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This paper is a continuation of an earlier paper on hypernuclear potentials. A
novel derivation of the hypernuclear strangeness-violating potential due to the pseu-
doscalar meson exchanges is presented. Comparison with the earlier method shows
that the theoretical uncertainty is less than 30%. Relative signs of pseudoscalar
meson exchanges and vector (axial vector) exchanges are discussed in detail. Addi-
tional comments on the nonrelativistic approximation are included.
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1. Introduction

Our recently published review paper [1] left unexplored some details concerning
the derivation of the weak hypernuclear potentials. All these items are well known
to experts, as many previously published details were. Nevertheless, it might be
useful to present them systematically from an unified viewpoint. Moreover, in many
discussions with numerous colleagues, additional questions, not addressed in Ref.
[1], were rised. Thus the present paper should be read in conjunction with the
earlier one.
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A general quantum field theory and weak interaction background can be found
in numerous publications (e.g., see [2-9]). The strong interaction input can be taken
from Refs. [10-14]. The SU(3) and SU(6)y symmetries are used and/or described
in Refs. [2-9, 15-23]. It turned out that theoretical description of the hypernuclear
decays depends very much on the relative signs and phases of various pieces of the
weak strangeness violating potential [5,20,24-27]. Therefore, it seemed useful to
review and collect all theoretical arguments which determine those signs.

In Appendices A and B, all standard knowledge about effective weak Hamil-
tonian and about the semileptonic weak decays is reviewed. The sign and phase
conventions, all experimentally confirmed and tested [2-9], will serve as a founda-
tion for the following deductions. Section 2 connects the separable contributions
to the hyperon nonleptonic decays (see Sect. 3. in Ref. [1]) to the induced pseu-
doscalar in semileptonic decays. The relative phases of the K* exchange and the =
exchange PV contributions are connected to the semileptonic hyperon decays and
thus determined. The current algebra (CA) contribution has, as shown in Sect. 3,
the same phase, as the one required by the earlier discussion. As can be seen in Sect.
4, the relative phases can be determined quite generally using CP properties and
Hermiticity. Those argeements are specified for the SU(6)y classified PV Hamilto-
nian in Sect. 5. It turns out that the Hermiticity requirement introduces the factor
i'=9m  Here Sy; = 0,1 is the meson spin. As discussed in Sect. 6, the relative sign
depend also on the relative signs of the strong coupling constants [5,10-14] and on
the signs of the weak BBm amplitudes, which have to be correctly read form the
experimental tables [11].

With all that knowledge, one can determine the relative signs and phases of
the parity-conserving pseudoscalar and vector meson exchange potentials (Sect. 7).
One can easily make the same predictions for the axial-vector meson exchanges
[26], discussed in Sect. 8. Further elucidation of the separable contributions in the
framework of the SU(6)y calculational scheme can be found in Sect. 9.

The weak NN K [28] and N An vertices are used here to illustrate the theoretical
uncertainties which appear in their determination. While the NAn weak vertex
can be read from the experimental data (Sect. 6), the other pseudoscalar meson
vertices must be determined theoretically [4-9,12-21,29,30]. The weak PV NNK
amplitudes can be determined by using SU(3) based sum rules and/or CA. Some
uncertainties in those procedures are described in Sect. 10. The complete calculation
of A and B amplitudes appearing in M = (N'K|Hw |N) = iu(A — ysB)u was
performed using two separate schemes. In Ref. [1], the CA (A..), separable (SEP)
and octet baryon pole (Bg) contribution were introduced, i.e.

A = A+ Asep
B = Bg+ Bsgp

while Ref. [22,30] relied on the decouplet pole contributions (419, Bio), i.e.

A = Acc+A10+AA’
B = Bs+ Big+ Bar.
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All details are given in Sect. 12 where one can find the definitions of the terns Ay
and By.

Finally, in the Sect. 10, the complete pseudoscalar meson exchanges AS = 1
potentials are discussed. They have the same form as shown in Ref. [1], i.e., they
contain both Al = 1/2 and AI = 3/2 parts. Their strengths are displayed in Table
11.2 which can be compared with Table 9.1 from Ref. [1]. The differences found by
using various calculational schemes serve as indicators of theoretical uncertainties.

In addition, Appendix G contains some useful remarks concerning the nonrel-
ativistic approximation (NRA) of the weak (AS = 1) potential, which was briefly
discussed in Sect. 8 of Ref. [1]. The NRA form of the effective interaction is the one
which is usually used. All potential pieces, with their relative signs and phases, are
written in NRA before being confronted with experimental data.

2. The separable contribution to the PV hyperon
nonleptonic decay

In the following we show:

(i) The separable contribution to the PV hyperon nonleptonic decays (SCHN)
is connected with the induced pseudoscalar (IP) term, i.e. with gp term in
(B.3) and (B.6).

(ii) This will fix relative phase between PV potential terms due to the vector
meson and pion (or kaon) exchange contribution to the strangeness-violating
(SV) and PV effective weak potential [4]. This will be illustrated by calculat-
ing a separable contribution (SEP) to the process

A+p—n+p. (2.1)

Of all possible SEP terms only one, needed to show i) and ii) is selected. All
factors inessential for that proof, like sin ¢, cosf¢ etc. are not openly displayed.
One starts with

(—)V = (=) Ealns)lgarrs + 9p(a)auys)ulpi)
a(ps)gv (¢* )" u(pa)
ga =const.  gp(q®) = prep—" ipmfr (22a)
m2.
gv(¢®) = Tn%{i}(_qg
The term V is one of SEP’s obtained from
W = TE 0| T 1o os] T o) (23)

V2
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Here Jj are general V — A weak currents appearing in the effective weak Hamil-
tonian. As said above, the enhancement coefficient C' [1] is also omitted. Only the
pertinent form factors, listed in (2.2) are kept in V. With (B.10)

Kp = 7\/§g7rf‘n’ (22b)
and by using Dirac equation (Appendix B), one finds
V= Vg +Vy (2.4)
GF m2 * _ _
V- = WQVQA WK_(PU(”N'M%U(M) u(py)v*ulpa), (2.5)
_\/igﬂ'f‘n'_ —
Ve = qQ_—mQU(”f)%U(Pi) (ma — mp)u(py)u(pa). (2.6)

The above expressions' can be identified as parts of a general K* and 7 exchanges

produced by general Hamiltonians [5]

Hy = g5, " oaVE,
HY. = e s, VE
HY  =iV2gx0,50pm
HY = iAEpz/JAﬂ"'" .

(2.7)

The second-order contributions comming from (2.7), written in the same sceleton
form as (2.5) and (2.6), are

(ML HY. = (2)gY exce (—1) g ()7 v5u(pi) T(ps )y u(pa)

q* — ms.
~ (—1)Vis.
(2.8)
and
(PR = (Ve i gl sp) ),
~ (=) V.

The contribution (2.8) corresponds to SEP term and according to Ref. [5], one can
connect it to the SEP contributions ar appearing in SU(6)y, based sum rules?

g8 ek ~ g§ar. (2.10)

Here q = ny —p; =pa — Py, Py +ny = p; + pa Expression (2.2a) is Hermitian conjugate of
equation (B.3a). Note (u(p)gpkuysu(n))t = —w(n)gpkuysu(p), with k =p—n = —g = —(n—p).

2See Sect. 9 below.
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The term (2.9) obviously corresponds to SEP contributions to the PV hyperon non-
leptonic decay amplitude A [1]. In order to find correspondence with (2.6), one must
have iA. The reader must keep in mind that terms (2.5) and (2.6) were found from
a standard SEP approximation (2.3). In that approximation, the current matrix
elements (3| J,, |«) are experimentally determined from semileptonic decays (as for
example A — p+e~+7) [6]. Thus, the relative phase of the terms (2.5) and (2.6) is
determined experimentally. When this is compared with the effective Hamiltonian
description (2.7) that also fixes the relative phases of coupling constants gir €x+, g
and A which appear there. One should also keep in mind:

(a) The relative phases of g,, gk~ and g, are already fixed by the baryon-baryon
scattering experiments [10,11,13];

(b) Thus, the results (2.8) and (2.9) determine the relative phases among weak
Hamiltonians;

(c) As soon as the relative phase between HY., and HY is fixed, everything else
follows via SU(3) (or SU(6)w/) symmetry;

(d) PC couplings of m, K and 7, where strengths are labeled as Bjs have their
phases fixed through hyperon nonleptonic decays. Experiment gives the ef-
fective interaction of the form [11]

Us[A+ Bysluipm (2.11)

As a final illustration, here is the calculation of SEP contribution to A —
p+ 7~ decay [1]. One has

G M1 = () Tl T, N 7 )
Grp _ .
= ———gyu w(AN) (—1)g" fr
VoAl (P)vuu(A)(—1)g" f (21
(g=A-p; A=p+gq)
7GFf7r
V2

The same phase as used in (2.7) is obtained. It will be shown in the next
section that a general current algebra (CA) term has the same phase.

(ma — mp)Upup — 1A(SEP)upun.

3. Current algebra contribution to PV hyperon
nonleptonic decay amplitude A

One starts with the LSZ reduction of the general matrix element Eq. (2.12).
In the vanishing (k — 0) pion momentum limit, as shown earlier in Refs. [1,2,4],
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one can write

B — B' 4+ My
(B'Ma(k; out)] Hu (0) | B)

eikac -
B i/d4xm(\:‘w + m?\/j)<Bl| T[Ma-&-ib(x)HW(O)] |B>

2
- i (1 _ k—2> / e (B'| T(9, A", (x)Hw (0)] | B).

