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Having completed in Part III of the present work the development of the quan-
tionic algebra, we derive, in this final part, the algebraic theorems needed for its
application to physics. The most important of these theorems are those related to
the quantionic norm. The quantionic norm generalizes the norm of state vectors
in standard quantum mechanics, and has immediate physical interpretations sug-
gested by its geometric properties.
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1. Introduction

In this paper we complete the development of the algebra of quantions to a
points that suffices as background for the next step — the study of quantionic
differential equations and of their physical interpretations.

All concepts and identities defining the quantionic algebra have been derived
in Part III of the present work [1], and our first task is to organize these results
in a self-contained section (Sect. 2) sufficiently complete to serve as reference for
further work. Readers initially willing to accept on faith the proof, distributed
over the three previous articles, Refs. [2], [3] and [1], that the quantionic algebra
is the unique generalization of the field of complex numbers compatible with some
very abstract principles of quantum mechanics may postpone the reading of these
articles and begin with the present paper without lacunas in the logic.1

1For these readers we point out that while the quantionic algebra is also relativistic, this prop-
erty was not axiomatically imposed. The search for a generalization of quantum theory compatible
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2. The algebra D
The underlying linear space of the quantionic algebra D is the complex linear

Minkowski space
M4 (C) = M4 ⊕ iM4,

in which a real vector
Ω ∈ M4,

referred to as the structure vector, has been distinguished in addition to the already
existing structures. Thus, D is equipped with three invariant geometric objects. In
the order of decreasing generality, they are (1) the Levi-Civitta pseudo-tensor,
which exists in every linear space, (2) the metric tensor, which characterizes rela-
tivity, and, (3) the structure vector, which brings in quantum structures.

The linear space D becomes an algebra (the quantionic algebra) with the ad-
junction of a product, β, i.e., a bilinear operator

β : D × D → D

defined in terms of the three distinguished objects. Before we write its definition,
we need to make some important remarks concerning the invariance groups.

The metric in Minkowski space is invariant under the continuous group SO (1, 3)
of Lorentz transformations and under the discrete group CPT (time-reversal T ,
parity P, and their product C = PT ). In special relativity, Lorentz covariance is
guaranteed by the formalism of tensor algebra, but with respect to the discrete
group, invariance is either expressed in a particular coordinate system, or ignored.
In the quantionic algebra, however, both groups are equally fundamental. It was
the need to make the discrete transformations coordinate-independent that led to
the introduction of the structure vector Ω. Thus, for f ∈ D, the discrete group is
defined by the mappings

C : f 7−→ f∗,
P : f 7−→ 2 (Ω, f) Ω − f,

T : f 7−→ CP ≡ PC = 2 (Ω, f∗) Ω − f∗.


 (1)

Since manifest covariance and the existence of the distinguished vector Ω are mu-
tually incompatible, the formalism of the quantionic algebra can respect one or the
other, but not both simultaneously. If preference is given to the continuous group,
we refer to the basis vectors as the Lorentz frame, and to the formalism as covari-
ant. If the discrete group is emphasized, we refer to the frame and formalism as
structural. When there is a choice, we shall prove theorems in the formalism that
minimizes the effort.
with the Hilbert space structure of standard quantum mechanics (abstractly interpreted) led to
the quantionic algebra as the unique generalization of the field of complex numbers. Its being rela-
tivistic is an unexpected theorem — justifying the qualifier “inherent” for a quantionic unification
of relativity and quantum theory.
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2.1. The product β in covariant form

The covariant expression for the product β is

fβg
def= (Ω, f) g + (Ω, g) f − (f, g) Ω − ∗ (iΩ ∧ f ∧ g) , (2)

where f, g ∈ D. A star superscript to the left of a multivector indicates the Hodge
duality operator, while (f, g) def= ηαβfαgβ is the scalar product in Minkowski space.
(As much as possible, we avoid writing the tensor indices.) Written out in tensorial
components, the product β reads

(fβg)ρ def= (Ω, f) gρ + (Ω, g) fρ − (f, g) Ωρ − iη
ρτ

εταβγΩαfβgγ . (3)

Equivalently,
(fβg)ρ = Bρ

αβfαgβ , (4)

where Bρ
αβ is the tensor

Bρ
αβ

def= δρ
αΩβ + δρ

βΩα − ηαβΩρ − iηρτΩσερσαβ . (5)

This definition of the algebraic product is unconditionally associative,

(fβg) βh ≡ fβ (gβh) ,

i.e., it is associative for an arbitrary selection of the structure vector Ω. But for the
algebra to have a unit, the structure vector must be time-like and of unit length,
i.e.,

(Ω,Ω) = 1, (6)

in which case Ω itself plays the role of the algebraic unit. Indeed, if condition (6)
is satisfied, substitution of Ω for g in the expression (2) yields

Ωβf ≡ f. (7)

Given a time-like structure vector Ω, one can select the Lorentz frame so as
to have Ω0 > 0. Hence, in the linear space D, where there is no physically pre-
determined direction of time, Ω is future-pointing by definition.

2.2. The product β in structural form

What we refer to as the structural frame consists of the structure vector Ω taken
as a basis vector, and of the hyperplane Π orthogonal to Ω. Since Ω is time-like, Π
is a 3-dimensional Euclidean space. We write an arbitrary quantion f ∈ D in the
form

Df = FΩ + ~f, (8)
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where F and ~f are the projections of f on Ω and Π, respectively, i.e., F
def= (Ω, f) ∈

C, and ~f
def= (f − FΩ) ∈ Π. Let us write f and g in the expression (2) in the form

(8) and expand,

fβg =
(
FΩ + ~f

)
β (GΩ + ~g) = FGΩ + F~g + G~f + ~fβ~g.

