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1. Introduction
Our recently published review paper [1] left unexplored some details concerning

the derivation of the weak hypernuclear potentials. All these items are well known
to experts, as many previously published details were. Nevertheless, it might be
useful to present them systematically from an unified viewpoint. Moreover, in many
discussions with numerous colleagues, additional questions, not addressed in Ref.
[1], were rised. Thus the present paper should be read in conjunction with the
earlier one.
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A general quantum field theory and weak interaction background can be found
in numerous publications (e.g., see [2–9]). The strong interaction input can be taken
from Refs. [10–14]. The SU(3) and SU(6)W symmetries are used and/or described
in Refs. [2–9, 15–23]. It turned out that theoretical description of the hypernuclear
decays depends very much on the relative signs and phases of various pieces of the
weak strangeness violating potential [5,20,24–27]. Therefore, it seemed useful to
review and collect all theoretical arguments which determine those signs.

In Appendices A and B, all standard knowledge about effective weak Hamil-
tonian and about the semileptonic weak decays is reviewed. The sign and phase
conventions, all experimentally confirmed and tested [2–9], will serve as a founda-
tion for the following deductions. Section 2 connects the separable contributions
to the hyperon nonleptonic decays (see Sect. 3. in Ref. [1]) to the induced pseu-
doscalar in semileptonic decays. The relative phases of the K? exchange and the π
exchange PV contributions are connected to the semileptonic hyperon decays and
thus determined. The current algebra (CA) contribution has, as shown in Sect. 3,
the same phase, as the one required by the earlier discussion. As can be seen in Sect.
4, the relative phases can be determined quite generally using CP properties and
Hermiticity. Those argeements are specified for the SU(6)W classified PV Hamilto-
nian in Sect. 5. It turns out that the Hermiticity requirement introduces the factor
i1−SM . Here SM = 0, 1 is the meson spin. As discussed in Sect. 6, the relative sign
depend also on the relative signs of the strong coupling constants [5,10–14] and on
the signs of the weak BBπ amplitudes, which have to be correctly read form the
experimental tables [11].

With all that knowledge, one can determine the relative signs and phases of
the parity-conserving pseudoscalar and vector meson exchange potentials (Sect. 7).
One can easily make the same predictions for the axial-vector meson exchanges
[26], discussed in Sect. 8. Further elucidation of the separable contributions in the
framework of the SU(6)W calculational scheme can be found in Sect. 9.

The weak NNK [28] and NΛη vertices are used here to illustrate the theoretical
uncertainties which appear in their determination. While the NΛπ weak vertex
can be read from the experimental data (Sect. 6), the other pseudoscalar meson
vertices must be determined theoretically [4–9,12–21,29,30]. The weak PV NNK
amplitudes can be determined by using SU(3) based sum rules and/or CA. Some
uncertainties in those procedures are described in Sect. 10. The complete calculation
of A and B amplitudes appearing in M = 〈N ′K|HW |N〉 = iu(A − γ5B)u was
performed using two separate schemes. In Ref. [1], the CA (Acc), separable (SEP)
and octet baryon pole (B8) contribution were introduced, i.e.

A = Acc + ASEP

B = B8 + BSEP

while Ref. [22,30] relied on the decouplet pole contributions (A10, B10), i.e.

A = Acc + A10 + AΛ′

B = B8 + B10 + BΛ′ .
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All details are given in Sect. 12 where one can find the definitions of the terns AΛ′

and BΛ′ .
Finally, in the Sect. 10, the complete pseudoscalar meson exchanges ∆S = 1

potentials are discussed. They have the same form as shown in Ref. [1], i.e., they
contain both ∆I = 1/2 and ∆I = 3/2 parts. Their strengths are displayed in Table
11.2 which can be compared with Table 9.1 from Ref. [1]. The differences found by
using various calculational schemes serve as indicators of theoretical uncertainties.

In addition, Appendix G contains some useful remarks concerning the nonrel-
ativistic approximation (NRA) of the weak (∆S = 1) potential, which was briefly
discussed in Sect. 8 of Ref. [1]. The NRA form of the effective interaction is the one
which is usually used. All potential pieces, with their relative signs and phases, are
written in NRA before being confronted with experimental data.

2. The separable contribution to the PV hyperon
nonleptonic decay

In the following we show:

(i) The separable contribution to the PV hyperon nonleptonic decays (SCHN)
is connected with the induced pseudoscalar (IP) term, i.e. with gP term in
(B.3) and (B.6).

(ii) This will fix relative phase between PV potential terms due to the vector
meson and pion (or kaon) exchange contribution to the strangeness-violating
(SV) and PV effective weak potential [4]. This will be illustrated by calculat-
ing a separable contribution (SEP) to the process

Λ + p → n + p. (2.1)

Of all possible SEP terms only one, needed to show i) and ii) is selected. All
factors inessential for that proof, like sin θC , cos θC etc. are not openly displayed.
One starts with

(−i)V = (−i)GF√
2
u(nf )[gAγµγ5 + gP (q2)qµγ5]u(pi)·

u(pf )gV (q2)γµu(pΛ)

gA = const. gP (q2) =
κP

q2 − m2
π

gV (q2) =
m2

K∗

m2
K∗ − q2

(2.2a)

The term V is one of SEP’s obtained from

W =
GF√

2
〈nf | J i

µ |pi〉〈pf | J µ k
i |pΛ〉. (2.3)
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Here J k
µ are general V − A weak currents appearing in the effective weak Hamil-

tonian. As said above, the enhancement coefficient C [1] is also omitted. Only the
pertinent form factors, listed in (2.2) are kept in V . With (B.10)

κp = −
√

2gπfπ (2.2b)

and by using Dirac equation (Appendix B), one finds

V = VK∗ + Vπ (2.4)

VK∗ =
GF√

2
gV gA

m2
K∗

m2
K∗ − q2

u(nf )γµγ5u(pi)u(pf )γµu(pΛ) , (2.5)

Vπ =
−
√

2gπfπ

q2 − m2
π

u(nf )γ5u(pi) (mΛ − mp)u(pf )u(pΛ). (2.6)

The above expressions1 can be identified as parts of a general K? and π exchanges
produced by general Hamiltonians [5]

HS
K∗ = gV

S ψpγ
µψΛV K∗

µ ,

HW
K∗ = εK∗ψnγµγ5ψpV

K∗
µ ,

HS
π = i

√
2gπψnγ5ψpπ

− ,

HW
π = iAψpψΛπ+ .

(2.7)

The second-order contributions comming from (2.7), written in the same sceleton
form as (2.5) and (2.6), are

(−i)2HS
K∗HW

K∗ = (−)gV
S εK∗(−i)

1
q2 − m2

K∗
u(nf )γµγ5u(pi) u(pf )γµu(pΛ)

∼ (−i)VK∗ .

(2.8)
and

(−i)2HS
πHW

π = (−)(−)
√

2gπAi
1

q2 − m2
π

u(nf )γ5u(pi) u(pf )u(pΛ)

∼ (−i)Vπ.
(2.9)

The contribution (2.8) corresponds to SEP term and according to Ref. [5], one can
connect it to the SEP contributions aT appearing in SU(6)W based sum rules2

gV
S εK∗ ∼ gV

S aT . (2.10)
1Here q = nf − pi = pΛ − pf , pf + nf = pi + pΛ Expression (2.2a) is Hermitian conjugate of

equation (B.3a). Note (u(p)gP kµγ5u(n))† = −u(n)gP kµγ5u(p), with k = p−n = −q = −(n− p).

2See Sect. 9 below.
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The term (2.9) obviously corresponds to SEP contributions to the PV hyperon non-
leptonic decay amplitude A [1]. In order to find correspondence with (2.6), one must
have iA. The reader must keep in mind that terms (2.5) and (2.6) were found from
a standard SEP approximation (2.3). In that approximation, the current matrix
elements 〈β| Jµ |α〉 are experimentally determined from semileptonic decays (as for
example Λ → p+e−+ν) [6]. Thus, the relative phase of the terms (2.5) and (2.6) is
determined experimentally. When this is compared with the effective Hamiltonian
description (2.7) that also fixes the relative phases of coupling constants gS

V εK∗ , gπ

and A which appear there. One should also keep in mind:

(a) The relative phases of gρ, gK∗ and gπ are already fixed by the baryon-baryon
scattering experiments [10,11,13];

(b) Thus, the results (2.8) and (2.9) determine the relative phases among weak
Hamiltonians;

(c) As soon as the relative phase between HW
K∗ and HW

π is fixed, everything else
follows via SU(3) (or SU(6)W ) symmetry;

(d) PC couplings of π, K and η, where strengths are labeled as B′
is have their

phases fixed through hyperon nonleptonic decays. Experiment gives the ef-
fective interaction of the form [11]

uf [A + Bγ5]uiφM (2.11)

As a final illustration, here is the calculation of SEP contribution to Λ →
p + π− decay [1]. One has

〈pπ−|HPV
W |Λ〉 ' (−)

GF√
2
〈p| Jµ |Λ〉〈π−| J µ 5 |0〉

= −GF√
2

gV u(p)γµu(Λ)(−i)qµfπ

(q = Λ − p; Λ = p + q)

=
GF fπ√

2
(mΛ − mp)upuΛ → iA(SEP )upuΛ.

(2.12)

The same phase as used in (2.7) is obtained. It will be shown in the next
section that a general current algebra (CA) term has the same phase.

3. Current algebra contribution to PV hyperon
nonleptonic decay amplitude A

One starts with the LSZ reduction of the general matrix element Eq. (2.12).
In the vanishing (k → 0) pion momentum limit, as shown earlier in Refs. [1,2,4],
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one can write

B → B′ + MA

〈B′MA(k; out)|HW (0) |B〉

= i
∫

d4x
eikx

(2π)32ωk
(
−−−−−−→
2x + m2

M )〈B′| T [Ma+ib(x)HW (0)] |B〉

= i
CM

fM

(
1 − k2

m2
M

)∫
d4xeikx〈B′| T [∂µAµ

a+ib(x)HW (0)] |B〉.

(3.1)

Eventually [1], one obtains

〈B′MA(k; out)|HW (0) |B〉

= i
CM

fM

(
1 − k2

m2
M

)∫
d4x eikx{−ikλ〈B| T [Aλ

a+ib(x)HW (0) |B〉

−δ(x0)〈B′| [A0
a+ib(x),HW (0)] |B〉}.

(3.2)

By taking the limit k → 0 (soft pion limit for off-shell pions) one finds a typical
CA relation

M(q → 0) = −i
CM

fM
〈B′| [F 5

a+ib(0),HW (0)] |B〉 = iA uB′ uB . (3.3)

Here the SU(3) (axial) charge is defined by

F 5
a+ib(t) =

∫
d3x A0

a+ib(t,x). (3.4)

The following relations introduce (vector) charges Fa+ib

[F 5
a+ib,HW ] = [Fa+ib,HPV

W ] ,

[F 5
a+ib,HPC

W ] = [Fa+ib,HPV
W ] ,

[F 5
a+ib,HPV

W ] = [Fa+ib,HPC
W ] ,

Fa+ib =
∫

d3x V 0
a+ib(t,x) .

(3.5)

Omitting uB′uB spinors (3.3), one finds the transition amplitudes which are the
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current algebra contributions to A

A(Λ0
−) = −

√
2

fπ

1√
2
〈p| [F+,HPC

W (0)] |Λ〉 = − 1
fπ

〈n|HPC
W (0) |Λ〉 = − 1

fπ
aΛn ,

A(Λ0
0) = −

√
2

fπ

1√
2
〈n| [F3,HPC

W (0)] |Λ〉 =
1√
2fπ

aΛn ,

A(Ξ−
−) = −

√
2

fπ

1√
2
〈Λ| [F+,HPC

W (0)] |Ξ−〉 = − 1
fπ

〈Λ|HPC
W |Ξ0〉 = − 1

fπ
aΞ0Λ ,

A(Ξ0
0) = − 1√

2fπ

aΞ0Λ , (3.6)

A(Σ−
−) =

√
2

fπ
aΣ0n ,

A(Σ+
+) = − 1

fπ

[
aΣ+p +

√
2aΣ0n

]
,

A(Σ+
0 ) =

1√
2fπ

aΣ+p .