Eventually [1], one obtains

(B'M 4 (k; out)| Hw (0) | B)

(;Jt[ (1 - k_j) /d4x ML —ik\(B| T[A) 5 () Hw (0) | B) (3.2)

Myr
—0(z0)(B'| [A) 13y (x), Hw (0)] [B) }-

By taking the limit & — 0 (soft pion limit for off-shell pions) one finds a typical
CA relation

C -
Mg —0) = =1 5B [, (0) Hor O] B) = AT um. (33)
Here the SU(3) (axial) charge is defined by
F2ilt) = [ 0. (t.) (3.4

The following relations introduce (vector) charges Fo1ip

[Fa5+iba HW] = [FaJrib’ HII/DVV] )
[ a+ib? HPC] = [Fa-l-iba H{?VV] 5 (3 5)
[ a+ib’ HW ] = [Fa—l-ib; H{I/:I)/C] )

Fa+ib _fd zV, a+1b )

Omitting Tp up spinors (3.3), one finds the transition amplitudes which are the
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current algebra contributions to A

A(A) = ffjioo [ HEE (O] 1) = flﬂ< W HECO)1A) = = ax,
A = =22 Lol 1, HEE O ) = 2 o
AE) =~ Y2 N MO E7) =~ AT () = o
A(Sp) = —\/—%fﬂaaoxx ,(3.6)
A(DT) = %am,
Az = _% as+p +V2asz0,|
A]) = oosy.

As the matrix elements

(B'|Hy |B) = app: (3.7)

(calculable in bag models [12]) are real quantities, the matrix element (3.3) is
imaginary, as was the matrix element (2.12). This result is consistent with the
comparisson with semileptonic matrix elements (Sec. 2). It agrees with the most
general argument wich is displayed in the next section.

For completeness sake let us show that PC amplitudes B have the same phase
as PV amplitudes A, as they should according to the analysis of the empirical data
on hyperon nonleptonic decays [11]. Those amplitudes obtain contributions from
baryon poles. A typical contribution to the transition A — p + 7~ can be written
as 3

i(B; — ¢) +ms

(p1 — q)? —m3,

as+
B(A%) = gasin- P 3.8
(A%) = gave-53 2 (38)

(—D)u(p2)asp 5 ivsgsrau(pr) = iB(AY Ya(p2)vsulpr), (p1 — p2 +q)

B(A%) = B(A%) + crossed term contribution.

Again B is real, as it should be [11].

3In Ref. [5] i is associated with perturbation: (-i), with the baryon propagator. Eq. (3.8)
requires (-i) with respect to (3.1). There we calculate a matrix element in the lowest order, while
(3.2) contains explicitly the strong vertex and thus belongs to a higher-order of perturbation.
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4. General arguments for PV amplitudes

The relative phase of PV AS = 1 pseudoscalar meson and vector effective weak
Hamiltonians can be determined quite generally. One can use PC invariance and
Hermiticity.

In order to implement that, let us first list a behaviour of a bilinear combination

K= E2F¢1~

Here I' is any combination of Dirac gamma matrices. One has

DaTh1 2 Py Ty %, (4.1)
and _ _
DTy S5 —pT CITCY, (4.2)
Here C=iypyp=-C"1=-Ct-CT,
Y2Y0 (4.3)

C7tyC = —(y)7, C'C = (v5)F =5
Using (4.1), (4.2) and (4.3) one finds [2]

Yoy 1 — =P yFha, Yoy ysthr —— = vHFyse,

B B B B (4.4)
Poth i) Pipa, Yo Y51 i) Y1592 -

Here an additional (-) sign was introduced as in the transposition 1, and 9 are
interchanged and they are fermion operators. One also finds [2,7]

YoyHihy — =Pyt
-, +P27%¢1
PP yshs o Ay st (45)
L = st
Yot L Yoy,
Vo5t Lo Pyt
The meson fields behave as [2,7]
oM g, oM T oM,
ve So-vE, ve Zoove, (4.6)
2 4yl
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Thus respective interactions behave as

— cP - T
o™ =™,
(4.7)
— o CP - o
Yoyl Vi = v sV
Here M and @ denote antiparticle, for example 7t — 7~ etc.
One immediately finds that CP invariant combinations are
HY  ~ (oo™ — yaag™)
M 2 1 (4.8)

H\‘;V ~ (EZVH'YB(/)IV,? +E1’Y“751/J2VE) .

Hermiticity of (4.8) Hamiltonians depend on the behaviour of bilinears and of meson
fields

(o)t = Vo2 =¥,

Wy )t = Pry(r*) v = i,

(Vs v“vwl) = D107 Pt = 1y, (4.9)
(&™) = oM,

(vl = V.

Obviously, the Hermitian and CP invariant effective Hamiltonians are

oy LA(Py1h1 M — Piapag™)

(Vo 151 Vi + b1y ys92VE) .

(4.10)

Hy

If the first term in (4.10) means AS = 1 change then the second term means AS =
—1. Therefore in publications dealing with hypernuclei one usually encounters one
(first) of the two terms listed in (4.10).

Combining (4.4), (4.5) and (4.6), one can show that a PC and CP invariant
coupling is

H}[ (PC) ~ yysn o™ + El%iﬂzéﬁﬁ. (4.11a)
The hermicity requires the final form
HY (PC) = iB(Py15t16™ + 175120, (4.11b)

Anti = yoyiy0; Al = 5.
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Here A and B have the same phase (for example they are both real) as required by
the experimental data [11].

5. SU(6)w symmetry

The SU(6)w symmetry [12,15-20] has been employed [5,18-20,27] to connected
PV BBM amplitudes with PV E'y#%BV“ amplitudes. Here M is a pseudoscalar
meson while V# corresponds to a vector meson. The effective AS = 1 weak Hamil-
tonian, which transforms (almost) as SU(6)w operators [15] is given by [20]

Hpp=
= aT(Aigbf]) — Afley — Alyoy) A% + Aol — AlTeY) - Aggz);*] Al36y))
+ay (A6 +A% — AT — ALY + AR — ALy — Algey) + Aljey)

+or (AR ¢ + A% — AL S + Al%z] + ALY — A23¢1 — AlhoY + Aldg,)
+hy (4 32¢51 + A% oy — A8 — Ao, + AL 6% + Ao, — Al oY — Alle,)
(A4

+ev — AS¢, — A30® + APy 4 Aggt — Aty — Az + A3y,
(5.1a)
Here
A=BB. (5.10)
This can be explicitly written as
HAS:I
—ij2 —ij3 =1  —ijl . -5  —ij4_ -2
= 2ar[B” Bw1¢3 B” Bijohy — B’ Bijody + B Bijs 1)
—ij3 =5 —ijl . —1  —ija . —6
+2aV[B Bz’j5¢3 — B Bijags — B” Bijops + B Bijih,—
—ilj . —j  —ijd . —j  —ild_ -2 —ild_ -5
— B " Baysi¢y + B" Bigos¢y + B Bijsp; — B Bijad,
—ij2 - —ij3 . —j  —i23 _ -2 —23;i _  _5§
+ by [B” Bissdy — B” Biasgy + B Bijs¢; — B Bijag;— (5.2)

- Fliij%i + F”‘LBWE{ - FlMBijGa; + §i14Blij$?]
+cv [EijkBij(igi - FiﬂBijkaZ - EijkBijsag + Eij3Bijk$2]_
—2ar [EiﬂBmag - EUGBU’S&? - Fmszin + EmquEﬁ
—2ay [B”E)Bzﬂfﬁz FUBB@Q@S - FileijGEi + FiﬂBma?] +
The meaning of indices i = 1,...6 is determined by

1 wlwt, 2 wlwl, 3 dfdf, 4 dld], 5 s157, 6 s3] (53)
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The quark-antiquark product, i.e. meson ¢’ (pseudoscalar and vector) is as denoted
in Table 5.1 [20]. The baryon states (octet spin 1/2 and decouplet spin 3/2, the
{56} representation) are listed in Table 2 [16,20].

TABLE 5.1a. Mesons in SU(6)w .

SS. | Meson | ¢} 3 3 i 3 o8
00 w0 1/2 —1/2 —-1/2 1/2
10 | p%0) | 1/2 1/2 -1/2 | —1/2
10 | mp(0) | 1/v6 | 16 | V6| 1V6 | 1/VE | 1/VE
00 b1 136 | —1/v6 | 1/v6 | —1/v6 | 1/v6 | —1/V6
10 | wg(0) | 1/V12 | 1/V12 | 1/V12 | 1/V12 | =2/V12 | —2/V12
00 ns | 1VI12 | —1/V12 | 1/V12 | —1/V12 | —2/V12 | 2/V12
TABLE 5.1b. Mesons in SU(6)w (continued).
5SS, | Meson o3 b3 o8 o? b3
1| ) | 1/V2 | -1/V2
11| ws(T) | 1/V6 | 1/vV6 | —2/V6
1L [ V3] V3| 1B
00 nt 1/V2 | —1/V2
10 | p*(0) V2| =1/v2
TABLE 5.1c. Mesons in SU(6)w (continued).
SS. | Meson | ¢3 4 It ¢S
00 KO 1/V2 | —1/v2
10 | K*°00) | 1/vV2 | 1/V2
00 K+ 1/vV2 | —1/v/2
10 | K**(0) 1/vV2 | 1/V2
TABLE 5.1d. Mesons in SU(6)w (continued).
SS. | Meson | ¢ | ¢3 | ¢§ | 7 | 4% | ¢3
11| p™(1) | 1
-1 | p*(l) 1
11 | K97 1
1-1 | K*°()) 1
11 | K1) 1
1-1 | K*T(]) 1
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TABLE 5.2. Baryons in SU(6)w .

p = \/5(3114 _ 3123) 33114 — \/§p+A1"—/2
A;—/2 — pll4 4 9pi23 3B123 _ _%p—’—AT/Q
e \/5(_3332 +Bl34) 3B — /o + A?/z
Ay, =DB¥2 4213 3B = Ln+ Ay,
AO — \/3(3235 _ Bl45) 33136 — EO + %Yl*/g
_ _ 1 1 v* V3
ZO — 2B136 _ B235 _ B145 3B145 — 7520 + ﬁyl/g _ 7A
Yl*/g _ \/5(3136 4+ B235 4 pl45 38235 — _%20 + %Yf/g + @A
Y+ \/5(_3116 _|_3125) 3BM6  — _ /on+ —|—Yl*/'2"
}/'1*/(2) — Bllﬁ + 23125 33125 — %z-}- + Yl*/;r
- \/5(3336 _ B345) 3B336 _ \/52— + Yl*/;
Yy, =B¥0 2B 3B = — ¥+ Y],
EO _ \/5(3255 _ Bl56) 33255 — 250 + E’T/OQ
Eify = B¥ 2B 3B'0 = -2+ 51,
[ — \/5(3455 _ 3356) 33455 — \/55— _|_E>1k/—2
E*{/—2 — B455 + 23356 3B356 — —%E_ + ET/_Q

In order to test CP and spatial behaviour one can explicitly write some transi-
tions. (We use 1 =1 and 2 =| with spinors.) One has

FA—pr™) = % (1507 — §bv + 3¢v) - Y10 o XA Ot
F(p—Art) = _% (%bT - %bV + %CV) : Zs:l,z XRTXISJ%’ ) (5.4)
FA—pp™) =—y/%(av — 55br + 3bv — Sev) - x2Txanky
Flp—ApT) ==/ (av — F5b0 + $bv — Sev) - xaTxiols -

From that one can conclude that baryon densities which multiply meson fields
behave as®

X'x  — oy

xToix  — ¥y2vs9.