To compute ~fβ~g, we note that
(
Ω, ~f

)
= 0 by orthogonality,

(
~f,~g

)
= −~f · ~g by

the definition η = (+1,−1,−1,−1) of the metric tensor, and ∗
(
Ω ∧ ~f ∧ ~g

)
=

−~f × ~g. The source of the minus sign is evident from the expression (3), i.e., from
η

ρτ

εταβγΩαfβgγ , since the indices ρτ are in Π, i.e., space-like. Hence,

~fβ~g =
(

~f · ~g
)

Ω + i ~f × ~g, (9)

and, finally,

fβg =
(
FG + ~f · ~g

)
Ω + F~g + G~f + i ~f × ~g. (10)

In the special case of ~f = ~g = 0, we have f = FΩ, g = GΩ, and fβg = FGΩ.
Hence, the field C of complex numbers is a substructure of the quantionic algebra
D — as it should be, since D is meant to be a generalization of C.

3. The quantionic norm

Complex conjugation, indicated by an asterisk, is essential to what follows. We
first note that it does not apply only to quantions, but also to the product β, as
it is a complex tensor, (5). Its symmetric part being real and antisymmetric part
imaginary, taking the complex conjugate of β is equivalent to taking the reverse of
the product, i.e., fβ∗g ≡ gβf. The implication

(fβg)∗ ≡ g∗βf∗ (11)

is analogous to Hermitian conjugation of operators.
We define the quantionic norm as

A (u) def= u∗βu. (12)

It is a quantion by construction, but a real one, i.e., a vector in the linear Minkowski
space.

The presence of the exterior vector product in the definition of the algebraic
product β implies uβu∗ /=u∗βu, leaving two options for the definition of the norm.
The reason for selecting the expression (12) is for compatibility with the standard
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practice of writing linear operators to the left of the vectors they act upon. This
will become evident in the section on quantionic Hilbert space.

The next theorem is fundamental to the physical interpretation of quantions. It
generalizes the positive definiteness of the norm of complex numbers.

Theorem 1 For every quantion u ∈ D, the norm u∗βu is a future-pointing time-
like or null vector in the real linear Minkowski space.

Proof. (a) Reality, i.e.,
(u∗βu)∗ = u∗βu, (13)

is an immediate consequence of relation (11).
(b) A vector is future-pointing if its component in the direction Ω is positive.

Computing the norm, w ∈ M4 of u ∈ D using relation (10), one obtains

WΩ + ~w = (U∗Ω + ~u∗) β (UΩ + ~u)

= (U∗U + ~u∗ · ~u) Ω + U∗~u + U~u∗ + i~u∗ × ~u. (14)

Clearly, the Ω−component (U∗U + ~u∗ · ~u) is positive definite, proving the future-
pointing orientation.

(c) To show that the product w = u∗βu cannot be space-like, we compute the
scalar product (w,w) = WW − ~w · ~w from the expression (14):

(w,w) = (U∗U + ~u∗ · ~u)2 − (U∗~u + U~u∗ + i~u∗ × ~u)2

By elementary vector-algebraic computations, one transforms this expression into
the form

(w,w) = (u, u)∗ (u, u) ≡ ‖(u, u)‖2 ≥ 0, (15)

proving the assertion.
We now observe that the proof of Theorem 1 exhibits one additional property

of the algebra D, sufficiently interesting to be cast as a corollary. To state it con-
ceptually, we introduce the following notations for the two norms defined in the
quantionic algebra (in these expressions, C+ is the cone of future-pointing time-
like and null vectors in the real linear Minkowski space M4, and R+ the set of
non-negative real numbers):

1. The bilinear metric norm function M, based on the scalar product in
Minkowski space:

M (u) def= (u, u) ≡ ηαβuαuβ ∈ C. (16)

2. The sesquilinear algebraic norm function A, which generalizes the complex
norm:

A (u) def= u∗βu ∈ C+ ⊂ M4. (17)
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3. The fourth order quantionic norm function N, which combines the two:

N (u) def= (u, u)∗ (u, u) ∈ R+. (18)

Written out in full as (u∗βu, u∗βu) = (u, u)∗ (u, u), relation (15) can now be stated
as:

Corollary 2 The algebraic and metric norms commute,

N (u) = M (A (u)) = A (M (u)) . (19)

To compute the inverse of a quantion u, i.e., v = u−1, we substitute the expres-
sion (2) into the reciprocity condition uβv = Ω,

(Ω, u) v + (Ω, v) u − (u, v) Ω − i ∗ (Ω ∧ u ∧ v) = Ω, (20)

and take the scalar product of both sides with u :

V (u, u) = U. (21)

Splitting equation (20) into its scalar and vector parts, one obtains

UV + ~u · ~v = 1,

U ~v + V ~u + i ~u × ~v = 0.

The second of these equations implies that ~u and ~v are collinear, and, by relation
(21),

~v = −V

U
~u = − 1

(u, u)
~u.