As the matrix elements

〈B′|HPC
W |B〉 = aBB′ (3.7)

(calculable in bag models [12]) are real quantities, the matrix element (3.3) is
imaginary, as was the matrix element (2.12). This result is consistent with the
comparisson with semileptonic matrix elements (Sec. 2). It agrees with the most
general argument wich is displayed in the next section.

For completeness sake let us show that PC amplitudes B have the same phase
as PV amplitudes A, as they should according to the analysis of the empirical data
on hyperon nonleptonic decays [11]. Those amplitudes obtain contributions from
baryon poles. A typical contribution to the transition Λ → p + π− can be written
as 3

(−i)u(p2)aΣp
i(/p1 − /q) + mΣ

(p1 − q)2 − m2
Σ

iγ5gΣπΛu(p1) = iB̃(Λ0
−)u(p2)γ5u(p1), (p1 → p2 + q)

B̃(Λ0
−) = gΛΣπ−

aΣ+p

Σ+ − p
(3.8)

B(Λ0
−) = B̃(Λ0

−) + crossed term contribution.

Again B is real, as it should be [11].

3In Ref. [5] i is associated with perturbation: (-i), with the baryon propagator. Eq. (3.8)
requires (-i) with respect to (3.1). There we calculate a matrix element in the lowest order, while
(3.2) contains explicitly the strong vertex and thus belongs to a higher-order of perturbation.
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4. General arguments for PV amplitudes
The relative phase of PV ∆S = 1 pseudoscalar meson and vector effective weak

Hamiltonians can be determined quite generally. One can use PC invariance and
Hermiticity.

In order to implement that, let us first list a behaviour of a bilinear combination

K = ψ2Γψ1.

Here Γ is any combination of Dirac gamma matrices. One has

ψ2Γψ1
P−→ ψ2γ

0Γγ0ψ1 (4.1)

and
ψ2Γψ1

C−→ −ψT
2 C−1ΓCψ

T

1 . (4.2)

Here C = iγ2γ0 = −C−1 = −C† − CT ,

C−1γµC = −(γµ)T , C−1γ5C = (γ5)T = γ5 .
(4.3)

Using (4.1), (4.2) and (4.3) one finds [2]

ψ2γ
µψ1

C−→ −ψ1γ
µψ2 , ψ2γ

µγ5ψ1
C−→ −ψ1γ

µγ5ψ2 ,

ψ2ψ1
C−→ ψ1ψ2 , ψ2γ5ψ1

C−→ ψ1γ5ψ2 .
(4.4)

Here an additional (-) sign was introduced as in the transposition ψ1 and ψ2 are
interchanged and they are fermion operators. One also finds [2,7]

ψ2γ
µψ1

P−→ −ψ2γψ1 ,

P−→ +ψ2γ
0ψ1 ,

ψ2γ
µγ5ψ1

P−→ +ψ2γγ5ψ1 ,

P−→ −ψ2γ
0γ5ψ1 ,

ψ2ψ1
P−→ ψ2ψ1 ,

ψ2γ5ψ1
P−→ −ψ2γ5ψ1 .

(4.5)

The meson fields behave as [2,7]

φM C−→ φM , φM P−→ −φM ,

V α
µ

C−→ −V α
µ , V α

µ
P−→ −V α ,

P−→ +V α
0 .

(4.6)
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Thus respective interactions behave as

ψ2ψ1φ
M CP−→ −ψ1ψ2φ

M ,

ψ2γ
µγ5ψ1V

α
µ

CP−→ ψ1γ
µγ5ψ2V

α
µ .

(4.7)

Here M and α denote antiparticle, for example π+ → π− etc.
One immediately finds that CP invariant combinations are

HW
M ∼ (ψ2ψ1φ

M − ψ1ψ2φ
M ) ,

HW
V ∼ (ψ2γ

µγ5ψ1V
α
µ + ψ1γ

µγ5ψ2V
α
µ ) .

(4.8)

Hermiticity of (4.8) Hamiltonians depend on the behaviour of bilinears and of meson
fields 4

(ψ2ψ1)† = ψ†
1γ0ψ2 = ψ1ψ2 ,

(ψ2γ
µψ1)† = ψ1γ0(γµ)†γ0ψ2 = ψ1γ

µψ2 ,

(ψ2γ
µγ5ψ1)† = ψ1γ0γ5γ

†µγ0ψ2 = ψ1γ
µγ5ψ2 ,

(φM )† = φM ,

(V α
µ )† = V α

µ .

(4.9)

Obviously, the Hermitian and CP invariant effective Hamiltonians are

HW
M = iA(ψ2ψ1φ

M − ψ1ψ2φ
M ) ,

HW
V = ε(ψ2γ

µγ5ψ1V
α
µ + ψ1γ

µγ5ψ2V
α
µ ) .

(4.10)

If the first term in (4.10) means ∆S = 1 change then the second term means ∆S =
−1. Therefore in publications dealing with hypernuclei one usually encounters one
(first) of the two terms listed in (4.10).

Combining (4.4), (4.5) and (4.6), one can show that a PC and CP invariant
coupling is

HW
M (PC) ∼ ψ2γ5ψ1φ

M + ψ1γ5ψ2φ
M . (4.11a)

The hermicity requires the final form

HW
M (PC) = iB(ψ2γ5ψ1φ

M + ψ1γ5ψ2φ
M ). (4.11b)

4γ† µ = γ0γµγ0; γ†
5 = γ5.
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Here A and B have the same phase (for example they are both real) as required by
the experimental data [11].

5. SU(6)W symmetry

The SU(6)W symmetry [12,15-20] has been employed [5,18-20,27] to connected
PV BBM amplitudes with PV Bγµγ5BV µ amplitudes. Here M is a pseudoscalar
meson while V µ corresponds to a vector meson. The effective ∆S = 1 weak Hamil-
tonian, which transforms (almost) as SU(6)W operators [15] is given by [20]

H∆S=1
PV

= aT (A[2
(4φ

5]
1) − A

(2
[4φ

5)
1] − A

[1
(3φ

6]
2) + A

(1
[3φ

6)
2] + A

[2
(6φ

3]
1) − A

(2
[6φ

3)
1] − A

[1
(5φ

4]
2) + A

(1
[5φ

4)
2] )

+aV (A[2
(3φ

5]
2) + A

(2
[3φ

5)
2] − A

[1
(4φ

6]
1) − A

(1
[4φ

6)
1] + A

[2
(5φ

3]
2) − A

(2
[5φ

3)
2] − A

[1
(6φ

4]
1) + A

(1
[6φ

4)
1] )

+bT (A[2
41φ

5] + A25
[4 φ1] − A

[1
32φ

6] + A16
[3 φ2] + A

[2
61φ

3] − A23
[6 φ1] − A

[1
52φ

4] + A14
[5 φ2])

+bV (A[2
32φ

5] + A25
[3 φ2] − A

[1
41φ

6] − A16
[4 φ1] + A

[2
52φ

3] + A23
[5 φ2] − A

[1
61φ

4] − A14
[6 φ1])

+cV (A4φ
6 − A6φ4 − A3φ

5 + A5φ3 + A6φ
4 − A4φ6 − A5φ

3 + A3φ5) ,

(5.1a)
Here

A = BB. (5.1b)

This can be explicitly written as

H∆S=1
PV

= 2aT [B
ij2

Bij1φ
6

3 − B
ij3

Bij6φ
1

2 − B
ij1

Bij2φ
5

4 + B
ij4

Bij5φ
2

1]

+2aV [B
ij2

Bij5φ
2

3 − B
ij3

Bij2φ
5

2 − B
ij1

Bij6φ
1

4 + B
ij4

Bij1φ
6

1−

− B
i1j

B25iφ
j

4 + B
ij4

Bi25φ
j

1 + B
i14

Bij5φ
2

j − B
i14

Bij2φ
5

j

+ bV [B
ij2

Bi25φ
j

3 − B
ij3

Bi25φ
j

2 + B
i23

Bij5φ
2

j − B
23i

Bij2φ
5

j−

− B
1ij

B16iφ
j

4 + B
ij4

B16iφ
j

1 − B
14i

Bij6φ
1

j + B
i14

B1ijφ
6

j ]

+ cV [B
ijk

Bij6φ
k

4 − B
ij4

Bijkφ
6

k − B
ijk

Bij5φ
k

3 + B
ij3

Bijkφ
5

k]−

−2aT [B
ij1

Bij2φ
6

3 − B
ij6

Bij3φ
2

1 − B
ij1

Bij2φ
5

4 + B
ij4

Bij5φ
2

1]

−2aV [B
ij5

Bij2φ
3

2 − B
ij3

Bij2φ
5

2 − B
ij1

Bij6φ
1

4 + B
ij4

Bij1φ
6

1] + . . .

(5.2)

The meaning of indices i = 1, . . . 6 is determined by

1 u↑ u ↑, 2 u↓ u ↓, 3 d↑ d ↑, 4 d↓ d ↓, 5 s↑ s ↑, 6 s↓ s ↓ (5.3)
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The quark-antiquark product, i.e. meson φb
a (pseudoscalar and vector) is as denoted

in Table 5.1 [20]. The baryon states (octet spin 1/2 and decouplet spin 3/2, the
{56} representation) are listed in Table 2 [16,20].

TABLE 5.1a. Mesons in SU(6)W .

S Sz Meson φ1
1 φ2

2 φ3
3 φ4

4 φ5
5 φ6

6

0 0 π0 1/2 −1/2 −1/2 1/2
1 0 ρ0(0) 1/2 1/2 −1/2 −1/2
1 0 η′

1(0) 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6
0 0 φ1 1/

√
6 −1/

√
6 1/

√
6 −1/

√
6 1/

√
6 −1/

√
6

1 0 ω8(0) 1/
√

12 1/
√

12 1/
√

12 1/
√

12 −2/
√

12 −2/
√

12
0 0 η8 1/

√
12 −1/

√
12 1/

√
12 −1/

√
12 −2/

√
12 2/

√
12

TABLE 5.1b. Mesons in SU(6)W (continued).

S Sz Meson φ2
1 φ4

3 φ6
5 φ3

1 φ4
2

1 1 ρ0(↑) 1/
√

2 −1/
√

2
1 1 ω8(↑) 1/

√
6 1/

√
6 −2/

√
6

1 1 η′
1(↑) 1/

√
3 1/

√
3 1/

√
3

0 0 π+ 1/
√

2 −1/
√

2
1 0 ρ∗(0) 1/

√
2 −1/

√
2

TABLE 5.1c. Mesons in SU(6)W (continued).

S Sz Meson φ5
3 φ6

4 φ5
1 φ6

2

0 0 κ0 1/
√

2 −1/
√

2
1 0 K∗0(0) 1/

√
2 1/

√
2

0 0 K+ 1/
√

2 −1/
√

2
1 0 K∗+(0) 1/

√
2 1/

√
2

TABLE 5.1d. Mesons in SU(6)W (continued).