(5.5)

5This are not generators of SU(6)y which correspond to (1T4) and (¢t~y1 2759) [15,17].
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Under CP reflection one finds®

v L Yy,
Py L Py, (5.6)
db Lo (-)eh.
Thus generally .
B Bijudt — (=) B”" Bupeol. (5.7)

This causes a minus sign appearing in front of the second half of the expression
(5.2). According to general arguments, given in Sect. 4. that means that the effective
expressions (5.1) and (5.2) are CP invariant. In the relativistic notation the terms
(5.4) correspond to generic forms (4.8).

However the expression (5.2) is not Hermitian as one can easily conclude by
comparison with generic forms (4.10). In order to deal with the Hermitian effective
weak Hamiltonian one has to multiply (5.1) and (5.2) with a factor

il=5u (5.8)

Here Sy = 0,1 is the meson spin. This factor has nothing to do with SU(6)w
symmetry. As a matter of fact, by being meson spin dependent, it breaks that
symmetry.

One can also mention that similar considerations and analogous combinations
apply to the AS = 0 PV effective weak Hamiltonians [19]. There SU(6)y symmetry
+ CP invariance leads to the coupling”

Fr(prm_ —py) = fﬂ%m x )3 N. (5.9)

The form which is used in the literature [19,24,25]

i — Tprs ) = fﬂ%mf X )5 N (5.10)

is Hermitian.

6. The relative signs of weak B B amplitudes

While an overall sign does not matter, the relative signs of various terms appear-
ing in the Weak Strangeness Violating Potential (WSVP) determine the magnitude
of calculated matrix elements [26]. Those relative signs depend on the following

—T —C
6 — T, 7 = —pTCL, PP — qep, CTIgHC = 4P, C7lysC = —of = s,
C1ys5C = 'yg = 75. Meson states are catalogued in multiplets of W —spin [20], see Appendix C.
Ty = (m £ i7r2)/\/§.
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(i) The relative signs of the strong coupling constants, such as gp, p,pmr and
9B,B,v (here B; are baryons, M is a pseudoscalar meson and V is a vec-
tor meson).

(ii) The relative signs of the weak amplitudes such as A and ¢, for example [4,5]

(iii) The effective strong and weak Hamiltonians such as for example

Hine = iGpmip(Aqz + Boys)T ¢ ( ) (T
H]%NW - lgNN'n"l/}N’yE)T' dn/}N ’
ich 0, 0
Hany = Grmiiy (%’Y + Bp—= i + €, 75)7"9%( 1 )wm
g7
HNN/’ = EN gNNp’y + = NNP O-N”a T ¢/L¢N .
2M
(6.1)
We will be using matrices and conventions as in Bjorken-Drell book [2,3,7],
ie.

1 "
T=h y=be %:(1 0) Wt =" = vy (6.2)

The relative signs of the strong coupling constants are those given in Refs.
[10,13]. All are in mutual agreement. A collection of the coupling constant
values can be found in Table IIT or Ref. [5]. One finds, for example

Sign(QNNﬂ”/QXINp) =+1. (6.3)
(All other signs agree with SU(3) flavour symmetry predicitons.)

The relative signs of the weak amplitudes follow form the SU(6)y sum rule [18-
20]. Important formulae are reproduced in (64) of Ref. [5]. The connection between
notations is for example

A° — A(AY). (6.4)

The experimental values of the amplitudes A and B (6.1) can be found in Ref. [11].

However, when using the results listed in Table I of Ref. [11], reproduced below one
has to take into account the following facts: Ref. [11] used y5 = — ( (1) (1) ), which

entered the same form as shown in the formula (6.1). Thus all B amplitudes, but
B(X{) in Table 6.1 should be read with minus sign, i.e.

B(A%) = (-9.98+0.24) - (2.21 x 1077). (6.5)
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TABLE 6.1. Numbers given in units of 2.21 x 1077,

M—m+pu A B CaB
A —p4+7~ | 1474001 9.98+0.24 | —0.289
Ay —n+70 | =1.07+£0.01 | —7.14+£0.56 | ~0.740
 f—n+7t | 006+£0.01 | 19.07+0.07 | -0.038
g —p+n® | 1.4840.05 | —12.04+0.58 | 0.982
YT —»n+7 | 1.934£0.01 | —0.65+0.07 | 0.003
E) - A+7 | 1554003 | —5.5640.33 | -0.148
—A+77 | 2044£0.01 | —7.49+£0.28 | 0.237

The signs of A(X{) and B(X7) depend on the definition of isotriplet compo-
nents. Usually (and we do the same) one defines

Nt = (%, +i%),
5(5 £ %) (6.6a)
at = L(r +in)

™)

However, in Ref. [11] the spherical isovector components were used

1 .
(S 4%,

(3 £ 1) (6.6b)
:F

Thus A(X}) does not change the sign, as &+ and 7 signs compensate, but A(X{)
amplitude must change the sign. Rule

(i) Change sign of A(X])
(ii) Change sign of all B amplitudes except of B(Z{).

The signs (3) and the signs in Table 6.1 (with comments) fix relative signs of all
PC potential terms that can be derived from the Hamiltonians (6.1). With SU(3)
symmetry, pole dominance etc. (see Ref. [11]) all relative signs of A, Br, a, and
B, can be determined.

The relative signs of A, and €,, which contribute to PV potential terms can
be determined by invoking SU(6)y symmetry [5,12,15-20]. They are expressible in
term of parameters ar, ay, br, by and ¢y [12-15,21] which were introduced in Sect.
5. There one can find also the derivation of the relative phase terms proportional
to A, and €, appearing in the formula (6.1). Here we list, for the completness sake
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the sum rules connecting €, with the decay amplitudes which are given in Ref. [5]

e = 2AANY) - %A(Zg‘) +V3ar, 67)
€ = A(Za_) — %GT

The A amplitudes should be “read” from Table 6.1, as explained above [A(Z7) =
—1.48].

7. Parity-conserving meson exchange weak potential

The weak baryon-baryon-pion vertex is connected with the B amplitude which
appears in the matrix element

<Bf7T| Hyy ‘Bz> = iGmerﬂBf (A — 'yg,B)uBi.

The relative sign and phases of A and B in the AS = 1 case are experimentally
connected as shown in Table 6.1 [11].

The theoretical expression for B contain pole terms (BF) and separable terms
(B®). A generic pole term, shown in Fig. 7.1, contains the weak amplitude ap g
[W] and the strong NN7 coupling constants [S]. The relative signs of ap/p (3.7)
and the strong coupling constant are determined by theoretical expressions (3.1)
and (3.6) and by the experimental data [10,11,13]. As already shown (3.8) the weak
B amplitude must have the same phase as A. The theoretical expression, aa for
example (3.8) lead to the predictions whose relative signs agree with experimental
data [29,30]. The fixing of relative signs is also helped by the famous Goldberger-
Treiman relation [6] which is for the nucleon pion case given by (B.11).

M

B ° B,

Fig. 7.1. Generic form of a baryon pole term. (The crossed term is not shown!)

Here the relative signs of g4, fr and gyn, are interconnected.

The separable contribution to B amplitudes can be calculated in the same way
as the separable contributions (2.2) (2.6) and (2.9). Obviously one has to exchange
A — B and to insert, or omitt, v5s at some places [1].

The pole term contributions to the vector meson exchanges is based on the same
type of diagram as shown in Fig. 7.1. Again, apg'p appears in the weak vertex. The
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relative signs of the strong couplings of pseudoscalara mesons ggp)s and the strong
couplings of vector mesons g% gy are known from the analysis of the experiments
[10,13]. So the phase of the PC vector mesons exchange weak potential is fixed®.
The same reasoning would apply to the contributions of the 3/2% resonances
[30] which replace the pole B(1/27) — B(3/2%) in Fig. 7.1.
One can also determine relative signs connected with the axial vector meson

exchanges. However, as this is a novel inclusion, the discussion is relegated to the
following paragraph.

8. Axial-vector meson exchanges

The axial vector meson exchange weak potential (AVMWP) contain the sepa-
rable and the pole terms.

The separable terms appear naturally when in any separable (i.e. current x current)
term the axial vector current formfactors are approximated by the axial vector me-
son pole. For example in expressions (B.3), (B.6) etc. one introduces

2
9a = 9a(¢*) = 9a(0)—5~AV—. (8.1)
May — 4

The relative sign of g4(0) = ga and of the whole separable contribution (2.3) are
experimentally fixed [6] and thus everything is determined. It should be mentioned
that PV separable contributions, which contain products of vector and axial vector
currents, would contain products

2 2
m m
gv—5—- 3943 AL 5 (8.2)
my —¢q May — 4

But again all relative signs are known experimentally. Besides various gy’s and g4’s
can be approximatelly connected by using SU(3) flavour symmetry [1,6].

In order to calculate pole terms one needs magnitudes of the strong axial vector
meson constants gay 4y [14]. As long as they are real, what is indicated by general
argument (4.4) and (4.6), the + sign does not matter.