Since u−1 = v = V Ω+~v, this relation, together with relation (21), yields the result

u−1 =
1

(u, u)
(UΩ − ~u) ,

but (UΩ − ~u) = Pu, since the parity transformation P reverses all vectors in Π,
but leaves Ω fixed. Hence, in covariant and structural form, respectively,

u−1 = P u

(u, u)
, (22)

(UΩ + ~u)−1 =
UΩ − ~u

UU − ~u · ~u . (23)

Hence, the inverse exists everywhere in D except on the complex null cone, N ,
defined by the equation (u, u) = 0. N is also the kernel of the quantionic norm —
in the sense that the fourth-order norm N, relation (18), vanishes exactly on N .
This suggests the following terminology:
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Definition 3 The quantions q ∈ N , which have no inverse, are called singular.
All other quantions are said to be regular.

Being implicit, the singularity condition (u, u) = 0 is often impractical. To
parametrize the algebraic variety N , we first write q in terms of two real scalars,
x, y, and two real vectors, ~a,~b :

q = QΩ + ~q = (x + iy) Ω +
(
~a + i~b

)
. (24)

The complex equation (u, u) = 0 is then equivalent to two real equations,

x2 − y2 = ~a 2 −~b 2, (25)

xy = ~a ·~b. (26)

Hence, for some real number s, equation (25) yields

x2 =
1
2

(
s +

(
a2 − b2

))
, (27)

y2 =
1
2

(
s −

(
a2 − b2

))
. (28)

With equation (26), one obtains the solution for s :

s2 =
(
a2 + b2

)2 − 4
(
~a ×~b

)2

. (29)

This completes the parametrization of N by arbitrary complex 3-vectors ~q.

We note that the expression (23) is evidently true in the special case of complex
numbers, characterized by ~u = 0. We also note that β-multiplying relation (23) on
both sides by (UΩ + ~u) yields Ω = Ω — on the left side by definition, on the right
side identically.

4. The polar form of quantions

The algebra of quantions generalizes the field of complex numbers structurally
(it is not a field like the complex numbers only because the kernel N is non-trivial).
The two structures are also similar in their Cartesian representations. Indeed, both
are direct squares of a linear metric space,

C = R × R,

D = M4 × M4.

Thus, a complex number is represented by a pair of arbitrary real numbers, z =
x + iy, a quantion by a pair of arbitrary vectors in Minkowski space, qρ = rρ + isρ.
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It is now natural to inquire if the representation z = reiφ of complex numbers
also generalizes to quantions. Specifically, given an arbitrary quantion q ∈ D, the
question is whether two 4-vectors r, s ∈ M4 exist such that

q = E (is) βr, (30)

where E (is) is some quantionic generalization of the exponential function. The
exponential function has several properties that characterize it. The property we
take over as defining for E (is) is that it be of unit norm, i.e., we define E (is) as
the most general solution of the equation

E (−is) βE (is) = Ω. (31)

Since the product β is not symmetric, the expression rβE (is) would give different
solutions for r and s. We begin with the form (30) for convenience.

To compute the quantionic radius vector r, we take the algebraic norm of q :

q∗βq = (E (is) βr)∗ β (E (is) βr)

= rβE (−is) βE (is) βr = rβr.

Hence, formally,
r =

√
q∗βq. (32)

The polar representation problem is now reduced to three sub-problems to be solved
separately. They are related to the quantionic exponential functions, the quantionic
square root, and the relationship between the various polar forms which stem from
the non-commutativity of the product β.

4.1. The quantionic exponential function

The solution to the first problem is given by the following theorem:

Theorem 4 The most general quantion E ∈ D of unit norm, E∗βE = Ω is of the
form

E = eiχ (cos φΩ + i sinφ~n) , (33)

where ~n is an arbitrary unit vector, ~n · ~n = 1.

Proof. We begin with a general quantion E written in structural form,

E = AΩ + ~a,

where A = x + iy, and ~a = ~v + i~w, with x, y ∈ C, and ~v, ~w ∈ Π. Expanding
E∗βE = Ω by relation (10), one concludes that ~v and ~w are parallel, which further
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implies that the complex 3-vector ~a is of the special form ~a = z ~n, where z ∈ C and
~n · ~n = 1, i.e.,

E = AΩ + z ~n.

The same expansion further yields

A∗A + z∗z = 1,

A∗z + Az∗ = 0.

The parametric solutions of these equations are

A = eiα cos φ,

z = eiβ sin φ,

subject to the condition e−iαeiβ+eiαe−iβ = 0. Rearranged, this yields the expression
(33) for arbitrary χ and φ.

Formally, the expression (33) can be written as

E = eiχeiφ ~n, (34)

where

eiφ ~n =
∞∑

k=0

(iφ)k

k!
~nk.

The powers of ~n, viewed as a quantion, are defined with respect to the product β.
Thus,

~n2 def= ~nβ~n = ~n · ~n Ω = Ω,

which leads to the Euler formula (33) for the exponential function. We can now
expand the function E (is) in relation (30),

E (is) = E (iSΩ + i~s) = ei(SΩ+~s) = eiSΩβei~s = eiSei~s.

Comparison with the expression (34) yields the interpretations for the variables χ
and φ,

χ = S,

φ =
√

~s · ~s.

Thus, the exponential function E (is) is periodic with period 2π in the direction
of the structure vector Ω, and it is also periodic with period 2π in every radial
direction in the Euclidean space Π. The first is the periodicity of the ordinary
complex phase factor, the radial periodicity is a new concept.
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4.2. The quantionic square root

Given an arbitrary quantion q ∈ D, we are to compute the square root (32), i.e.,
determine the vector r ∈ M4 such that

rβr = q∗βq. (35)

The solutions for regular and singular quantions being different, we consider them
separately.