S Sz Meson φ4
1 φ3

2 φ6
3 φ5

4 φ6
1 φ5

2

1 1 ρ+(↑) 1
1 -1 ρ+(↓) 1
1 1 K∗0(↑) 1
1 -1 K∗0(↓) 1
1 1 K∗+(↑) 1
1 -1 K∗+(↓) 1
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TABLE 5.2. Baryons in SU(6)W .

p =
√

2(B114 − B123) 3B114 =
√

2p + ∆+
1/2

∆+
1/2 = B114 + 2B123 3B123 = − 1√

2
p + ∆+

1/2

n =
√

2(−B332 + B134) 3B332 = −
√

2n + ∆0
1/2

∆0
1/2 = B332 + 2B134 3B134 = 1√

2
n + ∆0

1/2

Λ0 =
√

3(B235 − B145) 3B136 = Σ0 + 1√
2
Y ∗ 0

1/2

Σ0 = 2B136 − B235 − B145 3B145 = − 1
2Σ0 + 1√

2
Y ∗ 0

1/2 −
√

3
2 Λ

Y ∗ 0
1/2 =

√
2(B136 + B235 + B145 3B235 = − 1

2Σ0 + 1√
2
Y ∗ 0

1/2 +
√

3
2 Λ

Σ+ =
√

2(−B116 + B125) 3B116 = −
√

2Σ+ + Y ∗+
1/2

Y ∗ 0
1/2 = B116 + 2B125 3B125 = 1√

2
Σ+ + Y ∗+

1/2

Σ− =
√

2(B336 − B345) 3B336 =
√

2Σ− + Y ∗−
1/2

Y ∗−
1/2 = B336 + 2B345 3B345 = − 1√

2
Σ− + Y ∗−

1/2

Ξ0 =
√

2(B255 − B156) 3B255 =
√

2Ξ0 + Ξ∗ 0
1/2

Ξ∗ 0
1/2 = B255 + 2B156 3B156 = − 1√

2
Ξ0 + Ξ∗ 0

1/2

Ξ− =
√

2(B455 − B356) 3B455 =
√

2Ξ− + Ξ∗−
1/2

Ξ∗−
1/2 = B455 + 2B356 3B356 = − 1√

2
Ξ− + Ξ∗−

1/2

In order to test CP and spatial behaviour one can explicitly write some transi-
tions. (We use 1 =↑ and 2 =↓ with spinors.) One has

F (Λ → pπ−) = 1√
3

(
1
12bT − 1

6bV + 1
3cV

)
·
∑

s=1,2 χs
p
†χs

Λφπ+ ,

F (p → Λπ+) = − 1√
3

(
1
12bT − 1

6bV + 1
3cV

)
·
∑

s=1,2 χs
Λ
†χs

pφπ− ,

F (Λ → pρ−) = −
√

2
3

(
aV − 1

12bT + 1
3bV − 1

2cV

)
· χ2

p
†χ1

Λρ1
+1 ,

F (p → Λρ+) = −
√

2
3

(
aV − 1

12bT + 1
3bV − 1

2cV

)
· χ1

Λ
†χ2

pρ
1
−1 .

(5.4)

From that one can conclude that baryon densities which multiply meson fields
behave as5

χ†χ → ψψ

χ†σ+χ → ψγ1,2γ5ψ.
(5.5)

5This are not generators of SU(6)W which correspond to (ψ†ψ) and (ψ†γ1,2γ5ψ) [15,17].
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Under CP reflection one finds6

ψψ
CP−→ ψψ ,

ψγγ5ψ
CP−→ ψγγ5ψ ,

φb
a

CP−→ (−)φb
a .

(5.6)

Thus generally

B
abc

Bijkφr
t → (−)B

ijk
Babcφ

t
r. (5.7)

This causes a minus sign appearing in front of the second half of the expression
(5.2). According to general arguments, given in Sect. 4. that means that the effective
expressions (5.1) and (5.2) are CP invariant. In the relativistic notation the terms
(5.4) correspond to generic forms (4.8).

However the expression (5.2) is not Hermitian as one can easily conclude by
comparison with generic forms (4.10). In order to deal with the Hermitian effective
weak Hamiltonian one has to multiply (5.1) and (5.2) with a factor

i1−SM . (5.8)

Here SM = 0, 1 is the meson spin. This factor has nothing to do with SU(6)W

symmetry. As a matter of fact, by being meson spin dependent, it breaks that
symmetry.

One can also mention that similar considerations and analogous combinations
apply to the ∆S = 0 PV effective weak Hamiltonians [19]. There SU(6)W symmetry
+ CP invariance leads to the coupling7

fπ(pnπ− − npπ+) = fπ
−i√

2
N(τ × π)3N. (5.9)

The form which is used in the literature [19,24,25]

ifπ(pnπ− − npπ+) = fπ
1√
2
N(τ × π)3N (5.10)

is Hermitian.

6. The relative signs of weak B B π amplitudes
While an overall sign does not matter, the relative signs of various terms appear-

ing in the Weak Strangeness Violating Potential (WSVP) determine the magnitude
of calculated matrix elements [26]. Those relative signs depend on the following

6ψC → Cψ
T

, ψ
C → −ψT C−1, ψP → γ0ψ, C−1γµC = −γµ T , C−1γ5C = −γT

5 = γ5,

C−1γ5C = γT
5 = γ5. Meson states are catalogued in multiplets of W−spin [20], see Appendix C.

7π± = (π1 ± iπ2)/
√

2.
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(i) The relative signs of the strong coupling constants, such as gB1B2M and
gB1B2V (here Bi are baryons, M is a pseudoscalar meson and V is a vec-
tor meson).

(ii) The relative signs of the weak amplitudes such as A and ερ for example [4,5]

(iii) The effective strong and weak Hamiltonians such as for example

HW
ΛNπ = iGF m2

πψ(Aπ + Bπγ5)τ · φ
(

0
1

)
ψΛ ,

HS
NNπ = igNNπψNγ5τ · φψN ,

HΛNρ = GF m2
πψN

(
αργ

µ + βρ
iσµν∂ν

2M
+ εργ

µγ5

)
τ · φµ

(
0
1

)
ψΛ ,

HNNρ = ψN

(
gV

NNργ
µ +

gT
NNρ

2M
σµν∂ν

)
τ · φµψN .

(6.1)
We will be using matrices and conventions as in Bjorken-Drell book [2,3,7],
i.e.

γ0 = β, γ = βα, γ5 =
(

0 1
1 0

)
γµγµ = γ0γ0 − γ · γ . (6.2)

The relative signs of the strong coupling constants are those given in Refs.
[10,13]. All are in mutual agreement. A collection of the coupling constant
values can be found in Table III or Ref. [5]. One finds, for example

Sign(gNNπ/gV
NNρ) = +1 . (6.3)

(All other signs agree with SU(3) flavour symmetry predicitons.)

The relative signs of the weak amplitudes follow form the SU(6)W sum rule [18-
20]. Important formulae are reproduced in (64) of Ref. [5]. The connection between
notations is for example

Λ0
− → A(Λ0

−) . (6.4)

The experimental values of the amplitudes A and B (6.1) can be found in Ref. [11].
However, when using the results listed in Table I of Ref. [11], reproduced below one
has to take into account the following facts: Ref. [11] used γ5 = −

( 0 1
1 0

)
, which

entered the same form as shown in the formula (6.1). Thus all B amplitudes, but
B(Σ+

0 ) in Table 6.1 should be read with minus sign, i.e.

B(Λ0
−) = (−9.98 ± 0.24) · (2.21 × 10−7). (6.5)
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TABLE 6.1. Numbers given in units of 2.21 × 10−7.

M → m + µ A B CAB

Λ0
− → p + π− 1.47 ± 0.01 9.98 ± 0.24 –0.289

Λ0
0 → n + π0 −1.07 ± 0.01 −7.14 ± 0.56 –0.740

Σ+
+ → n + π+ 0.06 ± 0.01 19.07 ± 0.07 –0.038

Σ+
0 → p + π0 1.48 ± 0.05 −12.04 ± 0.58 0.982

Σ−
− → n + π− 1.93 ± 0.01 −0.65 ± 0.07 0.003

Ξ0
0 → Λ + π0 1.55 ± 0.03 −5.56 ± 0.33 –0.148

Ξ−
− → Λ + π− 2.04 ± 0.01 −7.49 ± 0.28 0.237

The signs of A(Σ+
0 ) and B(Σ+

0 ) depend on the definition of isotriplet compo-
nents. Usually (and we do the same) one defines

Σ± = 1√
2
(Σ1 ± iΣ2) ,

π± = 1√
2
(π1 ± iπ2)

(6.6a)

However, in Ref. [11] the spherical isovector components were used

Σ± = ∓ 1√
2
(Σ1 ± iΣ2) ,

π± = ∓ 1√
2
(π1 ± iπ2) .

(6.6b)

Thus A(Σ+
+) does not change the sign, as Σ+ and π+ signs compensate, but A(Σ+

0 )
amplitude must change the sign. Rule

(i) Change sign of A(Σ+
0 )

(ii) Change sign of all B amplitudes except of B(Σ+
0 ).

The signs (3) and the signs in Table 6.1 (with comments) fix relative signs of all
PC potential terms that can be derived from the Hamiltonians (6.1). With SU(3)
symmetry, pole dominance etc. (see Ref. [11]) all relative signs of Aπ, Bπ, αρ and
βρ can be determined.

The relative signs of Aπ and ερ, which contribute to PV potential terms can
be determined by invoking SU(6)W symmetry [5,12,15-20]. They are expressible in
term of parameters aT , aV , bT , bV and cV [12-15,21] which were introduced in Sect.
5. There one can find also the derivation of the relative phase terms proportional
to Aπ and ερ appearing in the formula (6.1). Here we list, for the completness sake
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the sum rules connecting ερ with the decay amplitudes which are given in Ref. [5]

ε = 2
3A(Λ0

−) − 1√
3
A(Σ+

0 ) +
√

3aT ,

ε = A(Σ+
0 ) − 1

3aT

(6.7)

The A amplitudes should be “read” from Table 6.1, as explained above [A(Σ+
0 ) =

−1.48].

7. Parity-conserving meson exchange weak potential
The weak baryon-baryon-pion vertex is connected with the B amplitude which

appears in the matrix element

〈Bfπ|HW |Bi〉 = iGF m2
πuBf

(A − γ5B)uBi
.

The relative sign and phases of A and B in the ∆S = 1 case are experimentally
connected as shown in Table 6.1 [11].

The theoretical expression for B contain pole terms (BP ) and separable terms
(BS). A generic pole term, shown in Fig. 7.1, contains the weak amplitude aB′B
[W] and the strong NNπ coupling constants [S]. The relative signs of aB′B (3.7)
and the strong coupling constant are determined by theoretical expressions (3.1)
and (3.6) and by the experimental data [10,11,13]. As already shown (3.8) the weak
B amplitude must have the same phase as A. The theoretical expression, aa for
example (3.8) lead to the predictions whose relative signs agree with experimental
data [29,30]. The fixing of relative signs is also helped by the famous Goldberger-
Treiman relation [6] which is for the nucleon pion case given by (B.11).

S W
B

~
B B

i f

M

Fig. 7.1. Generic form of a baryon pole term. (The crossed term is not shown!)

Here the relative signs of gA, fπ and gNNπ are interconnected.
The separable contribution to B amplitudes can be calculated in the same way

as the separable contributions (2.2) (2.6) and (2.9). Obviously one has to exchange
A → B and to insert, or omitt, γ′

5s at some places [1].
The pole term contributions to the vector meson exchanges is based on the same

type of diagram as shown in Fig. 7.1. Again, aB′B appears in the weak vertex. The
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relative signs of the strong couplings of pseudoscalara mesons gBBM and the strong
couplings of vector mesons gV

BBV are known from the analysis of the experiments
[10,13]. So the phase of the PC vector mesons exchange weak potential is fixed8.

The same reasoning would apply to the contributions of the 3/2+ resonances
[30] which replace the pole B̃(1/2+) → B(3/2+) in Fig. 7.1.

One can also determine relative signs connected with the axial vector meson
exchanges. However, as this is a novel inclusion, the discussion is relegated to the
following paragraph.

8. Axial-vector meson exchanges
The axial vector meson exchange weak potential (AVMWP) contain the sepa-

rable and the pole terms.
The separable terms appear naturally when in any separable (i.e. current×current)

term the axial vector current formfactors are approximated by the axial vector me-
son pole. For example in expressions (B.3), (B.6) etc. one introduces

gA → gA(q2) = gA(0)
m2

AV

m2
AV − q2

. (8.1)

The relative sign of gA(0) ≡ gA and of the whole separable contribution (2.3) are
experimentally fixed [6] and thus everything is determined. It should be mentioned
that PV separable contributions, which contain products of vector and axial vector
currents, would contain products

gV
m2

V

m2
V − q2

gA
m2

AV

m2
AV − q2

. (8.2)

But again all relative signs are known experimentally. Besides various gV ’s and gA’s
can be approximatelly connected by using SU(3) flavour symmetry [1,6].

In order to calculate pole terms one needs magnitudes of the strong axial vector
meson constants gAV

BBAV [14]. As long as they are real, what is indicated by general
argument (4.4) and (4.6), the ± sign does not matter.