In order to prove that one has to combine the axial vector field VHAO‘ behaviour

Aa ¢ Aa
V, — Vi,

vie Tyae (8.3)
L, _yge,

8The overall sign depends on aps g. The strong coupling constant enters the potential quadrat-
ically as (g% gv/)? or (gBBv)?, see Fig. 8.1.
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The property
Aat _ yAa
v,et=v, (8.4)
follows from (4.9). All diagrams similar to the one shown in Fig. 8.1 lead to ex-

pressions containing (ggg av)?. Thus the sign of the pole term contribution is
determined by the sign of ap'p which corresponds to the weak vertex.

B; ,
B
' AV
I
=
/7 Bi B Bf

Fig. 8.1. Axial vector meson exchange contribution to B; + B} — By + B} process.
The same generic diagram applies to 7 or vector meson exchanges by AV — 7w, V.

9. Weak vector meson vertices, SU(6)w symmetry,
Al = 1/2 selection rule and factorization contributions

It is well known [19] that the weak baryon-baryon-meson (E/BM ) couplings
correspond to the quark diagram shown in Fig. 9.1

@
M M

B’ B B’ B

) Ve, °U i

(b) ()

Fig. 9.1. Quark diagrams corrresponding to SU(6)y, parameters.

The indicated SU(6),, parameters correspond to formula (5.1). The weak ver-
tices, or decay amplitudes are function of those parameters as shown, for example,
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n (5.4) Some other vertices are [20]:

ANY) = = (—gbv + f5br +ev) . A(AD) = 5 (§bv — f5br — ev) |
A(ED) = & (—ibv +3br + Jev) . AED) = & (—3bv + dbr + ev)
AXD) = V2 (3by — 2br — dev) , AST) = V2 (sby + 25br) |
ASE) = — (~Zbv + Sbr+ Lev) . A(SS) = —¥2by + 325br + hsev
(9.1a)
(PO HO [AD) = /2 (~3bv + Sbr + Sev —av) |
P (Mn(DIH T |AM)) = =5 (=bv + 3br + 5ev +ar) |
pm (AW HO [E7(1) = /2 (— by + br + tev — Lav) |
PP MAWIHTEX1) = 5 (—19bv + 1507 + gev + zar) |
p~(Mn(DIHT[Z(1) = § (5bv — br —cv +2av) |
pr(Mn(DIH[EF(1) = § (=2bv +br)
(9.1b)

wg(Mp(D|H [SF (1)) = L( §bv—i-QbT—|-C\/—l-2aT) )
)>:18\/—(2bv b —cV72aT),
) = % (4by — 5bp — 6¢y — 12ar)
) =& (—3bv +br +cv +8ar) ,

(va — bT — 5CV + ].Oav) y

= o=

(

(

(

(

(

(

P Mp(DHTEH(1) = 525 (=3bv + 2br + ev + 2ar) |
(

(

(

(

(

( (bv — 3br — dev — 2ar)
(

Here the longer notation for the vector mesons p, w and K* is kept. The spin
orientations are indicated. However, the spin-spatial dependence on the RHS of
(9.1a,b) is omitted. The full reading of, for example, (p~p| H |A) is

(o= (Mp(IH™[A(T)) = F(A — pp™). (9.20)

Here F is given by the formula (5.4).
The SU(6)w Hamiltonian (5.1) does not satisfy AT = 1/2 (or octet dominance)
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selection rule. The AI = 1/2 rule leads, for example to the relations

A(XT) =0 and A(Ag):f%A(Aﬂ). (9.3a)

The inspection of the formulae (9.1a,b) shows that this holds if the SU(6),, param-
eters satisfy

by = —bp. (9.30)
In the vector meson case with the definition

(o~ (Mp(DIH™ A1) = A,(A2) (xToxp) (9.2b)

the AT =1/2 rule leads to

Ap(A) =—54,(A%),
A(ST) - A,(2D0) =V24,(28), (9.4a)
Ag+(pT) = Ag-(n) — Ag-(p)) .

With the constraint (9.3b) this can hold only if
ay — —ar. (94b)

However, this last condition has to be further discussed. As shown in Ref. [19] one
can easily calculate ay and ar for the real weak Hamiltonian (given, for example,
by formula (2.1) of Ref. [1]). For such a Hamiltonian, as it will be discussed below,
(9.4) cannot hold.

In a weak Hamiltonian which satisfy AI = 1/2 rule, neutral AS = 1 currents
must appear. In the AS = 0 sector, discussed by Ref. [19] one would have neu-
tral currents appearing originally and not only as result of a Fierz rearrangement.
Products of currents can be desomposed as

alb_l —|—a_1b1 = QET OlTlol_lX%, (TZO,Q)
1 3 1 —
730~ —du, ﬁb’l ~ud, (9.50)

aobo = X 1 Cloho X2, (T'=0,2)
agp, b() ~ (Hu — Ed) .
Here only the flavour content of currents, which are color scalars, is shown. The

octet dominance means that only the isospin 7' = 0 is allowed in the sums (9.5a).
The factorization means, for example

(p"nlarb—1p) = (p"| a1 |0){n|b_1 |p) (av). (9.6)
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The combination (9.6) determines ay while the combination

(0°pl aobo [p) = (p°] a0 0) (p| bo Ip) (ar) (9.7)

would determine ar.
In a Hamiltonian transforming as an octet one has pieces

Y = (=2)5 (0991 1) (arboy +aiby) (9.80)
.0a
0 2
HY = (C9810)” aoho
This is easily found by using the definition
X9 = Cloy ptmbom. (9.8b)

The consistency of the whole procedure is easily checked by writing (9-5a) in the
form

2
alb_l +(l_1b1 = 2ZT=0,2 (Cflol—l) (alb_l +a_1b1),

/ (9.5b)
aohy =231 (Clgho) aobo-
By using (9.8) one can calculate
+ (+) _ 00 20+
(ptnlHg Ip) = —(C??1 1) (pT]ar |0)(n|b_1 |p)
B 2 1/2-1/2 5 _
=—(CP?1 1) -aCy 12128 = 3_\1/5046
~ay,
(9.9)

0 2
(Ol H [p) = (C9910)" (0°] ao [0)(p| bo |p)
2 1/21/2
= (C010) 'aclél/él/Qﬂ = *%O‘ﬁ

~ ar.

Thus the relation (9.4) is consistent with AI = 0 (i.e. octet dominance) selection
rule.

In Ref. [19] ay and ap were determined from the weak strangeness conserving
Hamiltonian without QCD corrections. For the sake of completeness that calcula-
tion is briefly discussed in Appendix D.

Here we will estimate ay and ar from AS = 1 weak Hamiltonian. First it will
be done without QCD corrections. (The QCD corrected Hamiltonian is given in
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Ref. [1].) Such “bare” AS =1 weak Hamiltonian is [4,6,8]
as=1_ G = -
H = ﬁsm@ccos@c [dy" (1 —vs5)u- Ty (1 —ys5)s +...] . (9.10)

In order to determine ay (ar) the factorizable (or separable - SEP) contributions
of (9.10) AS =1, A+ p — n + p scattering should be compared with the second
order contribution produced by the effective interactions

H]%'/'Np :g]‘\/pr\/§ En'yﬂwp/’;

+ 9NNy GV — Pt Pn)ol + -

- (9.11)
Hiy, = —\/gawnv“%w/\pj ;
Hmpo = —%aﬂnv“w/mpﬂ .

Here H® corresponds to the standard strong NNp coupling [5,7] while HY are
effective weak Hamiltonians, which were read from (9.1). The following equalities
are obtained in the factorizable (SEP) approximations

(pn| — in,Np(p — field contracted)HX[VAp(p — field contracted) [pA)

. 2 . 1 _
= (_1)2 <_\/;> aV‘/ig]‘GNpun’YMup ¢ —m?2 UpYp V5 UA
’ (9.12a)
= —% sin ¢ cos Oc (n| dy*u |p) (p| ayuyss |A)

m

G . _ p 3 _
= _ﬁ sin O¢ cos chn’yuupmzi_qu (—\/;> (F + D/3)uyy,v5un -
P

Here u; are baryon spinors while the axial vector coupling is given [1,2,4,6] by
D
F 5 =0733. (9.12b)

The vector current formfactor is assumed to be dominated by the p meson exchange.
That leads to the factor m2/(m? — ¢*) in the last row of the equalities (9.12a). The
factor in front of the baryon bilinears %,I'ug should be equal, what gives

2
\/;avx/ﬁg]‘\/;Np = 55 sinf¢ cos@c\/g(F + D/3)mi. (9.12¢)
With ngp = 3.16 [5,10,13], sinf¢ cosfc = 0.22 and G = 1.03 x 10*5/m§ one
immediately finds

ay = —2.7x 1077 (9.12d) .
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This seems to be in good agreement with ay determined for AS = 0 transition (see
Appendix A) which is ay = —2.77 x 1077, It is also in good agreement with the
estimate given by Ref. [15] which found

ay = —2.86 x 1077, (9.13)

However in AS = 1 sector one cannot expect the ratio ay/ar = 3 which was
found in the AS = 0 sector (see Appendix D). The Fierz rearangement (FR) of
Hamiltonian (9.10) leads to

1 —
—% sin f¢ cos ch (n| dy"vss|A)(p| ayuu |p). (9.14a)

Here p° exchange can be associated with the formfactor comming from the last
matrix element only.

In AS = 0 case, the p° could have been connected with both corresponding
matrix elements [19] (see Appendix D). Starting with (9.14a) and (9.11) one can
establish an equality which is analogous to (9.12)

1y G . 1\/§ 1
- = —sinfc cosOc =1/ = (F + D/3)=m,. 14b
509NN, = 5 sinbo cosbog 5 (F+D/3)5m, (9.14b)

Here (see Appendix D) only the isovector piece of the vector current (p|wy,u|p)
was extracted as only that piece corresponds to the p exchange. The relation is

1
ar = gav. (915)

Obviously the ay and ar dependent weak AS = 1 potential contains both AT =
1/2 (octet dominance) and AI = 3/2 pieces. In some applications [5] potential is
calculated in the octet dominance approximation. As already stated that means the
equality (9.4). In practice the amplitude A,(AJ) is selected and used to determine
an effective €, coupling through

P Mn(DIH AM) = A,(AG)n

(9.16)
o = ~A(08) = 35 (~ by + v +ar)

Here 7 denotes the spin and spatial dependence of the matrix element (9.16).