The case of regular quantions:
By Theorem 1 and relation (18), one can write, without loss of generality,

q∗βq =
√

N (u) (cosh ω Ω + sinhω ~m)

=
(
R2 + ~r2

)
Ω + 2R~r,

for some parameter ω and unit vector ~m. This equation immediately yields two sets
of solutions,

R = 4
√

N (u) cosh ω
2 ,

~r = 4
√

N (u) sinh ω
2 ~m.

}
(36)

R = 4
√

N (u) sinh ω
2 ,

~r = 4
√

N (u) cosh ω
2 ~m.

}
(37)

As in the case of complex numbers, the negative signs of square roots are subsumed
in the phase factor E (is). To determine which of these solutions applies to a given
quantion q, consider the scalar product (q∗, q) :

(q∗, q) = (Q∗Ω + ~q∗, QΩ + ~q) = Q∗Q − ~q∗ · ~q.

Clearly, if (q∗, q) > 0, the solution is (36), if (q∗, q) < 0, it is (37).
Once the quantionic radius vector r has been found according to the algorithm

outlined above, the phase factor E (is) in the expression (30) is given as

E (is) = qβr−1, (38)

the reciprocal being defined by relation (22). Thus, for regular quantions, the polar
form is uniquely defined.

The case of singular quantions:
By definition, the norm q∗βq of a singular quantion is a null vector, and, by

(35), so is rβr, i.e., (rβr, rβr) = 0. In the structural frame,

((
R2 + ~r2

)
Ω + 2R~r,

(
R2 + ~r2

)
Ω + 2R~r

)
=

(
R2 + ~r2

)2 − 4R2~r2 =
(
R2 − ~r2

)2
= 0,
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implying that r itself is a null vector. Hence, its most general form is

r = R (Ω + ~m) ,

where ~m is an arbitrary unit vector.
From relations (34) and (30) written in the form r = E∗βq, we get

RΩ + R~m = e−iχ (cos φΩ − i sinφ~n) β (QΩ + ~q) .

Writing e−iχQ and e−iχ~q in terms real variables, e−iχQ = x+iy, and e−iχ~q = ~a+i~b,

RΩ + R~m = (cos φΩ − i sin φ~n) β
(
(x + iy)Ω + ~a + i~b

)
,

the vector part of this equation yields two real equations,

R~m = cos φ~a + sin φ~n × ~a + y sin φ~n,

0 = cos φ~b + sin φ~n ×~b − x sin φ~n.

The second equation implies

~n = ~b0, (39)

b cos φ = x sin φ.

Hence,

cos φ =
x√

b2 + x2
, (40)

sin φ =
b√

b2 + x2
. (41)

Substitution into the first equation yields

R~m =
1√

b2 + x2

(
x~a + y~b +~b × ~a

)
.

Taking the square of both sides, one computes R and ~m :

R =
√

a2 + y2, (42)

~m =
x~a + y~b +~b × ~a√
(b2 + x2) (a2 + y2)

. (43)

With x and y given by relations (27) to (29), after adjustment for the rotation eiχ,
this completes the algorithm for the quantionic radius vector and phase factor of
singular quantions.
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4.3. The general polar expressions

The polar expression E (is) βr is the simplest, as its algebraic norm is rβr, but
it is not necessarily the only one that might appear in computations. Due to the
non-commutativity of the product, rβE (is) is a different expression, while the most
general form is E (is) βrβE (it) . To cover all cases, it suffices to derive the exchange
rule understood as follows: Given two 4-vectors r and s, find the 4-vectors r′ and
s′ satisfying the equation

E (is) βr = r′βE (is′) . (44)

Since the complex phase factor eiχ commutes with all quantions, it suffices to derive
the exchange rule for the purely quantionic phase factor eiφ ~n. This rule has a simple
geometric interpretation:

Theorem 5 Under a permutation of factors, the quantion q = exp (iφ~n) βr re-
mains invariant if the quantionic radius vector r is simultaneously rotated by the
angle 2φ around the vector ~n, i.e.,

exp (iφ~n) β (RΩ + ~r) = (RΩ + ~r′) β exp (iφ~n) , (45)

where
~r′ = cos 2φ~r − sin 2φ~n × ~r + (1 − cos 2φ) (~n · ~r)~n. (46)

Proof. The expansions of exp (iφ~n) βr and of r′β exp (iφ′ ~n′) in the structural
frame are

Eβr = (cos φR + i sin φ~n · r) Ω + i sin φR~n + (cos φ~r − sin φ~n × r̄) ,

r′βE′ = (cos φ′ R′ + i sin φ′ ~n′ · r′) Ω + i sinφ′ R′~n′ + (cos φ ′~r′ + sin φ ′~n′ × r̄′) .

Term-wise comparisons yield immediately

~n′ = ~n,

φ′ = φ,

R′ = R,

and the following equations for ~r′ :

~n · ~r = ~n · ~r′,
cos φ~r − sinφ~n × ~r = cos φ~r′ + sin φ~n × ~r′.

The first of these equations means that the projection of ~r on ~n remains unaffected,
while the second represents a rotation by 2φ in the 2-plane orthogonal to ~n, i.e.,

~r′ = (~n · ~r)~n + cos 2φ (~r − (~n · ~r)~n) − sin 2φ ~n × (~r − (~n · ~r)~n) , (47)
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which is equivalent to the expression (46).
Being algebraic, the transformation (47) is a single rotation, but we note, an-

ticipating future developments, that if φ = ωt for a constant angular velocity ω~n,
the permutation of factors in the polar representation of quantions is equivalent to
a precession at twice the angular velocity.