In order to prove that one has to combine the axial vector field V A α
µ behaviour

V A α
µ

C−→ V A α
µ ,

V A α
µ

P−→ V A α ,

P−→ −V A α
0 .

(8.3)

8The overall sign depends on aB′B . The strong coupling constant enters the potential quadrat-
ically as (gV

BBV )2 or (gBBV )2, see Fig. 8.1.
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The property

V A α
µ

† = V A α
µ (8.4)

follows from (4.9). All diagrams similar to the one shown in Fig. 8.1 lead to ex-
pressions containing (gAV

BBAV )2. Thus the sign of the pole term contribution is
determined by the sign of aB′B which corresponds to the weak vertex.

S

S W
B

~
B B

B’ B’

i f

i

AV

f

Fig. 8.1. Axial vector meson exchange contribution to Bi + B′
i → Bf + B′

f process.
The same generic diagram applies to π or vector meson exchanges by AV → π, V .

9. Weak vector meson vertices, SU(6)W symmetry,
∆I = 1/2 selection rule and factorization contributions

It is well known [19] that the weak baryon-baryon-meson (B
′
BM) couplings

correspond to the quark diagram shown in Fig. 9.1

M

.

(a)

BB’

.
.

M

(c)

BB’

.

B’ B

M

.

(b)
b  ,V T

b

a   ,a

c

V T

V

Fig. 9.1. Quark diagrams corrresponding to SU(6)W parameters.

The indicated SU(6)w parameters correspond to formula (5.1). The weak ver-
tices, or decay amplitudes are function of those parameters as shown, for example,
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in (5.4) Some other vertices are [20]:

A(Λ0
−) = 1√

3

(
− 1

6bV + 1
12bT + 1

2cV

)
, A(Λ0

0) = 1√
6

(
1
6bV − 1

12bT − 1
2cV

)
,

A(Ξ−
−) = 1√

3

(
− 1

4bV + 1
4bT + 1

2cV

)
, A(Ξ0

0) = 1√
6

(
− 1

4bV + 1
4bT + 1

2cV

)
,

A(Σ−
−) = −

√
2

(
1
9bV − 5

36bT − 1
6cV

)
, A(Σ+

+) = −
√

2
(

1
36bV + 1

36bT

)
,

A(Σ+
0 ) = −

(
− 5

36bV + 1
9bT + 1

6cV

)
, A(Σ0

0) = −
√

2
18 bV + 5

36
√

2
bT + 1

6
√

2
cV

(9.1a)

〈ρ−(↑)p(↓)|H(−) |Λ(↑)〉 =
√

2
3

(
− 1

3bV + 1
12bT + 1

2cV − aV

)
,

〈ρ0(↑)n(↓)|H(−) |Λ(↑)〉 = − 1√
2

(
− 1

6bV + 1
4bT + 1

2cV + aT

)
,

〈ρ−(↑)Λ(↓)|H(−) |Ξ−(↑)〉 =
√

2
3

(
− 1

12bV + 1
12bT + 1

6cV − 1
3aV

)
,

〈ρ0(↑)Λ(↓)|H(−) |Ξ0(↑)〉 = 1√
3

(
− 1

12bV + 1
12bT + 1

6cV + 1
3aT

)
,

〈ρ−(↑)n(↓)|H(−) |Σ−(↑)〉 = 1
9

(
1
2bV − bT − cV + 2aV

)
,

〈ρ+(↑)n(↓)|H(−) |Σ+(↑)〉 = 1
9 (−2bV + bT ) ,

〈ρ0(↑)p(↓)|H(−) |Σ+(↑)〉 = 1
9
√

2

(
− 5

2bV + 2bT + cV + 2aT

)
,

〈ω0
8(↑)p(↓)|H(−) |Σ+(↑)〉 = 1

9
√

6

(
− 5

2bV + 2bT + cV + 2aT

)
,

〈ω0
8(↑)n(↓)|H(−) |Σ0(↑)〉 = 1

18
√

3

(
2bV − 5

2bT − cV − 2aT

)
,

〈ω0
8(↑)n(↓)|H(−) |Λ0(↑)〉 = 1

36 (4bV − 5bT − 6cV − 12aT ) ,

〈K∗ 0(↑)p(↓)|H(−) |p(↑)〉 = 1
9

(
− 1

2bV + bT + cV + 8aT

)
,

〈K∗+(↑)n(↓)|H(−) |p(↑)〉 = 1
9 (2bV − bT − 5cV + 10aV ) ,

〈K∗ 0(↑)n(↓)|H(−) |n(↑)〉 = 1
9

(
bV − 1

2bT − 4cV − 2aT

)
,

〈K∗−(↑)p(↓)|H(−) |n(↑)〉 = 0 .

(9.1b)

Here the longer notation for the vector mesons ρ, ω and K∗ is kept. The spin
orientations are indicated. However, the spin-spatial dependence on the RHS of
(9.1a,b) is omitted. The full reading of, for example, 〈ρ−p|H |Λ〉 is

〈ρ−(↑)p(↓)|H− |Λ(↑)〉 = F (Λ → pρ−). (9.2a)

Here F is given by the formula (5.4).
The SU(6)W Hamiltonian (5.1) does not satisfy ∆I = 1/2 (or octet dominance)
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selection rule. The ∆I = 1/2 rule leads, for example to the relations

A(Σ+
+) = 0 and A(Λ0

0) = − 1√
2
A(Λ0

−) . (9.3a)

The inspection of the formulae (9.1a,b) shows that this holds if the SU(6)w param-
eters satisfy

bV = −bT . (9.3b)

In the vector meson case with the definition

〈ρ−(↑)p(↓)|H− |Λ(↑)〉 = Aρ(Λ0
−)(χ†σχρ) (9.2b)

the ∆I = 1/2 rule leads to

Aρ(Λ0
0) = − 1√

2
Aρ(Λ0

−) ,

Aρ(Σ+
+) − Aρ(Σ−

−) =
√

2Aρ(Σ+
0 ) ,

AK∗(p+
+) = AK∗(n0

−) − AK∗(p0
0) .

(9.4a)

With the constraint (9.3b) this can hold only if

aV = −aT . (9.4b)

However, this last condition has to be further discussed. As shown in Ref. [19] one
can easily calculate aV and aT for the real weak Hamiltonian (given, for example,
by formula (2.1) of Ref. [1]). For such a Hamiltonian, as it will be discussed below,
(9.4) cannot hold.

In a weak Hamiltonian which satisfy ∆I = 1/2 rule, neutral ∆S = 1 currents
must appear. In the ∆S = 0 sector, discussed by Ref. [19] one would have neu-
tral currents appearing originally and not only as result of a Fierz rearrangement.
Products of currents can be desomposed as

a1b−1 + a−1b1 = 2
∑

T CT 0
1 1 1−1X

0
T , (T = 0, 2)

1√
2
a1 ∼ −du , 1√

2
b−1 ∼ ud ,

a0b0 =
∑

T CT 0
1 0 1 0 X0

T , (T = 0, 2)

a0, b0 ∼ (uu − dd) .

(9.5a)

Here only the flavour content of currents, which are color scalars, is shown. The
octet dominance means that only the isospin T = 0 is allowed in the sums (9.5a).
The factorization means, for example

〈ρ+n| a1b−1 |p〉 = 〈ρ+| a1 |0〉〈n| b−1 |p〉 (aV ) . (9.6)
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The combination (9.6) determines aV while the combination

〈ρ0p| a0b0 |p〉 = 〈ρ0| a0 |0〉〈p| b0 |p〉 (aT ) (9.7)

would determine aT .
In a Hamiltonian transforming as an octet one has pieces

H
(+)
8 = (−2)1

2

(
C0 0

1 1 1−1

)2 (a1b−1 + a−1b1) ,

H
(0)
8 =

(
C0 0

1 0 1 0

)2
a0b0 .

(9.8a)

This is easily found by using the definition

X0
T =

∑
m

CT 0
1 m 1−mamb−m . (9.8b)

The consistency of the whole procedure is easily checked by writing (9-5a) in the
form

a1b−1 + a−1b1 ≡ 2
∑

T=0,2

(
CT 0

1 1 1−1

)2 (a1b−1 + a−1b1) ,

a0b0 ≡ 2
∑

T=0,2

(
CT 0

1 0 1 0

)2
a0b0 .

(9.5b)

By using (9.8) one can calculate

〈ρ+n|H(+)
8 |p〉 = −

(
C0 0

1 1 1−1

)2 〈ρ+| a1 |0〉〈n| b−1 |p〉

= −
(
C0 0

1 1 1−1

)2 · αC
1/2−1/2
1−1 1/2 1/2β = 1

3
√

3
αβ

∼ aV ,

〈ρ0p|H(0)
8 |p〉 =

(
C0 0

1 0 1 0

)2 〈ρ0| a0 |0〉〈p| b0 |p〉

=
(
C0 0

1 0 1 0

)2 · αC
1/2 1/2
1 0 1/2 1/2β = − 1

3
√

3
αβ

∼ aT .

(9.9)

Thus the relation (9.4) is consistent with ∆I = 0 (i.e. octet dominance) selection
rule.

In Ref. [19] aV and aT were determined from the weak strangeness conserving
Hamiltonian without QCD corrections. For the sake of completeness that calcula-
tion is briefly discussed in Appendix D.

Here we will estimate aV and aT from ∆S = 1 weak Hamiltonian. First it will
be done without QCD corrections. (The QCD corrected Hamiltonian is given in
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Ref. [1].) Such “bare” ∆S = 1 weak Hamiltonian is [4,6,8]

H∆S=1 =
G√
2

sin θC cos θC

[
dγµ(1 − γ5)u · uγµ(1 − γ5)s + . . .

]
. (9.10)

In order to determine aV (aT ) the factorizable (or separable - SEP) contributions
of (9.10) ∆S = 1, Λ + p → n + p scattering should be compared with the second
order contribution produced by the effective interactions

HS
NNρ = gV

NNρ

√
2 ψnγµψpρ

−
µ

+gV
NNρ(ψpγ

µψp − ψnγµψn)ρ0
µ + . . . ,

HW
ΛNρ− = −

√
2
3aV ψnγµγ5ψΛρ+

µ ,

HW
ΛNρ0 = − 1√

3
aT ψnγµγ5ψΛρ0

µ .

(9.11)

Here HS corresponds to the standard strong NNρ coupling [5,7] while HW are
effective weak Hamiltonians, which were read from (9.1). The following equalities
are obtained in the factorizable (SEP) approximations

〈pn| − iHS
NNρ(ρ − field contracted)HW

NΛρ(ρ − field contracted) |pΛ〉

= (−i)2
(
−

√
2
3

)
aV

√
2gV

NNρunγµup
1

q2 − m2
ρ

upγµγ5uΛ

= − G√
2

sin θC cos θC〈n| dγµu |p〉〈p|uγµγ5s |Λ〉

= − G√
2

sin θC cos θCunγµup

m2
ρ

m2
ρ − q2

(
−

√
3
2

)
(F + D/3)upγµγ5uΛ .

(9.12a)

Here ui are baryon spinors while the axial vector coupling is given [1,2,4,6] by

F +
D

3
= 0.733 . (9.12b)

The vector current formfactor is assumed to be dominated by the ρ meson exchange.
That leads to the factor m2

ρ/(m2
ρ − q2) in the last row of the equalities (9.12a). The

factor in front of the baryon bilinears uαΓuβ should be equal, what gives

−
√

2
3
aV

√
2gV

NNρ =
G√
2

sin θC cos θC

√
3
2
(F + D/3)m2

ρ. (9.12c)

With gV
NNρ = 3.16 [5,10,13], sin θC cos θC = 0.22 and G = 1.03 × 10−5/m2

p one
immediately finds

aV = −2.7 × 10−7 (9.12d) .
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This seems to be in good agreement with aV determined for ∆S = 0 transition (see
Appendix A) which is aV = −2.77 × 10−7. It is also in good agreement with the
estimate given by Ref. [15] which found

aV = −2.86 × 10−7. (9.13)

However in ∆S = 1 sector one cannot expect the ratio aV /aT = 3 which was
found in the ∆S = 0 sector (see Appendix D). The Fierz rearangement (FR) of
Hamiltonian (9.10) leads to

− G√
2

sin θC cos θC
1
3
〈n| dγµγ5s |Λ〉〈p|uγµu |p〉. (9.14a)

Here ρ0 exchange can be associated with the formfactor comming from the last
matrix element only.