The parameters by and cy can be expressed through hyperon nonleptonic decay
amplitudes [19], i.e.

’ (9.17)

6-[A(A%) + A(Z)]
ey =3[VBAAY) + A(X])]
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With (9.17) one finds

2 1 1

But for the slight missprint? this is in the perfect agreement with the formula (64)
in Ref. [5]. However one could also start with the expression (9.1) for 4,(A%) which
gives

(9.18)

1 2 1 ay
ep=—=A,(AY) = ZAN) — —A(S)) - —=. 9.19
As was said, expressions (9.18) and (9.19) could agree if ay = —ag. Alternatively
one can use
Sign(a = —Sign(ay),
gn(ar) gn(ay) (9.20)
lav| = [3az].

Inserting that in (9.19) one would produce the expression used by Ref. [5], i.e.!”

~Zp - ﬁv +V3ar. (0.21)

One could also check whether that holds for the K* vertices. The corresponding
effective PV weak Hamiltonian is

CEY (mpK* + +mnK*?) + DY (pp + mn) K*°. (9.22)

Here the spatial dependence is supressed. Compairing that with (9.1) and using
(9.17) one obtains

CPY = Ag-(pt —V/3A0 + 1 E+ —a ,
K K (p_.,_) A% 9.23)
0

Reference [5] has introduced ay = 3ar in (9.23). This does not seem quite consistent
with (9.19) where ay = —3ar was introduced.

When everything is claculated by using the effective Hamiltonian for the NAp
coupling

w/PV - 0
HN[(p = Epr’YHPYST. pp, < 1 > ,l;Z)A7 (924)

9Ref. [5] has v3ar instead of ar/+/3.
OBear in mind that the experssion (9.17) correspond to the sign of hyperon nonleptpnic de_cay
amplitudes A as used in Ref. [5]. See also Sect. 6. Thus in the following we write A(B}) — Bj}.
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and the expression (9.18) or (9.19) for €, are used, one is implicitly assuming the
relation (9.4), i.e.

“ap” = —“ay” =1. (9.25)

Here “a;” symbolizes the effective parameter. However one could use
“ar” = ay = 3ar, or, (9.26a)
“ap” = %av (see (9.13)). (9.26b)

The Ref. [5] has used (9.26a) for the NAp coupling. In the case of NAK™ couplings
the conventiones are somewhat different. Neither sign nor magnitude are consistent
with (9.25) and (9.26a). Here they [5] have used

“‘ay”  =ay, see (9.12)),
v =ay (see (9.12)) 021,
“ar” =ar=gay, (see (9.12)).
If one wanted to be consistent with (9.25) one should replace
ay — —3ar =—a see (9.12d)) ,
v r=ov (sce (912d)) (9.28)
ar — 3ar =ay (see (9.12d)) .
Altogether that gives
¢ = 20" _1S¥ 4 \fZar,
CRY = —V3AY 4+ I8¢ — Lar, (9.29)
DRY = 25§+ Sar.

There is a sign difference in the expression (9.29) for C£Y in comparison with Ref.
[5].

The replacement (9.28) or the result (9.29) can be justified on the basis of the
SU(6)w symmetry [19]. From (9.1) and taking into the account (9.4b) one can
deduce

cEY $(3by — 5ey + 10ay ),

DII?*/ = % (—%bv +cy + 8aT) s (930)
1
9

(—%bv +cy + SGT) .

n
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Here C' corresponds to the coupling mpK*™, D to the coupling ppK*°, and 7 to
the coupling mnK*°. The AT = 1/2 rule requires'!

DY +CRY =n, (9.31a)
i.e.
1.3 1/3
—(—bv —4cy + 10ay + 8(1T) =— | =by —4dey —2ar | . (931b)
9°2 9\ 2
Both sides are equal only if ay = —ap, as it was found in comparison between

(9.18) and (9.19).

One has every right to ask “Why should one determine €, with the value (9.12)
instead of with (9.15)?” It is difficult to make a very learned recomendation. One
could use an average and estimate errors. For example: use (9.18) but replace ar
with

“

1 2
ap” = §(+av +ar) = 30V (9.32a)

and determine an error with respect to the claculated ay and arp, i.e.
“ap” = —(1.8£0.9) x 107°. (9.32b)

A wiser course might be to calculate the AS =1 PV potentials corresponding to
ay and ar pieces directly in the separable (factorizable) approximation.

Actually the contributions proportional to either ar or ay contain both Al =
1/2 and AI = 3/2 pieces. That can be shown by writing explicitly the flavour
dependence of the corresponding effective Hamiltonian (in the following spin-spatial
dependence is omitted). The strong interactions are described as in (9.11). The
parametrization

Hin, = aPAp™ + AN, (9.33)

is used for the weak part. The flavour dependence of the effective PV AS =1
potential is

V. =v2¢9"a(pA):(p)2 + g¥ B(mA)1 (Pp — 7in)s
= V29" ad +¢" B~ ) (9:34)

(gV = g]‘\/pr)

1 This is shown in Appendix E.
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Here we have introduced the combinations

§SENE), b =t L
B = @N@), =6t - L (9.3)

which were used in Ref. [1]. With the equalities (9.35) one can separate Al =
1/2 (B3;) piece in the effective potential V' from the AT = 3/2 (8r) contribution,

ie.
V= (ﬂgvéa) G- + gV <\/ga + %ﬂ) Or . (9.36a)

Comparison with (9.11) connects o and § with ay and ar

a= —\/gavg 8= —\/gaT. (9.36b)

The AI = 1/2 rule follows from (9.36) only if « and (3 satisfy the sum rule

2a+-23=0,
\/g Ve (9.37)

ay = —ar .

This agrees with the earlier conclusion (9.4b). However with the realistic values
(9.12d) and (9.15) the potential (9.36) must contain both AT = 1/2 and AT = 3/2
terms. The parameter in front of the AT = 1/2 piece (5;) is

2
—qay .
3\/5‘/

This should enter as a “factorizable” contribution in the formulae of Ref. [14,15].
One can easily check that the effective Hamiltonian of Ref. [5] (with all spin-spatial
dependence supressed) leads to

& =— (9.38)

_ 0 —
gpNT.p[CT] ( A >gVNTp[CT]N

— =&,V (nA)1(Pp — Mn)2 + 2€,(PA) (Mp)2 = €,9" Br.

(9.39)

Here the exponent [CT] denotes contracted fields. With ay = 3ar (9.15) one finds
an alternative to (9.21)

2 1 2
=A% — >t Zar 9.40
EP 3 — \/g 0 30/1“ ( )
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However the formula (9.40) was obtained by simply throwing away the AT = 3/2
part (Or) of the potential (9.36). The relative strength of the 3, and Gr pieces are
proportional to

1 /246 1
_av 1 j2v6-3  3ar :@:0,217, (9.41)
ay +ar 3V3 4 dat /12 8

It does not seem justified to omit the B piece. It might be argued that its contri-
bution to the process A + N — N + N is to some extent included in (9.21). It is
difficult to support that by some explicit mathematical arguments.

10. Weak PV NNK coupling and sum rules

The weak nucleon-nucleon pion parity-violating (PV) coupling involves contri-
butions

p—>nK+—>A(pi), n — nK% — A(nf), p—pK’ — A(pf). (10.1)

They can be described by an effective weak vertex which, in the notation of Ref.
[1] transforms as

(Hw)3 - (10.2a)

One has for example

i1 = by bAg? . (10.2b)

The complete effective interaction is [1,4,6,8]:

Aw (ef f) = 01(iy — il +ib —i7) + 0o(in — i + ik — ig) + O5(—is + i — i + ia),

. —A . —A . =2 . —C . -2

in = bobS ¢y, iz = bpbldl, iy =babBol , i =b,b2e8, i = b bGes .
(10.2¢)

The repeated indices are summed over. Only the SU(3) transformation properties
are indicated in (10.2). The spatial factor would be

Tug , (10.2d)

where u corresponds to the hyperon and ¢ stands for the meson field. The physical
content of SU(3) terms as b’ is given by the attached matrices - see Ref. [1], formula
(5.17). One finds for example

_ 21\0
=P, ¢i=K"t, b3:—%. (10.2¢)
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The amplitudes (10.1) are connected via the SU(3) sum rules, with the hyperon
nonleptonic decay amplitudes

A—pr~ — AAY), Y —pr® — AXY), E— AT — A(ED). (10.3)

The particle content of various ij’s in (10.2) is shown in Table 10.1. One finds for
example

. -C -1 -2 -3
(i1)x0 = b3 bp3 = (b3bT + b3b3 + b3b3)d3
= |= - +EO (_E_O + A_0> + _2_K0 n
- IERNIRVERRRNVG V6

etc. Contributions from invariants (10.2) are listed in Table 10.1.

(53)
(10.4)

TABLE 10.1. Contributions to the decay amplitudes.

Amplitude 01 02 03
_ 1 2
A(ED) _ﬁ 7§ 0
A(AY) 7 _ﬁ 0
AED) 0 7 0
AZY) 0 0 1
A(nf) 1 -1 1
Ag) | o | -1 o
Apt) | 1| o |

It is easy to reproduce the Lee-Sugawara sum-rule [4,6,8,9]

2A(ET)+AN)—VBA(SY) = —%(51—#%52—&-%51—%52—\/;62 =0. (10.5)

One also easily finds

A(nd) = \/gA(A(i) - %A(Eg) + A(XT), (10.6)
and
Alpd) = \/gA(AO) + %A(Zg) + A(ZD). (10.7)
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If A(X1) =0 as it follows in the current algebra (CA) approximation, one obtains
the sum rules given in Ref. [5].