4.4. Quantionic gauge transformations

Another role played by the quantionic phase factor eis = eiχeiφ~n is that of
quantionic gauge transformation, as the mapping

q 7−→ eisβq

preserves the algebraic norm. Indeed,

(
eisβq

)∗
β

(
eisβq

)
= q∗βe−isβeisβq = q∗βq,

in complete analogy with the complex gauge transformations of standard quantum
mechanics. The totality of gauge factors forms a group. The reason is that the
product of two gauge factors is a unit quantion,

(
eisβeit

)∗
β

(
eisβeit

)
= e−itβe−isβeisβeit = e−itβ Ωβeit = Ω,

which implies that for every pair of 4-vectors, s, t ∈ M4, there exists a 4-vector,
p ∈ M4, uniquely defined by s, t up to periodicities, such that

eisβeit = eip.

The quantionic gauge group is non-Abelian, since, in general, eisβeit /=eitβeis.

5. The tetrads

In this section we reformulate the quantionic algebra D in terms of basis tetrads
(Vierbeins, or “repères mobiles”), which are well suited for defining quantionic
fields in curved space. Two types of tetrads are common in general relativity, the
orthonormal tetrad, and the Neumann-Penrose null-tetrad. We shall express the
quantionic algebra in both, and then point out a re-interpretation of quantions
suggested by the orthonormal tetrad.

The orthonormal tetrad.
Let ~e1, ~e2, ~e3 be three real orthonormal vectors in the subspace Π. With Ω, they

form an orthonormal tetrad {Ω, ~e1, ~e2, ~e3} in D. Their mutual products

~eiβ~ei = Ω

~eiβ~ej = i~ei × ~ej = i~ek (cyclically)
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can be expressed as a multiplication table:

β Ω ~e1 ~e2 ~e3

Ω Ω ~e1 ~e2 ~e3

~e1 ~e1 Ω i~e3 −i~e2

~e2 ~e2 −i~e3 Ω i~e1

~e3 ~e3 i~e2 −i~e1 Ω

(48)

The null tetrad.
The Neuman-Penrose null tetrad consists of two pairs of null vectors [9]. We

take the following definitions,

k = 1
2 (Ω + ~e3)

l = 1
2 (Ω − ~e3)

m = 1
2 (~e1 + i~e2)

m∗ = 1
2 (~e1 − i~e2)


 (49)

which differ from the original definition in the coefficients. The reason is that one
cannot simultaneously maximally simplify both the Minkowski scalar product and
the quantionic product. Introduced in relativity, the original definition was con-
cerned only with the scalar product. In the quantionic algebra, both the scalar and
algebraic product are important, but the latter takes precedence. The coefficient
1/2 simplifies it, as tabulated in (51). The scalar products are

(k, k) = (l, l) = (m,m) = (m∗,m∗) = 0 ,
(k,m) = (k,m∗) = (l,m) = (l,m∗) = 0 ,

(k, l) = − (m,m∗) = 1
2 .


 (50)

The quantionic products follow from the definitions (49) and the table (48).
They are expressed in the multiplication table:

β k l m m∗

k k 0 m 0
l 0 l 0 m∗

m 0 m 0 k
m∗ m∗ 0 l 0

(51)

Since this table has only half as many non-vanishing entries as table (48), the
null tetrad could have computational advantages over the orthogonal tetrad.

Quantions and the 2 × 2 general linear group.
We note that the multiplication table (48) is essentially the same as for the

Pauli matrices. Thus, for the identifications Ω =
(

1 0
0 1

)
, ~e1 =

(
0 1
1 0

)
,
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~e2 =
(

0 −i
i 0

)
, ~e3 =

(
1 0
0 −1

)
, the product β is represented by matrix multi-

plication, and, consequently, the quantionic algebra D is isomorphic to the algebra
of 2 × 2 complex matrices. Due to the identification Ω = I, this isomorphism is
valid only once the structure vector Ω has been fixed. This precludes the Lorentz
covariance.

A special case of this isomorphism, valid also for fixed Ω, is expressed by the
following theorem:

Theorem 6 The group of quantionic gauge transformations eiφ~n is isomorphic to
the unitary group SU(2) .

Proof. Both groups being 3-parametric, it remains to be shown is that the
product

eiφ~nβeiψ ~m = (cos φΩ + i sin φ~n) β (cos ψΩ + i sin ψ~m)

= (cos φ cos ψ − sin φ sin ψ (~n · ~m)) Ω

+i (sin φ cos ψ~n + cos φ sin ψ~m)

−i sin φ sinψ (~n × ~m) (52)

is formally the same as the product of 2× 2 unitary matrices. Writing an arbitrary
traceless 2× 2 Hermitian matrix in the form φH, where H2 = I, the matrix H can
be represented as a real linear combination of Pauli matrices, H (~n) = ~n · ~σ, where
~n · ~n = 1. This establishes the one-to-one correspondence

eiφ~n ←→ eiφH(~n). (53)

Expanding the exponential, one obtains

exp [iφH (~n)] = cosφI + i sin φH (~n) ,

and similarly for exp [iφH (~m)] . Next, computing the product H (~n) H (~m) of the
two matrices using the Pauli expansion, one obtains

H (~n) H (~m) = (~n · ~m) I + iH (~n × ~m)

which immediately yields

eiφH(~n)eiψH(~m) = (cos φ cos ψ − sin φ sinψ (~n · ~m)) I

+i (sin φ cos ψH (~n) + cos φ sin ψH (~m))

−i sinφ sin ψH (~n × ~m) . (54)

The products (52) and (54) being formally identical, the one-to-one mapping (53)
is a group isomorphism.
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This theorem suggests that the gauge factor eiφ~n might be spin related. Should
this prove to be true, the spin group SU(2) , which appears in quantum mechanics
as the unitary representation of the rotation group SO(3) , would appear in the
quantionic algebra as a gauge group that preserves the algebraic norm.