In ∆S = 0 case, the ρ0 could have been connected with both corresponding
matrix elements [19] (see Appendix D). Starting with (9.14a) and (9.11) one can
establish an equality which is analogous to (9.12)

− 1√
3
aT gV

NNρ =
G√
2

sin θC cos θC
1
3

√
3
2
(F + D/3)

1
2
mρ. (9.14b)

Here (see Appendix D) only the isovector piece of the vector current 〈p|uγµu |p〉
was extracted as only that piece corresponds to the ρ exchange. The relation is

aT =
1
3
aV . (9.15)

Obviously the aV and aT dependent weak ∆S = 1 potential contains both ∆I =
1/2 (octet dominance) and ∆I = 3/2 pieces. In some applications [5] potential is
calculated in the octet dominance approximation. As already stated that means the
equality (9.4). In practice the amplitude Aρ(Λ0

0) is selected and used to determine
an effective ερ coupling through

〈ρ0(↑)n(↓)|H(−) |Λ(↑)〉 = Aρ(Λ0
0)η

ερ = −Aρ(Λ0
0) = 1√

3

(
− 5

12bV + 1
2cV + aT

) . (9.16)

Here η denotes the spin and spatial dependence of the matrix element (9.16).
The parameters bV and cV can be expressed through hyperon nonleptonic decay

amplitudes [19], i.e.

bV = 6 1√
3
[A(Λ0

−) + A(Σ+
0 )] ,

cV = 3[
√

3A(Λ0
−) + A(Σ+

0 )] .
(9.17)
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With (9.17) one finds

ερ =
2
3
A(Λ0

−) − 1√
3
A(Σ+

0 ) +
1√
3
aT . (9.18)

But for the slight missprint9 this is in the perfect agreement with the formula (64)
in Ref. [5]. However one could also start with the expression (9.1) for Aρ(Λ0

−) which
gives

ερ =
1√
2
Aρ(Λ0

−) =
2
3
A(Λ0

−) − 1√
3
A(Σ+

0 ) − aV√
3

. (9.19)

As was said, expressions (9.18) and (9.19) could agree if aV = −aT . Alternatively
one can use

Sign(aT ) = −Sign(aV ) ,

|aV | = |3aT | .
(9.20)

Inserting that in (9.19) one would produce the expression used by Ref. [5], i.e.10

ερ =
2
3
Λ0
− − 1√

3
Σ+

0 +
√

3aT . (9.21)

One could also check whether that holds for the K? vertices. The corresponding
effective PV weak Hamiltonian is

CPV
K∗ (npK∗ + + nnK∗0) + DPV

K∗ (pp + nn)K∗0. (9.22)

Here the spatial dependence is supressed. Compairing that with (9.1) and using
(9.17) one obtains

CPV
K∗ = AK∗(p+

+) = −
√

3Λ0
− + 1

3Σ+
0 + 10

9 aV ,

DPV
K∗ = AK∗(p+

0 ) = − 2
3Σ+

0 + 8
9aT .

(9.23)

Reference [5] has introduced aV = 3aT in (9.23). This does not seem quite consistent
with (9.19) where aV = −3aT was introduced.

When everything is claculated by using the effective Hamiltonian for the NΛρ
coupling

H
W/PV
NΛρ = ερψNγµγ5τ · ρµ

(
0
1

)
ψΛ , (9.24)

9Ref. [5] has
√

3aT instead of aT /
√

3.
10Bear in mind that the experssion (9.17) correspond to the sign of hyperon nonleptonic decay

amplitudes A as used in Ref. [5]. See also Sect. 6. Thus in the following we write A(Bi
j) → Bi

j .
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and the expression (9.18) or (9.19) for ερ are used, one is implicitly assuming the
relation (9.4), i.e.

“aT ” = −“aV ” = η . (9.25)

Here “ai” symbolizes the effective parameter. However one could use

“aT ” = aV = 3aT , or , (9.26a)

“aT ” =
1
3
aV (see (9.13)) . (9.26b)

The Ref. [5] has used (9.26a) for the NΛρ coupling. In the case of NΛK∗ couplings
the conventiones are somewhat different. Neither sign nor magnitude are consistent
with (9.25) and (9.26a). Here they [5] have used

“aV ” = aV , (see (9.12)) ,

“aT ” = aT = 1
3aV , (see (9.12)) .

(9.27)

If one wanted to be consistent with (9.25) one should replace

aV → −3aT = −aV (see (9.12d)) ,

aT → 3aT = aV (see (9.12d)) .
(9.28)

Altogether that gives

ερ = 2
3Λ0

− − 1
3Σ+

0 +
√

3aT ,

CPV
K∗ = −

√
3Λ0

− + 1
3Σ+

0 − 1
3aT ,

DPV
K∗ = − 2

3Σ+
0 + 8

9aT .

(9.29)

There is a sign difference in the expression (9.29) for CPV
K∗ in comparison with Ref.

[5].
The replacement (9.28) or the result (9.29) can be justified on the basis of the

SU(6)W symmetry [19]. From (9.1) and taking into the account (9.4b) one can
deduce

CPV
K∗ = 1

9 (3bV − 5cV + 10aV ) ,

DPV
K∗ = 1

9

(
− 3

2bV + cV + 8aT

)
,

η = 1
9

(
− 3

2bV + cV + 8aT

)
.

(9.30)
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Here C corresponds to the coupling npK∗+, D to the coupling ppK∗0, and η to
the coupling nnK∗0. The ∆I = 1/2 rule requires11

DPV
K∗ + CPV

K∗ = η , (9.31a)

i.e.
1
9
(
3
2
bV − 4cV + 10aV + 8aT ) =

1
9

(
3
2
bV − 4cV − 2aT

)
. (9.31b)

Both sides are equal only if aV = −aT , as it was found in comparison between
(9.18) and (9.19).

One has every right to ask “Why should one determine ερ with the value (9.12)
instead of with (9.15)?” It is difficult to make a very learned recomendation. One
could use an average and estimate errors. For example: use (9.18) but replace aT

with

“aT ” =
1
2
(+aV + aT ) =

2
3
aV (9.32a)

and determine an error with respect to the claculated aV and aT , i.e.

“aT ” = −(1.8 ± 0.9) × 10−5. (9.32b)

A wiser course might be to calculate the ∆S = 1 PV potentials corresponding to
aV and aT pieces directly in the separable (factorizable) approximation.

Actually the contributions proportional to either aT or aV contain both ∆I =
1/2 and ∆I = 3/2 pieces. That can be shown by writing explicitly the flavour
dependence of the corresponding effective Hamiltonian (in the following spin-spatial
dependence is omitted). The strong interactions are described as in (9.11). The
parametrization

HW
ΛNρ− = αpΛρ+ + βnΛρ0, (9.33)

is used for the weak part. The flavour dependence of the effective PV ∆S = 1
potential is

V =
√

2gV α(pΛ)1(np)2 + gV β(nΛ)1(pp − nn)2

=
√

2gV α/c + gV β(/a − /b)

(gV ≡ gV
NΛρ)

(9.34)

11This is shown in Appendix E.
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Here we have introduced the combinations

/a = (nΛ)(pp) , /a = 1
2β1 − 1

6βτ + 1√
6
βT ,

/b = (nΛ)(nn) , /b = 1
2β1 + 1

6βτ − 1√
6
βT ,

/c = (pΛ)(np) , /c = 1
3βτ + 1√

6
βT ,

(9.35)

which were used in Ref. [1]. With the equalities (9.35) one can separate ∆I =
1/2 (βτ ) piece in the effective potential V from the ∆I = 3/2 (βT ) contribution,
i.e.

V =
(√

2gV
1
3
α

)
βτ + gV

(√
2
6
α +

2√
6
β

)
βT . (9.36a)

Comparison with (9.11) connects α and β with aV and aT

α = −
√

2
3
aV ; β = −

√
1
3
aT . (9.36b)

The ∆I = 1/2 rule follows from (9.36) only if α and β satisfy the sum rule√
2
6α + 2√

6
β = 0 ,

aV = −aT .
(9.37)

This agrees with the earlier conclusion (9.4b). However with the realistic values
(9.12d) and (9.15) the potential (9.36) must contain both ∆I = 1/2 and ∆I = 3/2
terms. The parameter in front of the ∆I = 1/2 piece (βτ ) is

ε̃ρ = − 2
3
√

2
aV . (9.38)

This should enter as a “factorizable” contribution in the formulae of Ref. [14,15].
One can easily check that the effective Hamiltonian of Ref. [5] (with all spin-spatial
dependence supressed) leads to

ε̃ρNτ · ρ[CT]

(
0
Λ

)
gV Nτ · ρ[CT]N

→ −ε̃ρg
V (nΛ)1(pp − nn)2 + 2ε̃ρ(pΛ)(np)2 = ε̃ρg

V βτ .

(9.39)

Here the exponent [CT] denotes contracted fields. With aV = 3aT (9.15) one finds
an alternative to (9.21)

ερ =
2
3
Λ0
− − 1√

3
Σ+

0 − 2
3
aT . (9.40)
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However the formula (9.40) was obtained by simply throwing away the ∆I = 3/2
part (βT ) of the potential (9.36). The relative strength of the βτ and βT pieces are
proportional to

aV

aV + aT
· 1
3

√
2
3

√
6 · 3
4

=
3aT

4aT

1√
12

=
√

3
8

= 0.217 . (9.41)

It does not seem justified to omit the βT piece. It might be argued that its contri-
bution to the process Λ + N → N + N is to some extent included in (9.21). It is
difficult to support that by some explicit mathematical arguments.

10. Weak PV NNK coupling and sum rules
The weak nucleon-nucleon pion parity-violating (PV) coupling involves contri-

butions

p → nK+ → A(p+
+) , n → nK0 → A(n0

0) , p → pK0 → A(p+
0 ) . (10.1)

They can be described by an effective weak vertex which, in the notation of Ref.
[1] transforms as

(HW )23 . (10.2a)

One has for example

i1 = b
C

3 bA
Cφ2

A . (10.2b)

The complete effective interaction is [1,4,6,8]:

AW (eff) = δ1(i1 − i†1 + i†7 − i7) + δ2(i2 − i†2 + i†8 − i8) + δ3(−i3 + i†3 − i†4 + i4) ,

i2 = b
A

CbC
3 φ2

A , i3 = b
A

Db2
3φ

D
A , i4 = b

2

3b
A
DφD

A , i7 = b
C

Ab2
CφA

3 , i8 = b
2

CbC
AφA

3 .

(10.2c)
The repeated indices are summed over. Only the SU(3) transformation properties
are indicated in (10.2). The spatial factor would be

uuφ , (10.2d)

where u corresponds to the hyperon and φ stands for the meson field. The physical
content of SU(3) terms as bi

j is given by the attached matrices - see Ref. [1], formula
(5.17). One finds for example

b
3

1 = p , φ1
3 = K+ , b3

3 = −2Λ0

√
6

. (10.2e)
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The amplitudes (10.1) are connected via the SU(3) sum rules, with the hyperon
nonleptonic decay amplitudes

Λ → pπ− → A(Λ0
−) , Σ → pπ0 → A(Σ0

+) , Ξ → Λπ− → A(Ξ−
−) . (10.3)

The particle content of various ik’s in (10.2) is shown in Table 10.1. One finds for
example

(i1)π0 = b
C

3 b2
Cφ2

2 = (b
1

3b
2
1 + b

2

3b
2
2 + b

3

3b
2
3)φ

2
2

=

[
Ξ
−

Σ− + Ξ
0
(
−Σ0

√
2

+
Λ0

√
6

)
+

(
−2Λ

0

√
6

)
n

] (
− π0

√
2

+
η√
6

)
,

(10.4)
etc. Contributions from invariants (10.2) are listed in Table 10.1.