It is well known [1] that the current algebra based approximation (including
PCAC) produces more constrained connections than the SU(3) symmetry require-
ments alone. Using CA and PCAC [4,8,9] one obtains for the A(X) amplitude

A unus = (rfn| Hy' [97%) = (<) + [<p\H |S4) + V2(n| HFY %)

fx
(10.8a)
Here PC (PV) means parity-conserving (violating). In deriving (10.8a) one had to
calculate the action of a SU(3) generator

o / P Vi (2) (10.9a)
on a baryon state. Here Vj is the zero component of the quark vector current
i

D
Ve =504 (10.90)

For that purpose one can use formulae from Ref. [9], as for example

7°|n) NF%/(B6+1B7) i(f36kBk+if37kBk) (10.9¢)
= —3575(Bs +iB7) = —3[n),
and
1 1
TIn) ~ (Fy 4+ iFy)—=(Bg +iB7) = —=(B4 +1Bs) = |p) . 10.9d
7 |n) ~ (F1 22)\/5(6 iBr) \/5(425) Ip) ( )

If HVIIJ,C transforms as a SU(3)gavour OCtet, i.e. if one has octet dominance, than, on
the basis of the Wigner-Eckart theorem [22,23], one finds

Pl HY |5y = V2| HP T 15%, A =o0. (10.8b)

Further applications of CA and PCAC [4,8,9] give

AN Yayup = (mtp| H TV [A%) = =ik (n| H{) PC|A%)

A s = (x| HY ™ 51) = i (= &) I HY "3, (10.10)
A = (Kn| B TV n) = —igk [\/3nl B PEIA0) — Ztnl 1 POJ50)]
AT, = (K nl B T p) = —idk [ (/S HP P00 + L] 1) 7010
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Using the relation (10.8b) one obtains the sum rules (10.6) and (10.7) with A(X}) =
0. The sum rules

N L Ifr
A(nd) = \/;Awi) A 4 .
A = \/§A<A9>+;§A<zg> jf—K

follow from the octet dominance combined with the soft pion approximation.
If one give up the octet dominance what formally means that the index 8 in
HI(/I{? is omitted in formulae (10.10), one finds from (10.8a) and (10.10)

1 o _ 1 .
ﬁ<n|HW|E )= [A(EJ)—# ﬂA(Ei)] (10.12a)

The third version of the sum rules for the A(nJ) and A(pL) amplitudes is

By sty Las | £
Al = |yf2a00) - Lah) - Lasp| I, o
Apt) = \/gA(A‘lH%A(E(TH%A(Ei) =

It was obtained by the soft pion theorem [1] using PCAC and CA, without the
octet dominance assumption.

Various combinations of Dirac spinors up,up, appearing in the above formulae
are ignored, or better to say replaced by a generic term upupg, i.e.

UpUs, TpUp, Upls, Uplp, Uplp, — UBURB. (10.13)

This is equivalent to assumption that all baryons are mass-degenerate octet mem-
bers. Thus the expression (10.12) is in a way also octet dependent.

In the nonrelativistic approximation (NRA) where Dirac spinors are replaced
by Pauli spinors, this fine distinction does not matter. In NRA all bilinears (10.13)
are replaced by a simple product

Tpup =5 Ty (10.14)

An additional difference between (10.6), (10.7), (10.11) and (10.12) is in the fac-
tor fr/frx = 0.83. The appearence of that factor in (10.11) and (10.12) openly
illustrates as already mentioned [1], that the current algebra based approximation
differs form that which is based on the SU(3) symmetry with octet dominance. This
factor is not included in SU(6)y/, and thus SU(3) based sum rules used in Ref. [5].
They have (10.6) and (10.7) with A(ST) = 0.
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11. Nucleon-nucleon-kaon vertices

The calculation of the weak NNK coupling has been carried out in Ref. [1] where
it has been based on the contribution

A= Acc + Asep:

(11.1a)
B = Bg + Bgep -

That scheme was analogous to the theoretical description of hyperon nonleptonic

decays used by Ref [9]. An alternative theoretical approach, in which decouplet

poles were used, has been also developed [30]. Recently it has been adopted for the

calculation of the NNK vertices [28]. It contains contributions

A= Acc+ Aro + Ap

(11.1b)
B = Bs + Byp + B/

The current algebra contribution A.. and the octet pole contributions Bg are given

by Ref. [1]. Very general expression for decouplet poles, as for instance Ajg can be

found in Refs. [28,30]. By SU(3) relation (adaptation) one finds

p—n 04+ n p+n 0 _n
Aw(pl) = - 13 hage S0y Bio(pg) = — 13 h3g2 =0y (11.2a)
Here
hy = —0.2-107°, hz=—04-10"% gy =157, (11.2b)

while p, £*© etc. are baryon masses.

The Aps and By, amplitudes are small contributions from the A(1405) = A’
resonance [11,30]. A characteristic A’ pole term for the pI amplitude is shown in
Fig. 10.1. Proceeding in the standard way [28] one finds

Aol = =),

Apv(pg) =0,  Ax(md)=0.  (11.3)

The PC vertices are determined by

bty - Bttt

I
I
KT
I

Fig. 11.1 - A’ pole term contributions to the transition p — KTn.
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The values of NNK amplitudes obtained using two different theoretical ap-
proaches a) Ref. [30] and b) Ref. [1] are summarized in Table 11.1. These ampli-
tudes, together with the amplitudes corresponding to 7 [1] and 1 (see Appendix F)
exchanges, determine the weak potential. Its form is given by formulae (8.1)-(8.11)
in Ref. [1]. The strengths of the weak vertices are summarized in Table 11.2 which
is analogous to the Table 9.1 in Ref. [1]. The numerical values appearing in column
a) corespond to the case (11.1a). They are identical with the numbers given in Ref.

[1].12

The column b) corresponds to the combination (11.1b).

TABLE 11.1 - Nucleon-kaon amplitudes are multiplied by 10°.

Amplitude | (a) [30] | (b) [1]
Ax(pf) 0.525 | 0.408
B () -2.35 | -2.187
Ax(pT) 0.250 | 0.281
Bk (p1) 3.088 | 4.238
Ag(nd) 0.625 | 0.625
Bg(nd) 1.803 | 1.799

TABLE 11.2. Weak vertices and their connection with the weak nonleptonic am-

plitudes.

Weak Analytic expression Numerical value | AT

vertices a) b)
a YZA(AY) — LA(AY) 2.3187 2.3187 | 1/2
b V3 [S2A(A%) + 24(A9)] 0.051  -0.051 | 3/2
a YZB(A%) — 1B(AY) 15.862 15.862 | 1/2
b VE[2B() + 2B(AY) 0032  0.032 |3/2
c 3 [Ax(nf) — Ax(p{) + 2Ak(pL)] | 0.260  0.200 | 1/2
d 3 [Axk(n) + 24k (p{) — Ax(pl)] | 0.404 0475 | 1/2
e 2 [-Ax(nd) + Ax(pd) + Ax(p])] | 0.021  0.050 | 3/2
¢ 2 [Bk(nd) — Bk(p{) + 2Bk (pf)] | 4.154  3.443 | 1/2
d 3 [Bx(nd) + 2Bk (py) — Bx(pl)] | -2.271  -1.995 | 1/2
é 2 [-Bx(n§) + Bk(py) + Bx(p})] | 0.084 -0.355 | 3/2
f Ay (M) 0.06 0 1/2
f By, (A)) 2753 2816 | 1/2
g Ap (A9) -5.19  -5.63 | 1/2
g By (AY) 2297  31.10 | 1/2

12Table 9.1 contains some missprints, which are corrected here!
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Table 11.2 contains also, for the sake of completeness the i exchange amplitudes.
Their derivation is sketched in Appendix F.

One can see that the AT = 1/2 pieces of the weak potential in both cases are
reasonably close, the discrepancy being within 14% to 30%. However the AT = 3/2
pieces differ significantly. For the combination e, the difference is about 130%.
The combination € shows the opposite signs with order of magnitude difference in
strengths.

While the theoretical predictions for the AT = 1/2 potentials might be reliable
to within 30%, the AI = 3/2 pieces in the potential are rather poorly determined
by the present methods'3.

12. Outlook

This review contains two results which will be useful in future applications.
Firstly it is shown how the effective weak potential due to the vector meson and
axial vector meson exchanges combines with the effective weak potential produced
by the exchanges of pseudoscalar mesons. Working within the described theoretical
framework, i.e. CA, PCAC, SU(3), SU(6)w, SEP approximations, pole terms etc.
one can fix all relative signs within potential, as well as the relative signs with
respect to strong interactions and semileptonic processes. That will serve as a good
foundation for the derivation of the additional weak potential pieces.

Secondly a novel derivation of NNK and NAn weak vertices is discussed in
detail. The changes in the resulting affective weak potentials are presented. When
all theoretical derivations are compared, one ends with a theoretical uncertainty
which is less then 30% !* for AI = 1/2 potential pieces. Unfortunately the pre-
dicted strength of AT = 3/2 potential pieces depends very much on the theoretical
methods. In the initial analysis of experimental data one cannot rely upon the
AT = 3/2 potential pieces produced by the pseudoscalar meson exchanges.

Appendix A. Effective weak Hamiltonian and IVB (W)

In the current-current (charged currents are here considered) form the effective
weak Hamiltonian Hyy is given by [4]

_Gr () TH(x
M = ZE T} @) T (@). (A1)

Fundamentally the Hy is produced by the current-IVB (W) coupling

H(IVB) = gJ,W*T. (A.2)

13The consideration of other A, B values (see Table 5 in Ref. [30]) would not change that
conclusions.
14Sometime less then 14%.
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With IVB propagator [2]

N gt

one finds in the k < M3, limit (All integrations [ dz are omitted in (A.1), (A.2)
and in the following)

(second order) (—i)2H2(IVB) = (—i)Hw (first order) (A.4)
(—1)H2(IVB) _ i92 _g;\;‘%v \Zj(x)jy($) = (—1) ]\j‘%v jJ(l‘)J“(JC)

Thus
% N Az_gv (A.5)

as it should be (CKM angles can be assumed, but they are not shown explicitly).
The main purpose of this appendix was to test Eq. (A.3). Obviously, (—1) in front
of (A.3) is essential.

