation (41), is associative for all
vectors Ωρ, i.e., time-like, null, or space-like, and of any magnitude,

(uβv) βw = uβ (vβw) . (57)

Proof. Let us write the product β as a sum of a symmetric and an antisym-
metric part,

uβv = ruβ1v + suβ2v , (58)

where, by relation (41),

uβ1v = (v,Ω) uρ + (u,Ω) vρ − (u, v) Ωρ,

uβ2v = ερ
αβγΩαuβvγ .

Even though they are known, we treat the coefficients r and s as arbitrary. Substi-
tution of relation (58) into the associator yields

[u, v, w] = r2 [u, v, w]1 + s2 [u, v, w]2 + rs [u, v, w]12 ,

where

[u, v, w]12
def= (uβ1v) β2w − uβ1 (vβ2w) + (uβ2v)β1w − uβ2 (vβ1w) .

We first show that this term vanishes (as terms of the type ερ
αβγΩαΩβ vanish by

themselves, we need not write them).

[u, v, w]ρ12 = ερ
αβγΩα

[
(u,Ω) vβ + (v,Ω) uβ

]
wγ

−ερ
αβγΩαuβ [(v,Ω) wγ + (w,Ω) vγ ]

+ (Ω, w) ερ
αβγΩαuβvγ − ελαβγΩαuβvγwλΩρ

− (Ω, u) ερ
αβγΩαvβwγ + ελαβγΩαvβwγuλΩρ

= 0 .

Next we compute [u, v, w]1 :
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[u, v, w]ρ1
= (u,Ω) (v,Ω) wρ + (v,Ω) (u,Ω) wρ − $ (u, v) wρ

+(w,Ω) (u,Ω) vρ + (w,Ω) (v,Ω) uρ − (w,Ω) (u, v) Ωρ

− (u,Ω) (v, w) Ωρ − (v,Ω) (u,w) Ωρ + (u, v) (w,Ω) Ωρ

− (v,Ω) (w,Ω) uρ − (w,Ω) (v,Ω) uρ + $ (v, w) uρ

− (u,Ω) (v,Ω) wρ − (u,Ω) (w,Ω) vρ + (u,Ω) (v, w) Ωρ

+(v,Ω) (u,w) Ωρ + (w,Ω) (u, v) Ωρ − (v, w) (u,Ω) Ωρ

= $ [(v, w) uρ − (u, v) wρ] + (v,Ω) [(u,Ω) wρ − (w,Ω) uρ]

+ [(w,Ω) (u, v) − (u,Ω) (v, w)] Ωρ .

The computation of [u, v, w]2 yields

[u, v, w]2

= ερ
λµνεµ

αβγΩλΩαuβvγwν − ερ
λνµεµ

αβγΩλΩαuνvβwγ

=
[
ερ

λµνεµ
αβγ − ερ

λµβεµ
ανγ

]
ΩλΩαuβvγwν

= [−δρ
α ηβλ ηγν − δρ

γηαλ ηβν − δρ
β ηγλ ηαν + δρ

α ηβν ηγλ + δρ
γ ηαν ηβλ

+δρ
β ηγν ηαλ + δρ

α ηλν ηγβ + δρ
γηαληβν + δρ

ν ηγλ ηαβ − δρ
α ηβν ηγλ

−δρ
γ ηαβ ηνλ − δρ

ν ηγβ ηαλ]ΩλΩαuβvγwν

= $ [(v, w) uρ − (u, v) wρ] + (v,Ω) [(u,Ω) wρ − (w,Ω) uρ]

+ [(w,Ω) (u, v) − (u,Ω) (v, w)] Ωρ.

Hence,
[u, v, w]1 = [u, v, w]2 ,

and, consequently
[u, v, w] =

(
r2 + s2

)
[u, v, w]1 .

Since the vectors uρ, vρ, wρ ∈ Π are arbitrary, the associator [u, v, w]1 does not
vanish identically, which implies that the product beta defined by relation (58) is
associative if and only if r2 + s2 = 0, which is the case since r = 1 and s = ±i.
We also conclude that the product β is associative for all three types of structure
vectors (time-like, space-like or null), which may also be of any length.

This completes the extraction of the quantionic algebra embedded in the only
non-trivial physical non-unitary quantal algebra. In future work, we shall denote
this algebra by the symbol D, instead of OJ .
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SUŠTINSKI RELATIVISTIČKA KVANTNA TEORIJA
III Dio. KVANTIONSKA ALGEBRA

Kvantna mehanika i relativnost nisu uskladive na strukturnoj razini, što vrlo
otežava njihovo ujedinjenje. Neuskladivost može značiti da potpuna kvantna
teorija ujedinjena s relativnošću postoji, ali nije poznata, dok standardna kvantna
mehanika, kao poseban slučaj, ne može biti relativistička. Ako je tako, traženje
poopćenja je opravdano, no pitanje je kako. Stara je zamisao zamijeniti polje kom-
pleksnih brojeva strukturno bogatijom algebrom, ali do sada takvi pokušaji nisu
doveli kvantnu teoriju bliže relativnosti. Ovaj je rad takod–er zasnovan na toj za-
misli, ali, za razliku od ranijih pokušaja, ne traži nov brojevni sustav u postojećim
matematičkim strukturama. Na osnovi općih razmatranja razvijenim u prva dva
dijela ovog rada, izvedena je nova matematička struktura, nazvana kvantionska al-
gebra, kao teorem u ovom članku. Ona je jedinstvena, u postavci relativistička i
poopćuje polje kompleksnih brojeva skladno kvantnoj teoriji.
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