TABLE 10.1. Contributions to the decay amplitudes.

Amplitude δ1 δ2 δ3

A(Ξ−
−) − 1√

6
2√
6

0

A(Λ0
−)

2√
6

− 1√
6

0

A(Σ+
0 ) 0

1√
2

0

A(Σ+
+) 0 0 1

A(n0
0) 1 −1 1

A(p+
0 ) 0 −1 0

A(p+
+) 1 0 1

It is easy to reproduce the Lee-Sugawara sum-rule [4,6,8,9]

2A(Ξ−
−)+A(Λ0

−)−
√

3A(Σ0
0) = − 2√

6
δ1+

4√
6
δ2+

2√
6
δ1−

1√
6
δ2−

√
3
2
δ2 = 0. (10.5)

One also easily finds

A(n0
0) =

√
3
2
A(Λ0

−) − 1√
3
A(Σ+

0 ) + A(Σ+
+), (10.6)

and
A(p+

0 ) =

√
3
2
A(Λ0

−) +
1√
3
A(Σ+

0 ) + A(Σ+
+). (10.7)
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If A(Σ+
+) = 0 as it follows in the current algebra (CA) approximation, one obtains

the sum rules given in Ref. [5].
It is well known [1] that the current algebra based approximation (including

PCAC) produces more constrained connections than the SU(3) symmetry require-
ments alone. Using CA and PCAC [4,8,9] one obtains for the A(Σ+

+) amplitude

iA(Σ+
+)unuΣ = 〈π+n|HPV

W |Σ+〉 = (−i)
1
fπ

[
〈p|HPC

W |Σ+〉 +
√

2〈n|HPC
W |Σ0〉

]
.

(10.8a)
Here PC (PV) means parity-conserving (violating). In deriving (10.8a) one had to
calculate the action of a SU(3) generator

Fi =
∫

d3x V i
0 (x) (10.9a)

on a baryon state. Here V0 is the zero component of the quark vector current

V i
0 = q

λi

2
γ0q . (10.9b)

For that purpose one can use formulae from Ref. [9], as for example

π0|n〉 ∼ F3
1√
2
(B6 + iB7) = 1√

2
i(f36kBk + if37kBk)

= − 1
2

1√
2
(B6 + iB7) = − 1

2 |n〉 ,
(10.9c)

and

π+|n〉 ∼ (F1 + iF2)
1√
2
(B6 + iB7) =

1√
2
(B4 + iB5) = |p〉 . (10.9d)

If HPC
W transforms as a SU(3)flavour octet, i.e. if one has octet dominance, than, on

the basis of the Wigner-Eckart theorem [22,23], one finds

〈p|H(8) PC
W |Σ+〉 = −

√
2〈n|H(8) PC

W |Σ0〉 , A(Σ+
+) = 0 . (10.8b)

Further applications of CA and PCAC [4,8,9] give

iA(Λ0
−)upuΛ = 〈π+p|H(8) PV

W |Λ0〉 = −i 1
fπ
〈n|H(8) PC

W |Λ0〉 ,

iA(Σ+
0 )upuΣ = 〈π0p|H(8) PV

W |Σ+〉 = −i 1
fπ

(
− 1√

2

)
〈p|H(8) PC

W |Σ+〉 , (10.10)

iA(n0
0)upun = 〈K0

n|H(8) PV
W |n〉 = −i 1

fK

[√
3
2 〈n|H

(8) PC
W |Λ0〉 − 1√

2
〈n|H(8) PC

W |Σ0〉
]

iA(p+
+)unup = 〈K+

n|H(8) PV
W |p〉 = −i 1

fK

[√
3
2 〈n|H

(8) PC
W |Λ0〉 + 1√

2
〈n|H(8) PC

W |Σ0〉
]
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Using the relation (10.8b) one obtains the sum rules (10.6) and (10.7) with A(Σ+
+) =

0. The sum rules

A(n0
0) =

[√
3
2
A(Λ0

−) − 1√
2
A(Σ+

0 )

]
fπ

fK
,

A(p+
0 ) =

[√
3
2
A(Λ0

−) +
1√
2
A(Σ+

0 )

]
fπ

fK
,

(10.11)

follow from the octet dominance combined with the soft pion approximation.
If one give up the octet dominance what formally means that the index 8 in

H
(8)
W is omitted in formulae (10.10), one finds from (10.8a) and (10.10)

1
fπ

〈n|HW |Σ0〉 = −
[
A(Σ+

0 ) +
1√
2
A(Σ+

+)
]

. (10.12a)

The third version of the sum rules for the A(n0
0) and A(p+

+) amplitudes is

A(n0
0) =

[√
3
2
A(Λ0

−) − 1√
2
A(Σ+

0 ) − 1
2
A(Σ+

+)

]
fπ

fK
,

A(p+
+) =

[√
3
2
A(Λ0

−) +
1√
2
A(Σ+

0 ) +
1
2
A(Σ+

+)

]
fπ

fK
.

(10.12b)

It was obtained by the soft pion theorem [1] using PCAC and CA, without the
octet dominance assumption.

Various combinations of Dirac spinors uBf
uBi

appearing in the above formulae
are ignored, or better to say replaced by a generic term uBuB , i.e.

unuΣ, upuΛ, upuΣ, unun, unup, → uBuB . (10.13)

This is equivalent to assumption that all baryons are mass-degenerate octet mem-
bers. Thus the expression (10.12) is in a way also octet dependent.

In the nonrelativistic approximation (NRA) where Dirac spinors are replaced
by Pauli spinors, this fine distinction does not matter. In NRA all bilinears (10.13)
are replaced by a simple product

uBuB
NRA−→ χ†χ. (10.14)

An additional difference between (10.6), (10.7), (10.11) and (10.12) is in the fac-
tor fπ/fK = 0.83. The appearence of that factor in (10.11) and (10.12) openly
illustrates as already mentioned [1], that the current algebra based approximation
differs form that which is based on the SU(3) symmetry with octet dominance. This
factor is not included in SU(6)W , and thus SU(3) based sum rules used in Ref. [5].
They have (10.6) and (10.7) with A(Σ+

+) ≡ 0.
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11. Nucleon-nucleon-kaon vertices
The calculation of the weak NNK coupling has been carried out in Ref. [1] where

it has been based on the contribution
A = Acc + Asep ,

B = B8 + Bsep .
(11.1a)

That scheme was analogous to the theoretical description of hyperon nonleptonic
decays used by Ref [9]. An alternative theoretical approach, in which decouplet
poles were used, has been also developed [30]. Recently it has been adopted for the
calculation of the NNK vertices [28]. It contains contributions

A = Acc + A10 + AΛ′

B = B8 + B10 + BΛ′
(11.1b)

The current algebra contribution Acc and the octet pole contributions B8 are given
by Ref. [1]. Very general expression for decouplet poles, as for instance A10 can be
found in Refs. [28,30]. By SU(3) relation (adaptation) one finds

A10(p+
+) = −p − n

18
h2g2

Σ∗ 0 + n

(Σ∗ 0)2
, B10(p+

0 ) = −p + n

18
h3g2

Σ∗ 0 − n

(Σ∗ 0)2
. (11.2a)

Here
h2 = −0.2 · 10−6, h3 = −0.4 · 10−6, g2 = 15.7 , (11.2b)

while p, Σ∗ 0 etc. are baryon masses.
The AΛ′ and BΛ′ amplitudes are small contributions from the Λ(1405) = Λ′

resonance [11,30]. A characteristic Λ′ pole term for the p+
+ amplitude is shown in

Fig. 10.1. Proceeding in the standard way [28] one finds

AΛ′(p+
+) =

gΛ′pKanΛ′(p − n)
(Λ − n)(Λ′ − Σ)

, AΛ′(p+
0 ) = 0, AΛ′(n0

0) = 0 . (11.3)

The PC vertices are determined by

BΛ′(p+
+) =

gΛ′pKanΛ′(p + n)
(Λ + n)(Λ′ − Σ)

. (11.4)

S W
p n

K +

Λ

Fig. 11.1 - Λ′ pole term contributions to the transition p → K+n.
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The values of NNK amplitudes obtained using two different theoretical ap-
proaches a) Ref. [30] and b) Ref. [1] are summarized in Table 11.1. These ampli-
tudes, together with the amplitudes corresponding to π [1] and η (see Appendix F)
exchanges, determine the weak potential. Its form is given by formulae (8.1)-(8.11)
in Ref. [1]. The strengths of the weak vertices are summarized in Table 11.2 which
is analogous to the Table 9.1 in Ref. [1]. The numerical values appearing in column
a) corespond to the case (11.1a). They are identical with the numbers given in Ref.
[1].12

The column b) corresponds to the combination (11.1b).

TABLE 11.1 - Nucleon-kaon amplitudes are multiplied by 106.

Amplitude (a) [30] (b) [1]
AK(p+

0 ) 0.525 0.408
BK(p+

0 ) -2.35 -2.187
AK(p+

+) 0.250 0.281
BK(p+

+) 3.088 4.238
AK(n0

0) 0.625 0.625
BK(n0

0) 1.803 1.799

TABLE 11.2. Weak vertices and their connection with the weak nonleptonic am-
plitudes.

Weak Analytic expression Numerical value ∆I

vertices a) b)
a

√
2

3 A(Λ0
−) − 1

3A(Λ0
0) 2.3187 2.3187 1/2

b
√

3
2

[√
2

3 A(Λ0
−) + 2

3A(Λ0
0)

]
-0.051 -0.051 3/2

ã
√

2
3 B(Λ0

−) − 1
3B(Λ0

0) 15.862 15.862 1/2

b̃
√

3
2

[√
2

3 B(Λ0
−) + 2

3B(Λ0
0)

]
0.032 0.032 3/2

c 1
3

[
AK(n0

0) − AK(p+
0 ) + 2AK(p+

+)
]

0.260 0.200 1/2
d 1

3

[
AK(n0

0) + 2AK(p+
0 ) − AK(p+

+)
]

0.404 0.475 1/2
e 1

3

[
−AK(n0

0) + AK(p+
0 ) + AK(p+

+)
]

0.021 0.050 3/2
c̃ 1

3

[
BK(n0

0) − BK(p+
0 ) + 2BK(p+

+)
]

4.154 3.443 1/2
d̃ 1

3

[
BK(n0

0) + 2BK(p+
0 ) − BK(p+

+)
]

-2.271 -1.995 1/2
ẽ 1

3

[
−BK(n0

0) + BK(p+
0 ) + BK(p+

+)
]

0.084 -0.355 3/2
f Aη1(Λ

0
η1

) 0.06 0 1/2
f̃ Bη1(Λ

0
η1

) 27.53 28.16 1/2
g Aη8(Λ

0
η8

) -5.19 -5.63 1/2
g̃ Bη8(Λ

0
η8

) 22.97 31.10 1/2

12Table 9.1 contains some missprints, which are corrected here!
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Table 11.2 contains also, for the sake of completeness the η exchange amplitudes.
Their derivation is sketched in Appendix F.

One can see that the ∆I = 1/2 pieces of the weak potential in both cases are
reasonably close, the discrepancy being within 14% to 30%. However the ∆I = 3/2
pieces differ significantly. For the combination e, the difference is about 130%.
The combination ẽ shows the opposite signs with order of magnitude difference in
strengths.

While the theoretical predictions for the ∆I = 1/2 potentials might be reliable
to within 30%, the ∆I = 3/2 pieces in the potential are rather poorly determined
by the present methods13.

12. Outlook
This review contains two results which will be useful in future applications.

Firstly it is shown how the effective weak potential due to the vector meson and
axial vector meson exchanges combines with the effective weak potential produced
by the exchanges of pseudoscalar mesons. Working within the described theoretical
framework, i.e. CA, PCAC, SU(3), SU(6)W , SEP approximations, pole terms etc.
one can fix all relative signs within potential, as well as the relative signs with
respect to strong interactions and semileptonic processes. That will serve as a good
foundation for the derivation of the additional weak potential pieces.