Appendix B. Pion decay and induced pseudoscalar in
semileptonic weak decays

PCAC relation [4] is

% f7r 2 i . . .
O*Al(z) = “=min'(z) (t=1,2,3 (isospin),
V2 (B.1)

14 .9
- = ——=(7T +1m7).
) \/5( )
The pion decay constant f is [4]
(0] Ai(m) + iAi(x) |77 (k) = ifpke e (kx = koxog — k- x). (B.2)
A general form for the axial vector current matrix element is [1, p.131]
(pl Ay, +1A% [n) =, (p)[garuvs + gpkus + .- Jun(n),  (ku = (p—n),). (B.3a)
Here

A (z) = G(w)vwsériq(w) (B.3b)

The gp formfactor is produced by pion exchange diagram shown in Fig. B 1.
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Fig. B 1. Pion exchange contribution to the matrix element (B.3).

The strong interaction [2] of pions is

Hs = igrh T ysnT" = ign V20,500 + ... (B4)

The diagram shown in Fig. B 1 which is the second order perturbation gives

i

(IP)U« = (_i)Qﬂp’ySunfnﬂi\/ﬁgﬂ'iJfﬂku

k2
Vi fk (B.5)
. _ 29 fr
= (_1)(_1)Up75unk2_7m; .
This has to be combined with the first order contribution
N \/Egﬂ'fﬂ'k,u (*l)ﬁgﬂfﬂ'
(=1)Up | VY594 — W’Ys Ungp = W (B.6)
The PCAC condition can be written also [4] as

Bulpl (AL +iA2) )| =0, (B.7)

2,
mz=0

Remark We always assume A, = ¢,75(A"/2)¢ and net (-) sign as in (4.65b)
of Ref. [1]. Thus our Jf = V| £iV;? — (A}, £iA42). Dirac equation is (§ —
m)u = 0a(p —m) = 0. Thus (p — n)"u(p)yuysu(n) = (my +my)Ju(p)ysu(n)
2mnu(p)ysu(n), and k = p —n. Also (77| A, ]0) = (0| AL I = (g, fr)T
—iqy fr = iky fr, since (¢ = —k).

The expression (B.3a) gives

k. (pl| (A}L + iAi) |ny = (2mpyga + gpkz)ﬂp%un . (B.8)
The condition (B.7) holds if
2m
gp =~ qug/* . (B.9)
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From calculation (B.6), one finds with m2 = 0

gp — (—vV2)Llr (B.10)

q2

The combination of (B.9) and (B.10) produces the Goldberger-Treiman (GT) rela-
tion [4]

2myga = \/ifﬂgﬂ , (B )
11

us

= \/igw-

All these confirms the phase “i” appearing in (B.2).

mnga

Appendix C. Meson states in SU(6)y and CP transformation

Meson states ¢f (Sect. 4) behave as W —triplet (vector mesons) and W —singlet
(pseudoscalar mesons) and also as B—spin scalars'® [15,16,19,20]. The space-time
property of a pseudoscalar meson state (SU(3) spins are omitted) is the same as
the behaviour of fermion (i) density

Py = ¢y,
(C.1)
CP

0% = (=) Y.

The result (C.1) is derived in Sect. 3. The CP behaviour of the vector meson states
follows the behaviour of densities

P, YTy, Yo, (C2)

One can write

Py = Yoah = Provist (i=1,2). (C.3)
Using the results given in Sects. 3 and 4, one obtains

P107ivsY — + 0759 - (C4)

The C transformation means

_ _ _T —
VY0V Y5y <, — T C s CYT = —yovivsy (C.5)

15 B—spin operators are By = 10375/2, B2 = 037075/2, B3 = v0/2.
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Finally
P05y — —Pr0ViVsY -
The formulae (C.1) and (C.6) confirm the meson field behaviour (4.6).

(C.6)

A different behaviour of the third component in (C.2) is compensated by the
properties of the corresponding BB density. The expression (4.7) is not changed.

Appendix D. Parameters ar and ay for AS = 0 Hamiltonian

The SU(6) parameters ar and ay were calculated via the factorization approx-
imation by Ref. [19]. Their relevant formulae, found for the strangeness conserving

(AS = 0) Hamiltonian are
_ G -5 —
o pl H (A8 = 0) ) = L cos 00| @y 0) (ol 7335 o)
G 1, _
= ——5 cos® o (™ |V, 0)(p] AY [n)

V2

10
~ Eav ctgO¢c

and

1G 1
(0°p| Hw (AS =0) |p) = Wi cos® 905<p0| VO, 10)(p| AL [p)

10
~ ———arctglc .

9v2
Here we have introduced isospin tensors VTT z
Vfl = V2 du = \/§§T+q, VY =grq, Vi = —V2ud,
etc. In Ref. [19] one can find

) 1 1
1-i2 _ 1 3_ 11,0
|4 = \/§V1 , \% 5V
From (D.1) and (D.2) one obtains
9 1
ay = —%ﬁGscaﬁ,
3 1
ar = —%%Gscaﬁ,
ay
ar = —.
r 3

(D.1)

(D.2)

(D.5)
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Here we have used s = sinfg and ¢ = cos ¢, and

(p= Vi H0)y =Ci{gpa=a,

(p°| VY 10) = Cifoo @ =a, (D.6)
WAty =, B=/28,
(p| A} In) = 011{)21%21/2 p= _\/gﬁ'

One can easily sketch the genesis of the product of matrix element which appears
in (D.2). That can serve as a model for the AS =1 case.

Using FR one can write in SEP approximation

(P°p divu (1 = v5)djuy (1 — ys)us |lp)  — L=
S ’ (D.7a)

—3 [(P° divuds |0) (pl Ty 505 |p) + (pldiv*ysdi [p)(p°] Ty 10)] -

Here p° can be emitted from either %u or dd combination. Either combination can
contribute to the baryon matrix element. In AS = 1 case (8.14) there is no such
symmetry. With [19]

(0w |0) = —(p°| dvud [0) (D.8a)
and with
1 —
V(AP =V(A)] = 5 (@ — dd), (D.8b)
one can write (D.7a) as
1
L= =2 (" V2, 10)(0] 45" p). (D7)

It might be useful to list some isospin (tensorial) relations which were employed in
Sect. 8. The isovector triplet containing u and d quarks can be written as

ud =——5ariq =T},
au—dd = %Gﬁq’q =177, (D.9)
du = %qﬁ*lq =17 .

One has to compare the matrix elements (n|du |p) and (p| Tu |p). From the second
matrix element we need only the isovector

%(m —dd) (D.10)
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contribution which can be connected with p° meson. Thus

— _ 1/2—-1/2
(nldulp) = (nl T ) = CY2 12 jpa = = [2a,

(plTulp) — Ll (@u—dd) Ip) = S0l T3 1) = HC1 0 pe (PAD

=_-11,__1/2
=57 31/ 50

This is the origin of the factor 1/2 which appears on the RHS of (9.14b).
Appendix E. Weak PV vector boson K* exchange and
AT =1/2 rule

From (9.1) one can deduce the following weak PV NN K* coupling
CapK*t + DppK*° + nanK*°. (E.1)

Here only hadronic flavours are indicated while the spin-spatial parts are omitted.
The strong NAK™ coupling has the flavour dependence

gV (PAK*+ + mAKO ). (E.2)

When (E.1) and (E.2) are combined via K* exchanges one finds a weak PV
potential with the following baryonic content

V = g"C(pA)(mp) + g" D(mA)(p) + " n(mA) (An) . (E.3)

Ther isospin content of that V' can be found by using formulae (F-13) and (F-14)
of Ref. [1], i.e.

vV =4YC

+9VD (481 = 46, + Jgbr) (E4)
9" (360 + 38, — Lefr).

Here (Bt is the AT = 3/2 contribution, which is eliminated if

C+D=n. (E.5)
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Appendix F. Baryon-baryon-n vertices in hypernuclear
decays

Two members of the pseudoscalar meson U(3) nonet are possible mediators of
the PV /PC hypernuclear potential in the OME (one meson exchange) picture of
the hyperon-hyperon interaction. Their contributions follow the same pattern as
was the case with m and K mesons: the PV A-amplitude gets its contribution for
separable (SEP), current algebra (CA) and decouplet (10) terms

Ay (H) = ASFP(H) + AJMH) + A (H) (F.1)
where H is a decaying hyperon. The parity-conserving B-amplitude is then written
B,(H) = By*F(H) + By°""(H) + B}°(H), (F.2)

where BE OLE(H) arises from the pole term contribution. Earlier calculations Ref.
[1] have used the effective weak four-quark QCD corrected Hamiltonian to obtain
the separable contributions to A/B amplitudes. The separable contributions were
omitted in the NN K amplitude calculations [30] which relied on decouplet poles.
Thus we do not take that into the account when dealing with N N7 vertices.

The CA contribution to PV amplitude A follows the standard soft-meson pro-
cedure [8,9]. A (virtual'®) decays which are relevant for the hypernuclear potential
calculation are

N
A n+m and (F.3)
A —-n+mns.