Finally, as a curiosity, we point out that the quantionic exponential function
can also be expressed as the quantionic product of two unit space-like vectors:

Theorem 7 Let ~n1 and ~n2 be two unit vectors in the subspace Π, let φ be the
oriented angle from ~n1 to ~n2, and let ~n be a unit vector orthogonal to both ~n1 and
~n2. Then

eiφ~n = cos φΩ + i sin φ~n = ~n1β~n2 ,

e−iφ~n = cos φΩ − i sin φ~n = ~n2β~n1 .

If the vectors ~n1 and ~n2 are given, the exponential function is uniquely defined. If
the exponential function is given, the two vectors are defined only up to rotation in
their common plane.

Proof. Consider the product

~n1β~n2 = ~n1 · ~n2 Ω + i~n1 × ~n2 = cos φΩ + i sin φ~n

For given φ and ~n, it still leaves arbitrary the orientation of ~n1 in the plane per-
pendicular to ~n.

6. Quantionic Hilbert spaces of finite dimension

Having developed the quantionic algebra D as the unique relativistic general-
ization of the field C of complex numbers, we must verify that a generalization of
Hilbert space can actually be constructed over the algebra D. The following brief
outline of approaches to unification puts this construction in perspective.

For the last seven decades, physics has been encapsulated in two mutually in-
compatible mathematical structures: Non-relativistic Hilbert space quantum me-
chanics, and relativistic space-time — both its local structure (linear Minkowski
space), and its manifold structure (Riemannian space of general relativity). Their
incompatibility manifests itself in the non-existence of a single mathematical struc-
ture unifying both theories in their present form. If one takes the minimalist ap-
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proach aimed at generalizing only one of the two theories in the expectation that
the other one will “fall into place”, three approaches to the structural unification
problem suggest themselves:

(1) Generalize the structure of Hilbert space. This idea could never take off.
As Steven Weinberg points out, the Hilbert space structure is so rigid that any
modification destroys it completely. Allowing this, one would be starting ab initio,
rather than generalizing Hilbert space.

(2) Generalize the underlying number system of Hilbert space while preserving its
structure. This ideas has been thoroughly investigated in the transition from com-
plex numbers to quaternions — which proved not to lead to unification. The other
division algebras and the Clifford and Grassmann algebras are even less adapted
to this task.

(3) Generalize the space-time structure. Locally, all one can do is increase
the number of space-time dimensions in the expectation of retrieving the linear
Minkowski space later. A mathematically structural but physically partial solu-
tion of this type is Penrose’s twistor approach. It was obtained by generalizing the
affine Minkowski space to the six-dimensional embedding space of its conformal
compactification.

The present work follows the approach (2) outlined above, but respects a lesson
of the past — which tells us that if a new number system for Hilbert space exists,
it is not to be found by trial and error among the known mathematical structures.
We have shown that such new number system, D, exists by extracting it from the
structure of quantum theory itself. Moreover, it is unique, and relativistic. We
shall now verify that it supports a Hilbert space structure — even though this is
practically evident from its properties.

Initially disregarding the topological issues related to infinite-dimensional
spaces, it suffices to consider the finite-dimensional case. As we shall see, the tran-
sition from the field C of complex numbers to the richer structure of the quantionic
algebra D does not invalidate any of the standard structures relevant to quantum
mechanics. It is necessary, however, to accept the idea that the norm of a vector is
no longer a real number, as in standard Hilbert space, but a real Minkowski vector
— and leave it formally at that. This modification does not affect the algebraic
properties of operators. As for physical interpretations, they cannot be convinc-
ingly extracted from the algebra of quantions alone. They follow from quantionic
differential equations (work in progress), and are not needed in the sequel.

6.1. The quantionic Hilbert space

Definition 8 An n-dimensional quantionic Hilbert space is the set of all vec-
tors

|Ψ〉 =




q1

q2

...
qn


 ∈ Dn
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whose components are quantions.

Each component being a 4-vector, we may write |Ψ〉ρ if we want to display the
tensor index.

Definition 9 The adjunct of a quantionic vector is defined as

〈Ψ| =
(

q∗1 q∗2 · · · q∗n
)
,

i.e., as a simultaneous transposition and complex conjugation of the components.

Definition 10 The norm of a quantionic vector |Ψ〉 is defined by the sesquilinear
form

〈Ψ|β |Ψ〉 def=
n∑

k=1

(q∗kβqk) =
n∑

k=1

A (qk) . (55)

Theorem 11 The norm of a quantionic vector is a future-pointing time-like or
null vector.