Secondly a novel derivation of NNK and NΛη weak vertices is discussed in
detail. The changes in the resulting affective weak potentials are presented. When
all theoretical derivations are compared, one ends with a theoretical uncertainty
which is less then 30% 14 for ∆I = 1/2 potential pieces. Unfortunately the pre-
dicted strength of ∆I = 3/2 potential pieces depends very much on the theoretical
methods. In the initial analysis of experimental data one cannot rely upon the
∆I = 3/2 potential pieces produced by the pseudoscalar meson exchanges.

Appendix A. Effective weak Hamiltonian and IVB (W)

In the current-current (charged currents are here considered) form the effective
weak Hamiltonian HW is given by [4]

HW =
GF√

2
J †

µ(x)J µ(x) . (A.1)

Fundamentally the HW is produced by the current-IVB (W) coupling

H(IV B) = gJµWµ †. (A.2)

13The consideration of other A, B values (see Table 5 in Ref. [30]) would not change that
conclusions.

14Sometime less then 14%.
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With IVB propagator [2]

(−i)
gµν

k2 − M2
W

+ . . . (A.3)

one finds in the k ¿ M2
W limit (All integrations

∫
dx are omitted in (A.1), (A.2)

and in the following)

(second order) (−i)2H2(IV B) = (−i)HW (first order) (A.4)

(−1)H2(IV B) = ig2 gµν

− M2
W

J †
µ(x)Jν(x) = (−i)

g2

M2
W

J †
µ(x)Jµ(x).

Thus
GF√

2
∼ g2

M2
W

(A.5)

as it should be (CKM angles can be assumed, but they are not shown explicitly).
The main purpose of this appendix was to test Eq. (A.3). Obviously, (−1) in front
of (A.3) is essential.

Appendix B. Pion decay and induced pseudoscalar in
semileptonic weak decays

PCAC relation [4] is

∂µAi
µ(x) =

fπ√
2
m2

ππi(x) (i = 1, 2, 3 (isospin) ,

φπ− =
1√
2
(π1 + iπ2) .

(B.1)

The pion decay constant fπ is [4]

〈0|A1
µ(x) + iA2

µ(x) |π−(k)〉 = ifπkµe−ikx (kx = k0x0 − k · x) . (B.2)

A general form for the axial vector current matrix element is [1, p.131]

〈p|A1
µ + iA2

µ |n〉 = up(p)[gAγµγ5 + gP kµγ5 + . . .]un(n), (kµ = (p − n)µ) . (B.3a)

Here

Ai
µ(x) = q(x)γµγ5

1
2
τ iq(x). (B.3b)

The gP formfactor is produced by pion exchange diagram shown in Fig. B 1.
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π -

p n

(-k)

n=p-k

π
µ

A
   

 0
-

Fig. B 1. Pion exchange contribution to the matrix element (B.3).

The strong interaction [2] of pions is

HS = igπψNτ iγ5ψNπi = igπ

√
2ψpγ5ψnπ(+) + . . . (B.4)

The diagram shown in Fig. B 1 which is the second order perturbation gives

(IP )u = (−i)2upγ5un
i

k2 − m2
π

i
√

2gπifπkµ

= (−i)(−1)upγ5un

√
2gπfπkµ

k2 − m2
π

.

(B.5)

This has to be combined with the first order contribution

(−i)up

[
γµγ5gA −

√
2gπfπkµ

k2 − m2
π

γ5

]
ungP ' (−1)

√
2gπfπ

k2 − m2
π

. (B.6)

The PCAC condition can be written also [4] as

kµ〈p| (A1
µ + iA2

µ) |n〉
∣∣∣
m2

π=0
= 0 . (B.7)

Remark We always assume Ai
µ = ψγµγ5(λi/2)ψ and net (-) sign as in (4.65b)

of Ref. [1]. Thus our J±
µ = V 1

µ ± iV 2
µ − (A1

µ ± iA2
µ). Dirac equation is (/p −

m)u = 0 u(/p−m) = 0. Thus (p− n)µu(p)γµγ5u(n) = (mp + mn)u(p)γ5u(n) =
2mNu(p)γ5u(n), and k = p − n. Also 〈π−|Aµ |0〉 = 〈0|A†

µ |π−〉† = (iqµfπ)† =
−iqµfπ = ikµfπ, since (q = −k).

The expression (B.3a) gives

kµ〈p| (A1
µ + iA2

µ) |n〉 = (2mNgA + gP k2)upγ5un . (B.8)

The condition (B.7) holds if

gP = −2mNgA

q2
. (B.9)
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From calculation (B.6), one finds with m2
π = 0

gP → (−
√

2)
gπfπ

q2
. (B.10)

The combination of (B.9) and (B.10) produces the Goldberger-Treiman (GT) rela-
tion [4]

2mNgA =
√

2fπgπ ,

mNgA =
fπ√

2
gπ .

(B.11)

All these confirms the phase “i” appearing in (B.2).

Appendix C. Meson states in SU(6)W and CP transformation

Meson states φa
b (Sect. 4) behave as W−triplet (vector mesons) and W−singlet

(pseudoscalar mesons) and also as B−spin scalars15 [15,16,19,20]. The space-time
property of a pseudoscalar meson state (SU(3) spins are omitted) is the same as
the behaviour of fermion (ψ) density

ψ†1ψ = ψγ0ψ ,

ψγ0ψ
CP−→ (−)ψγ0ψ .

(C.1)

The result (C.1) is derived in Sect. 3. The CP behaviour of the vector meson states
follows the behaviour of densities

ψ†γ0σ1ψ, ψ†γ0σ2ψ, ψ†σ1ψ . (C.2)

One can write
ψ†γ0σiψ = ψσiψ = ψγ0γiγ5ψ , (i = 1, 2). (C.3)

Using the results given in Sects. 3 and 4, one obtains

ψγ0γiγ5ψ
P−→ +ψγ0γiγ5ψ . (C.4)

The C transformation means

ψγ0γiγ5ψ
C−→ −ψT C−1γ0γiγ5Cψ

T
= −ψγ0γiγ5ψ . (C.5)

15B−spin operators are B1 = iσ3γ5/2, B2 = σ3γ0γ5/2, B3 = γ0/2.
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Finally

ψγ0γiγ5ψ
CP−→ −ψγ0γiγ5ψ . (C.6)

The formulae (C.1) and (C.6) confirm the meson field behaviour (4.6).
A different behaviour of the third component in (C.2) is compensated by the

properties of the corresponding BB density. The expression (4.7) is not changed.

Appendix D. Parameters aT and aV for ∆S = 0 Hamiltonian

The SU(6)W parameters aT and aV were calculated via the factorization approx-
imation by Ref. [19]. Their relevant formulae, found for the strangeness conserving
(∆S = 0) Hamiltonian are

〈ρ−p|HW (∆S = 0) |n〉 =
G√
2

cos2 θC〈ρ−| dγµu |0〉〈p|uγµγ5d |n〉

= − G√
2

cos2 θC
1
2
〈ρ−|V −1

µ 1 |0〉〈p|Aµ 1
1 |n〉

∼ 10
9

aV ctg θC

(D.1)

and

〈ρ0p|HW (∆S = 0) |p〉 = −1
6

G√
2

cos2 θC
1
2
〈ρ0|V 0

µ 1 |0〉〈p|Aµ 0
1 |p〉

∼ − 10
9
√

2
aT ctg θC .

(D.2)

Here we have introduced isospin tensors V TZ

T

V −1
1 =

√
2 du =

√
2 qτ+q , V 0

1 = qτ3q , V 1
1 = −

√
2 ud , (D.3)

etc. In Ref. [19] one can find

V 1−i2 =
1√
2
V −1

1 , V 3 =
1
2
V 0

1 . (D.4)

From (D.1) and (D.2) one obtains

aV = − 9
20

1√
3
Gscαβ ,

aT = − 3
20

1√
3
Gscαβ ,

aT =
aV

3
.

(D.5)
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Here we have used s ≡ sin θC and c ≡ cos θC , and

〈ρ−|V −1
1 |0〉 = C1−1

1−1 0 0 α = α ,

〈ρ0|V 0
1 |0〉 = C1 0

1 0 0 0 α = α ,

〈p|A1
1 |n〉 = C

1/2 1/2
1 1 1/2−1/2 β =

√
2
3β ,

〈p|A1
1 |n〉 = C

1/2 1/2
1 0 1/2 1/2 β = −

√
1
3β .

(D.6)

One can easily sketch the genesis of the product of matrix element which appears
in (D.2). That can serve as a model for the ∆S = 1 case.

Using FR one can write in SEP approximation

〈ρ0p| diγµ(1 − γ5)djujγ
µ(1 − γ5)ui |p〉 → L =

− 1
3

[
〈ρ0| diγµdi |0〉〈p|ujγ

µγ5uj |p〉 + 〈p| diγ
µγ5di |p〉〈ρ0|ujγµuj |0〉

]
.

(D.7a)

Here ρ0 can be emitted from either uu or dd combination. Either combination can
contribute to the baryon matrix element. In ∆S = 1 case (8.14) there is no such
symmetry. With [19]

〈ρ0|uγµu |0〉 = −〈ρ0| dγµd |0〉 (D.8a)

and with

V (A)3 = V (A)01 =
1
2
(uu − dd) , (D.8b)

one can write (D.7a) as

L = −1
6
〈ρ0|V 0

µ 1 |0〉〈0|Aµ 0
1 |p〉 . (D.7b)

It might be useful to list some isospin (tensorial) relations which were employed in
Sect. 8. The isovector triplet containing u and d quarks can be written as

ud = − 1√
2
qτ1

1 q = −T 1
1 ,

uu − dd = 1√
2
qτ3

1 q = T 0
1 ,

du = 1√
2
qτ−1

1 q = T−1
1 .

(D.9)

One has to compare the matrix elements 〈n| du |p〉 and 〈p|uu |p〉. From the second
matrix element we need only the isovector

1
2
(uu − dd) (D.10)
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contribution which can be connected with ρ0 meson. Thus

〈n| du |p〉 = 〈n|T−1
1 |p〉 = C

1/2−1/2
1−1 1/2 1/2α = −

√
2
3α ,

〈p|uu |p〉 → 1
2 〈p| (uu − dd) |p〉 = 1√

2
〈p|T 1

0 |p〉 = 1√
2
C

1/2 1/2
1 0 1/2 1/2α

= − 1√
2

1√
3
α = −1

2

√
2
3α .

(D.11)

This is the origin of the factor 1/2 which appears on the RHS of (9.14b).

Appendix E. Weak PV vector boson K? exchange and
∆I = 1/2 rule

From (9.1) one can deduce the following weak PV NNK∗ coupling

CnpK∗+ + DppK∗0 + ηnnK∗0. (E.1)

Here only hadronic flavours are indicated while the spin-spatial parts are omitted.
The strong NΛK∗ coupling has the flavour dependence

gV (pΛK∗+ + nΛK0
∗
) . (E.2)

When (E.1) and (E.2) are combined via K? exchanges one finds a weak PV
potential with the following baryonic content

V = gV C(pΛ)(np) + gV D(nΛ)(pp) + gV η(nΛ)(nn) . (E.3)

Ther isospin content of that V can be found by using formulae (F-13) and (F-14)
of Ref. [1], i.e.

V = gV C
(

1
3βτ + 1√

6
βT

)
+gV D

(
1
2β1 − 1

6βτ + 1√
6
βT

)
+gV η

(
1
2β1 + 1

6βτ − 1√
6
βT

)
.

(E.4)

Here βT is the ∆I = 3/2 contribution, which is eliminated if

C + D = η . (E.5)

346 FIZIKA B (Zagreb) 10 (2001) 4, 307–356



barbero et al.: weak meson vertices and the hypernuclear potential

Appendix F. Baryon-baryon-η vertices in hypernuclear
decays

Two members of the pseudoscalar meson U(3) nonet are possible mediators of
the PV/PC hypernuclear potential in the OME (one meson exchange) picture of
the hyperon-hyperon interaction. Their contributions follow the same pattern as
was the case with π and K mesons: the PV A-amplitude gets its contribution for
separable (SEP), current algebra (CA) and decouplet (10) terms

Aη(H) = ASEP
η (H) + ACA

η (H) + A10
η (H) , (F.1)

where H is a decaying hyperon. The parity-conserving B-amplitude is then written

Bη(H) = BSEP
η (H) + BPOLE

η (H) + B10
η (H) , (F.2)

where BPOLE
η (H) arises from the pole term contribution. Earlier calculations Ref.