Since the U(3) quark structure of the n mesons is given by 7 ~ (%)qi()\“ﬂ)ijqﬂ-
with a = 0,8, and \° = /2/3, the CA contribution comming from 7; nonet state

vanishes whereas the ng calculation gives

AS=1 \/Q — \/5 3

(ns| HRP=1 [A) - = === (n| [F;* HV 1 A) = ==/ 5 (0| HiC]|A)
g fo V2
= —\/Ef—"A(AO_ ), (F.4)
I
or  A(AY) :—f—”\/ﬁA(AE).
fa

Here f, = 1.1 f5.
The 71 pole contributions follow again the same procedure except that for the
U(3) nonet contribution a generalized SU(3) relation [9] is used

<Bk| n'|B) = 2g:nN [dij(1— f)]. (F.5a)

16Recall that the n masses are m(n1) = 958 MeV and m(ns) = 547 MeV.
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With ¢ = 0 for the nonet (7;) state the symmetric structure constant is dop,, =
(v/2/3)0mn so one obtains the U(3) result

2
81018 = 20y 201 1). F6)
The resulting total 7; pole contribution is
1 2 A+n /1 2
BPOLE A —|——A AO \/jl— L4 F
() = |-75400)] /30— T2 (3-2). @)

where the usual subtraction has been made [9]. With ¢ = 8 in (F.5a) the ng contri-
bution is calculated from the full formula

(B¥|n" |BY) = 2g,nNTifise f+ diji(1— £)]. (F.5b)

The strong AAns coupling is calculated to be
2 1
GAAns = _ﬁgﬂ'NN(l - f) = _EQAAWI . (FS)

For B*¥ = B7 = n the strong coupling is given by

Innng = 7297{NN§(1 - 2f) (Fg)

Since the pole diagrams for ng 71 are the same, the following expresion is obtained

V3
- ?ngN

1
NG

BPOLE(p, ) = [_ A(A[l)}

Adn (1—f 1+2f
i (A - > (F.10)

Appendix G: Effective weak strangeness violating
interaction in coordinate and/or momentum space

The effective one meson exchange (OME) contribution to the weak potential is
comming form the second order S—matrix term

H[ = (ac| HW |bd>

Hy = [ b dby (a)(x) A, B ()5 (y) . (G-1)

Here A, (x—y) is the free meson propagator [2]. In the case of pesudoscalar mesons
(m, K, n) its pv dependence should be omitted. I'}" are some suitable spin-isospin
operators which are specified in the literature for any particular case.
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The fermion operators ¢ are associated with fermion fields experiencing some
interactions, i.e. being bound by some strong potential. It is convenient to include
at least a part of that strong interaction explicitly. Then, instead of expanding ’s
in terms of the free particle solutions

e ipe (G.2)
one should expand using the solutions corresponding to a particular strong (for

example shell-model) potential. Such bound state interactions [31] or Furry [32]
picture employs

P(x) =2, anthn(r)e™Frt +ap.
H(VS)wn(r) = nwn(r) .

(G.3)

Here a.p. stays for antiparticle piece which does not contribute in the present appli-
cation. The Hamiltonian H has a symbolic and generic meaning. It may represent
some relativistic (quasi-relativistic) dynamics. Its solution ¥, (x) can serve as a
basis for the later nonrelativistic approximate (NRA) expression.

The particle creation operators af are indicated in (G.3) For example the op-

erator al‘f

[b) = a;10)
picks up the appropriate states from the expression (G.3). One is left with the
well defined baryon-baryon OME interaction, which is the starting point for the

derivation of an effective weak potential. The generic form of such baryon-baryon
interaction is

Hy = / P Py B, ()T 6n(@)A @ — ). () Tataly) (G.4)

It corresponds to a process
d+b—a+ec. (G.5)

Here it is assumed that the time dependence, such as
Py(x) = hy(w)e Pt (G.6)
has been integrated out, as shown in Appendix G of Ref.[1].

The transition to the momentum space is achieved by Fourier decomposition,
as for example

o) = / PPy (q). (G.7)
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For a free particle

¥u(q) = 0(q — py)us(p) - (G.8a)
Here u(p) is a Dirac spinor, i.e. the solution of the free particle Dirac equation
(B — mp)up(p) - (G.8b)

Thus in the free particle case one has
Uy(@) — up(p)ePe®, (G.8¢)
and p, is the momentum of that particular particle b.
In the general case, with the propagator given by

Al —y) = / Bged@YA(), (G.9)

one finds
Hy=[ d3zd3ydiq, d3q,d3q, d3qq d3qfe—iqa:ceiqbweiqf(mfy)e—iqcyeiqdy

Ea(qa)rldjb(qb)A(Qf)gc(qc)l_éwd(qd) .

(G.10a)
The integration over coordinates can be easily carried out leading to

Hp=(2m)° [ d%qad®qy d3qc d®qa d®qp 6(—q, + q, + q5)5(—q; — q. + q,)

©a(qa)T106(q) Agp) 0 (q.)T2tba(q,) -

(G.100)
One can further integrate over, for example d3q, and d3q, finding

Hp = (2W)6/d3qa dd®qe g5 ¥, (q,)T1(q, — a;)A(ay) 0 () 2%a(q, + q;) -
(G.10¢)

Thus one ends with three integrations instead of two which one had in the coordi-
nate representation (G.4). However, if one deals with the free particle states defined
by (G.8) one ends without any integrations. Starting from

H(free particle) = [ d®z d®y d3qe PP ePr®eid(T-Y)e~iP.YePuY
(G.11a)

U (P )T1n (Py) A5 )t (P)T2ua(Pa) »
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one finds

Hj(free particle) = (2m)° [d*qd(—p, + Py + @)0(—P, — g+ Dy)
Ua(q,)T1un(q,)Agr)uc(q )T 2ua(q,) (G.11b)

= (21)%6(—py + Py — P + Pa)Ua (Do) T 10 (Py) Aqs)Ue (P, ) T2ua(Py)

with
4y =Pg—Pc =P, — Dy (G.11¢)

and
Pyt P, =P, + P, (G.11d)

The last equality corresponds to the process (G.5) involving free particles a, b, ¢
and d. The simple expression (G.11) is sometimes used as “the representation in the
momentum space”, as the starting formula for NRA. Sometimes that can be of some
pedagogical use, as all manipulations look simple and transparent. But one should
keep in mind that for particles bound by some potential the more complicated
formula (G.10) is the correct expression in the momentum space.

Keeping in mind its complexity it is obviously easier to perform NRA in coor-
dinate space, starting from (G.4) as it was often the case.

If one deals with a simple time dependence (G.3), (G.6), the states 9, (x) are
to be considered as solutions of the stationary Dirac equation with a potential

Epy(r) = (a-p+pV+BM)p(r),

(G.12a)

Here the potential
V=V(raopl,...) (G.12b)

can be, in principle, some general effective description of the strong forces binding
nucleons in nuclei.
Formally, to the leading order in M ~!, one can approximate the equation (G.12)
by a substitution
V() ~ | o ?5;;““’ . (G.13)
2ar )

The symbol p, appearing in (G.13) is used for traditional reasons. It corresponds
to a definite momentum only if one deals with free particle wave functions (G.8).
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Generally, p is the spatial derivative acting on the right, for example!'”
o-p(A(x)B(x)) = B(x)(—io - VA(x)) + A(x)(—io - VB(x)). (G.14)

The approximation (G.13) has its limitations and it has to be improved in various
ways if one wants to proceede to higher orders in M ~" expansion [33-35].1%

It is customary to assume that in NRA one ends with a Schrédinger equation
describing a nuclear shell model

1
—mAan(r) +V(xz,0,...)0n () = Endn(x). (G.15)

The substitution (G.13) with the nonrelativistic nucleon states described by
(G.15) is the foundation of NRA of the expression (G.4). In the following this is
illustrated for the x dependent density from (G.4):

rg ry

D)= [@oune) (1h [ )w@iey. (60

Here I'y matrix is subdivided in 2 x 2 matrices and the meson propagator is f. The
indices A, B, ...have a very general meaning. They can contain four-vector labels
w,v,...=0,1,2,3 if one deals with a vector-vector interaction. With

P =4ig,
B(ry) = 1o L S R N A S S A & (G.16b)
0 -l e Iy -r¢ -rp )’

one can write

D.w) = [ @ o (Gre) | (e S ) ( o B >f<w,y).

(G.16¢)
By definition (G.13) the operator p in (G.16) acts on the nucleon wave functions.

It is useful to carry out explicitly the matrix multiplication in (G.16¢)

_ (33 A B9 P
D.(y) = [d% {% (Fl oo+ d)b) (G.16d)

—(226,) (€0 + 1P %L, f(a.y).

1TWith free particles, one has (p,, being a c—number): opePr” = ap, ePn".
18For example the Foldy-Wouthuysen transformation.
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The expression (G.16) can be then evaluated numerically, as it has been done in
[26] in order to check the consistency of the calculation. Alternatively one can move
the derivative p from the left hand side by partial integration. The generic form of
the second term in (G.16d) is

/ &z <‘2’Mp ¢>TF(m, y) = N(y). (G.17a)

Taking into account that

. f —io- vl
o p(ba _ io -V, _ iVolo (G.18)
2M, 2M, 2M,
and partially integrating (G.17a), one finds
N(y)=— [ d®zot TP . 1
W=~ [ @il Pray) (G17)
Here p = —iV acts on the right, both on the nucleon wave function ¢, and on

the meson propagator f(x,y). It was shown [1] that f has a Yukawa form in the
coordinate space.

In some cases the partial integration (G.17b) can lead to an effective potential
which does not contain the derivatives (i.e. “speed dependent terms”) of the nucleon
wave functions. As an example let us apply the above formalism to (G.4) with

Fl =75 and PQ =1. (Glg)

That corresponds to a parity-violating (PV) pseudoscalar meson exchange. Leading
terms in the M ! expansion are

Do(y) — [ dz o, [ﬂ - "'pf] "

2My  2M, (G.20a)
(with TP=1,T¢ =1, T{=0=TP),
and
Dy(x) — / By 6} (w)oa()] F(z.9). (G.200)

However, “hat” on the function f means that the same propagator is shared by both
terms a and b. By performing the partial integration in (G.20a) and by recombining
both terms one finds

_ 3 13 110-V
HI(7571) /dxdy<¢a 2Mf

f ¢b> ($lda) - (G.20c)

From here one can read the first contribution to the V3 appearing in the expression
(9.6) of Ref.[1].
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SLABI MEZONSKI VRHOVI I HIPERNUKLEONSKI POTENCIJAL

Ovaj je clanak nastavak ranijeg ¢lanka o hipernuklearnim potencijalima. Pred-
stavljamo nov izvod hipernuklearnog potencijala koji krsi stranost a posljedica je
izmjene pseudoskalarnih mezona. Usporedba s ranijom metodom pokazuje da je
teorijska netocnost manja od 30%. Raspravljaju se podrobno relativni predznaci
izmjena pseudoskalarnih mezona i vektorskih (aksijalno vektorskih) izmjena. Daju
se dodatne napomene o nerelativistickom priblizenju.
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