Proof. By theorem 1, the summands A (qk) = q∗kβqk are future pointing time-
like or null real Minkowski vectors. Due to the convexity of the future null cone,
the norm 〈Ψ|β |Ψ〉 , being a sum of such vector, can ever be a space-like vector.
Moreover, it is a null vector only if all components of |Ψ〉 are proportional to
some singular quantion (the proportionality coefficients being real numbers and
quantionic gauge factors).

Expressing A (qk) in the structural frame, i.e., A (qk) = PkΩ + ~pk, the time-like
norm of the quantionic vector |Ψ〉 is

〈Ψ|β |Ψ〉 = PΩ + ~p =
n∑

k=1

PkΩ +
n∑

k=1

~pk.

Since Pk > 0 for every k, it follows that P > 0, but the vectors ~pk may well sum
up to zero. This special case appears to be important enough to warrant a name:

Definition 12 A quantionic vector |Ψ〉 is said to be special if its norm is in the
direction of the structure vector Ω,

〈Ψ|β |Ψ〉 = PΩ,

i.e., if it is a scalar in the structural frame.

In standard Hilbert space, all vectors may be viewed as special, since their
norms are scalars.

228 FIZIKA B 10 (2001) 4, 211–234



grgin: inherently relativistic quantum theory. part iv . . .

6.2. The quantionic unitary matrices

Definition 13 Transformations of the form

q′j =
n∑

k=1

ujkβqk, (56)

where the matrix elements ujk are quantions, are referred to as linear quantionic
transformations.

The transformations relevant to quantum mechanics are those that preserve
transition probabilities. Let us consider only the unitary transformations, which
preserve the amplitudes of transition probabilities:

〈UΦ|β |UΨ〉 = 〈Φ|β |Ψ〉 . (57)

In components,

n∑
j=1

(
p∗jβqj

)
=

n∑
j=1

(
n∑

k=1

ujkβpk

)∗
β

(
n∑

l=1

ujlβql

)

=
n∑

k=1

n∑
l=1

p∗kβ


 n∑

j=1

u∗
jkβujl


 βql .

This is an identity in Φ and Ψ if and only if

n∑
j=1

u∗
jkβujl = δklΩ, (58)

or, symbolically, U∗T βU = IΩ, which is formally the same definition of unitarity
as in the standard case. The concept of Hermitian conjugation is also the same:

Definition 14 The Hermitian conjugate of a quantionic matrix M is the com-
plex conjugate of its transpose,

M† def= M∗T . (59)

Definition 15 A quantionic matrix U is unitary if its Hermitian conjugate is its
bilateral inverse, i.e.,

UβU † = U†βU = IΩ. (60)

Thus we may write
U−1 = U† . (61)
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Theorem 16 The quantionic unitary matrices form a group, the quantionic uni-
tary group.

Proof. (a) The unit matrix, IΩρ, exists. (Note: the quantionic unit matrix
is not I, but IΩρ — the diagonal matrix all of whose elements are the structure
vector Ωρ.) (b) The product of quantionic unitary matrices is associative (because
this is true of all quantionic matrices). (c) The set of quantionic unitary matrices is
stable under the matrix product. For verification, let U and V be arbitrary unitary
matrices. Then,

(UβV )† =

(
n∑

i=1

ujiβvik

)†
=

(
n∑

i=1

ukiβvij

)∗

=
n∑

i=1

u∗
kiβ

∗v∗
ij =

n∑
i=1

v∗
ijβu∗

ki

=
n∑

i=1

v†
jiβu†

ik = V †βU†.

Hence,

(UβV ) β (UβV )† = UβV βV †βU† = IΩ,

proving the statement.
In the complex domain, the rows and columns of a unitary matrix form two

bases of orthonormal vectors. The same is true in the quantionic domain:

Theorem 17 The rows and columns of a unitary quantionic matrix form two sets
of special orthonormal vectors.

Proof. Extracting the k-th column of the matrix U = (ujk) as a vector,

|k〉 =


 u1k

...
unk


 ,

one can rewrite equation (60) as

〈k|β |l〉 = δlkΩ,

proving the assertion. The same conclusion holds if one similarly extracts the rows.
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6.3. The quantionic gauge transformations

The gauge group in Hilbert space is defined as the subgroup of the unitary
group which keeps every ray invariant. The concept generalizes to quantionic
Hilbert space. Indeed, consider two rays, labeled by a = 1, 2. The most general
ray-preserving transformations are

|Ψa〉 → |Ψ′
a〉 = gaβ |Ψa〉 .

The condition
〈Ψ′

a|Ψ′
b〉 = 〈Ψa|Ψb〉

implies
〈gaβΨa|gbβΨb〉 = 〈Ψa|βg∗aβgbβ|Ψb〉 = 〈Ψa|Ψb〉 .

Hence, g∗aβgb = Ω for all a, b, which further implies that all phase factors are the
same,

g = eis. (62)

6.4. Hermitian matrices

Definition 18 A quantionic matrix H is Hermitian if

H = H†. (63)

In the complex domain, the Hermitian matrices generate unitary transforma-
tions. The same is true in the quantionic domain. Thus, for infinitesimal quantionic
transformations,

U = IΩ + iεH, (64)

where ε2 = 0, U is unitary,

UβU† = (IΩ + iεH) β
(
IΩ − iεH†)

= IΩ + iε
(
H − H†) = IΩ.

The same is true for the finite transformations

U = exp(iτH) =
n∑

m=1

(iτ)
m!

Hm, (65)

where
Hm = HβHβ...βH.
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With every quantionic unitary matrix U are associated two orthonormal bases
of special unitary vectors. Taking one of them, {|1〉 , |2〉 , ..., |n〉} , we form n new
matrices Ek defined as

Ek
def= |k〉β 〈k| . (66)

As in the complex domain, they have the properties of states as represented by
idempotents (pure density matrices):

Theorem 19 The matrices Ek are Hermitian, idempotent, of unit trace, and mu-
tually orthogonal.

Proof. Hermiticity :

E†
k = (|k〉β 〈k|)† =

(
|k〉∗ β∗ 〈k|∗

)T =
(
〈k|∗ β |k〉∗

)T

= (|k〉β 〈k|)T = (|k〉β 〈k|) = Ek.

Idempotence:
EkβEk = |k〉β 〈k|β |k〉β 〈k| = |k〉β 〈k| = Ek.

Unit trace:
TrEk = Tr (|k〉β 〈k|) = 〈k|β |k〉 = Ω.

Orthogonality: EkβEl = |k〉β 〈k|β |l〉β 〈l| = δkl |k〉β 〈l| .

This completes the verification that the transition from C to D preserves the
structure of Hilbert space concepts.

7. Conclusion

Since the algebra of quantions generalizes the field C of complex numbers, let
us briefly discuss the role of the latter in physics, where, even before the advent
of quantum mechanics, they had practical applications in the description of oscil-
latory systems. The reason is to be found in Euler’s formula, eiφ = cosφ + i sin φ,
which relates complex numbers to harmonic functions. But in this role, complex
numbers are an elegant convenience more than a necessity, even though it might
be difficult to formulate some theorems without them (like dispersion relations, or
the polology of control systems in engineering). In quantum mechanics, however,
complex numbers are essential. Not merely because the wave function is an oscilla-
tory object, but because the classical composition of transition probabilities (real
numbers) is replaced in quantum mechanics by the composition of transition ampli-
tudes (complex numbers). This is not a matter of convenience, but a revolution in
physics. The results obtained in the present work suggest that it might be possible
to extend the concept of amplitude to the relativistic domain.

There seems to be a widespread belief that this is impossible — probably be-
cause the superposition principle based on complex numbers has withstood seven
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decades of attempts at modification [4], even though other algebras do find ap-
plications in physics [5–7]. Let us not forget, however, that physicists have been
attempting to generalize the number system of quantum mechanics within self-
imposed mathematical limitations — the belief that one must stay within existing
mathematical structures, and, specifically, within the division algebras — a belief
explicitly stated in Dixon’s excellent book on the subject [5] (page 7): “Quantum
mechanics must rest on a division algebra.” Though supported by past experience
and heuristic arguments, this is an opinion, not a theorem. The argument favor-
ing division algebras is that a positive definite norm is ostensibly needed for the
wave function to have a probabilistic interpretation, and only division algebras have
a positive definite norm. But this is an over-reaching conclusion. Indeed, work in
progress on quantionic differential equations shows that the norm must be a 4-vector
to be relativistic. Its physical interpretation is also quite compelling: It represents
4-currents of probability density.

To put it in perspective, we place the quantionic algebra D in a family we refer
to as “the number systems”, Table 1. The other members of this family are the
division algebras (real numbers, complex numbers, quaternions and octonions). As
we saw in the last section, only two properties are apparently needed for an algebra
to support a Hilbert space structure. They are associativity, and, for lack of better
terminology, “star symmetry”, by which we mean that the real and imaginary
parts of the algebra are linearly isomorphic. The former is needed for unitary
groups to exist, the latter for observables and generators to be linearly isomorphic
(justifications are to be found in Part I, [2]). Among all possible mathematical
structures, only two enjoy both properties. They are the field C of complex numbers
(a division algebra), and the quantionic algebra D (not a division algebra).

In Table 1, the first column selects the structure; the next four columns indicate
if it is a division algebra, if the product is associative or commutative, and if the
underlying linear space is star-symmetric, i.e., if D (R) = D (I) . The columns
D, D (R) and D (I) indicate, respectively, the total number of real dimensions,
the dimensionality of the real subspace, and the dimensionality of the imaginary
subspace.

Table 1. The number systems.

St. Div. a. Comm. Assoc. * symm. D D (R) D (I)
R yes yes yes no 1 1 0
C yes yes YES YES 2 1 1
Q yes no yes no 4 1 3
O yes no no no 8 1 7
D no no YES YES 8 4 4

While some authors assign an a priori fundamental importance to division al-
gebras, others to Clifford algebras, our viewpoint is that no algebra is intrinsically
distinguished as physical for its aesthetic or other general properties. Only the
specific properties of associativity and star symmetry are relevant.
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We point out, incidentally, that the quantionic product (10) differs from the
Clifford product

(UΩ + ~u) (V Ω + ~v) = (UV + ~u · ~v) Ω + U~v + V ~u

in the term i~U × ~V , so that the quantionic algebra is not a Clifford algebra either.
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SUŠTINSKI RELATIVISTIČKA KVANTNA TEORIJA
IV Dio. KVANTIONSKI TEOREMI

Po završetku razvoja kvantionske algebre u dijelu III ovog niza radova, u ovom
konačnom dijelu izvodimo algebarske teoreme koji su potrebni za primjene u fizici.
Najvažniji od njih su teoremi koji se odnose na kvantionsku normu. Kvantionska
norma poopćava normalizaciju vektora stanja u standardnoj kvantnoj mehanici i
ima neposredna tumačenja koja se nameću njenim geometrijskim svojstvima.
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