[1] have used the effective weak four-quark QCD corrected Hamiltonian to obtain
the separable contributions to A/B amplitudes. The separable contributions were
omitted in the NNK amplitude calculations [30] which relied on decouplet poles.
Thus we do not take that into the account when dealing with NNη vertices.

The CA contribution to PV amplitude A follows the standard soft-meson pro-
cedure [8,9]. A (virtual16) decays which are relevant for the hypernuclear potential
calculation are

Λ → n + η1 and

Λ → n + η8 .
(F.3)

Since the U(3) quark structure of the η mesons is given by η ∼ ( 1√
2
)qi(λa/2)ijqj

with a = 0, 8, and λ0 =
√

2/3, the CA contribution comming from η1 nonet state
vanishes whereas the η8 calculation gives

〈nη8|H∆S=1
W |Λ〉 = −

√
2

fη
〈n| [F 0,A

η8
,HPV

W ] |Λ〉 =
√

2
fη

√
3
2
〈n|HPC

W ] |Λ〉

= −
√

3
fπ

fη
A(Λ0

−) ,

or A(Λ0
η8

) = −fπ

fη

√
3A(Λ0

−) .

(F.4)

Here fη = 1.1 fπ.
The η pole contributions follow again the same procedure except that for the

U(3) nonet contribution a generalized SU(3) relation [9] is used

〈Bk| ηi |Bj〉 = 2gπNN [dijk(1 − f)] . (F.5a)
16Recall that the η masses are m(η1) = 958 MeV and m(η8) = 547 MeV.
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With i = 0 for the nonet (η1) state the symmetric structure constant is d0mn =
(
√

2/3)δmn so one obtains the U(3) result

〈|O |〉 = 2gπNN

√
2
3
(1 − f) . (F.6)

The resulting total η1 pole contribution is

BPOLE(Λη1) =
[
− 1√

2
A(Λ0

−)
] [

g

√
2
3
(1 − f)

]
Λ + n

Λ − n

(
1
Λ

− 2
n

)
, (F.7)

where the usual subtraction has been made [9]. With i = 8 in (F.5a) the η8 contri-
bution is calculated from the full formula

〈Bk| ηi |Bj〉 = 2gπNN [ifijk f + dijk(1 − f)] . (F.5b)

The strong ΛΛη8 coupling is calculated to be

gΛΛη8 = − 2√
3
gπNN (1 − f) = − 1√

2
gΛΛη1 . (F.8)

For Bk = Bj = n the strong coupling is given by

gnnη8 = −2gπNN

√
3

3
(1 − 2f). (F.9)

Since the pole diagrams for η8 η1 are the same, the following expresion is obtained

BPOLE(Λη8) =
[
− 1√

2
A(Λ0

−)
] [

−
√

3
3

gπNN

]
Λ + n

Λ − n

(
1 − f

Λ
− 1 + 2f

n

)
. (F.10)

Appendix G: Effective weak strangeness violating
interaction in coordinate and/or momentum space

The effective one meson exchange (OME) contribution to the weak potential is
comming form the second order S−matrix term

HI = 〈ac|HW |bd〉
HW =

∫
d4xd4y ψ(x)Γµ

1ψ(x)∆µ νψ(y)Γν
2ψ(y) .

(G.1)

Here ∆µν(x−y) is the free meson propagator [2]. In the case of pesudoscalar mesons
(π, K, η) its µ ν dependence should be omitted. Γµ

i are some suitable spin-isospin
operators which are specified in the literature for any particular case.

348 FIZIKA B (Zagreb) 10 (2001) 4, 307–356



barbero et al.: weak meson vertices and the hypernuclear potential

The fermion operators ψ are associated with fermion fields experiencing some
interactions, i.e. being bound by some strong potential. It is convenient to include
at least a part of that strong interaction explicitly. Then, instead of expanding ψ′s
in terms of the free particle solutions

e−ipx (G.2)

one should expand using the solutions corresponding to a particular strong (for
example shell-model) potential. Such bound state interactions [31] or Furry [32]
picture employs

ψ(x) =
∑

n anψn(r)e−iEnt + a.p.

H(VS)ψn(r) = Enψn(r) .
(G.3)

Here a.p. stays for antiparticle piece which does not contribute in the present appli-
cation. The Hamiltonian H has a symbolic and generic meaning. It may represent
some relativistic (quasi-relativistic) dynamics. Its solution ψn(x) can serve as a
basis for the later nonrelativistic approximate (NRA) expression.

The particle creation operators a†
n are indicated in (G.3) For example the op-

erator a+
b

|b〉 = a+
b |0〉

picks up the appropriate states from the expression (G.3). One is left with the
well defined baryon-baryon OME interaction, which is the starting point for the
derivation of an effective weak potential. The generic form of such baryon-baryon
interaction is

HI =
∫

d3xd3y ψa(x)Γ1ψb(x)∆(x − y)ψc(y)Γ2ψd(y) . (G.4)

It corresponds to a process
d + b → a + c . (G.5)

Here it is assumed that the time dependence, such as

ψb(x) = ψb(x)e−iEbtx (G.6)

has been integrated out, as shown in Appendix G of Ref.[1].
The transition to the momentum space is achieved by Fourier decomposition,

as for example

ψb(r) =
∫

d3q eiq·xψb(q) . (G.7)
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For a free particle
ψb(q) = δ(q − pb)ub(p) . (G.8a)

Here u(p) is a Dirac spinor, i.e. the solution of the free particle Dirac equation

(/p − mb)ub(p) . (G.8b)

Thus in the free particle case one has

ψb(x) → ub(p)eipbx, (G.8c)

and pb is the momentum of that particular particle b.
In the general case, with the propagator given by

∆(x − y) =
∫

d3q eq(x−y)∆(q) , (G.9)

one finds

HI =
∫

d3xd3y d3qa d3qb d3qc d3qd d3qfe−iqaxeiqbxeiqf (x−y)e−iqcyeiqdy

ψa(qa)Γ1ψb(qb)∆(qf )ψc(qc)Γ2ψd(qd) .

(G.10a)
The integration over coordinates can be easily carried out leading to

HI = (2π)6
∫

d3qa d3qb d3qc d3qd d3qf δ(−qa + qb + qf )δ(−qf − qc + qd)

ψa(qa)Γ1ψb(qb)∆(qf )ψc(qc)Γ2ψd(qd) .

(G.10b)
One can further integrate over, for example d3qa and d3qd finding

HI = (2π)6
∫

d3qa dd3qc d3qf ψa(qa)Γ1ψb(qa − qf )∆(qf )ψc(qc)Γ2ψd(qc + qf ) .

(G.10c)
Thus one ends with three integrations instead of two which one had in the coordi-
nate representation (G.4). However, if one deals with the free particle states defined
by (G.8) one ends without any integrations. Starting from

HI(free particle) =
∫

d3xd3y d3q e−ipaxeipbxeiq(x−y)e−ipcyeipdy

ua(pa)Γ1ub(pb)∆(qf )uc(pc)Γ2ud(pd) ,

(G.11a)
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one finds

HI(free particle) = (2π)6
∫

d3q δ(−pa + pb + q)δ(−pc − q + pd)

ua(qa)Γ1ub(qb)∆(qf )uc(qc)Γ2ud(qd) (G.11b)

= (2π)6δ(−pa + pb − pc + pd)ua(pa)Γ1ub(pb)∆(qf )uc(pc)Γ2ud(pd)

with
qf = pd − pc = pa − pb (G.11c)

and
pd + pb = pa + pc . (G.11d)

The last equality corresponds to the process (G.5) involving free particles a, b, c
and d. The simple expression (G.11) is sometimes used as “the representation in the
momentum space”, as the starting formula for NRA. Sometimes that can be of some
pedagogical use, as all manipulations look simple and transparent. But one should
keep in mind that for particles bound by some potential the more complicated
formula (G.10) is the correct expression in the momentum space.

Keeping in mind its complexity it is obviously easier to perform NRA in coor-
dinate space, starting from (G.4) as it was often the case.

If one deals with a simple time dependence (G.3), (G.6), the states ψn(x) are
to be considered as solutions of the stationary Dirac equation with a potential

EDψ(r) = (α · p + βV + βM)ψ(r) ,

ED ' M + E + . . .
(G.12a)

Here the potential
V = V (r,α,σ, β, . . .) (G.12b)

can be, in principle, some general effective description of the strong forces binding
nucleons in nuclei.

Formally, to the leading order in M−1, one can approximate the equation (G.12)
by a substitution

ψn(r) '

 φn(r)
σ · p
2M

φn(r)

 . (G.13)

The symbol p, appearing in (G.13) is used for traditional reasons. It corresponds
to a definite momentum only if one deals with free particle wave functions (G.8).
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Generally, p is the spatial derivative acting on the right, for example17

σ · p(A(x)B(x)) = B(x)(−iσ · ∇A(x)) + A(x)(−iσ · ∇B(x)) . (G.14)

The approximation (G.13) has its limitations and it has to be improved in various
ways if one wants to proceede to higher orders in M−n expansion [33–35].18

It is customary to assume that in NRA one ends with a Schrödinger equation
describing a nuclear shell model

− 1
2M

∆φn(r) + V (x,σ, . . .)φn(x) = Enφn(x) . (G.15)

The substitution (G.13) with the nonrelativistic nucleon states described by
(G.15) is the foundation of NRA of the expression (G.4). In the following this is
illustrated for the x dependent density from (G.4):

Dx(y) =
∫

d3x ψa(x)
(

ΓA
1 ΓB

1

ΓC
1 ΓD

1

)
ψb(x)f(x,y) . (G.16a)

Here Γ1 matrix is subdivided in 2×2 matrices and the meson propagator is f . The
indices A, B, . . . have a very general meaning. They can contain four-vector labels
µ, ν, . . . = 0, 1, 2, 3 if one deals with a vector-vector interaction. With

ψ = ψ†β ,

β(Γ1) =

(
1 0

0 −1

) (
ΓA

1 ΓB
1

ΓC
1 ΓD

1

)
=

(
ΓA

1 ΓB
1

−ΓC
1 −ΓD

1

)
,

(G.16b)

one can write

Dx(y) =
∫

d3x

[
φ†

a,
(σ · p

2M
φa

)†] (
ΓA

1 ΓB
1

−ΓC
1 −ΓD

1

)(
φb(x)

σ · p
2Mb

φb(x)

)
f(x,y) .

(G.16c)
By definition (G.13) the operator p in (G.16) acts on the nucleon wave functions.

It is useful to carry out explicitly the matrix multiplication in (G.16c)

Dx(y) =
∫

d3x

{
φa

(
ΓA

1 φb + ΓB
1

σ · p
2Mb

φb

)
−

(
σ·p
2Ma

φa

)† (
ΓC

1 φb + ΓD
1

σ·p
2Mb

φb

)}
f(x,y) .

(G.16d)

17With free particles, one has (pn being a c−number): σpeipnr = σpneipn·r .
18For example the Foldy-Wouthuysen transformation.
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The expression (G.16) can be then evaluated numerically, as it has been done in
[26] in order to check the consistency of the calculation. Alternatively one can move
the derivative p from the left hand side by partial integration. The generic form of
the second term in (G.16d) is∫

d3x

(
σ · p
2Ma

φ

)†
F (x,y) = N(y) . (G.17a)

Taking into account that(
σ · p
2Ma

φa

)†
=

(
−iσ · ∇φa

2Ma

)†
=

i∇φ†
aσ

2Ma
(G.18)

and partially integrating (G.17a), one finds

N(y) = −
∫

d3x φ†
a

σ · p
2Ma

f(x,y) . (G.17b)

Here p = −i∇ acts on the right, both on the nucleon wave function φb and on
the meson propagator f(x,y). It was shown [1] that f has a Yukawa form in the
coordinate space.

In some cases the partial integration (G.17b) can lead to an effective potential
which does not contain the derivatives (i.e. “speed dependent terms”) of the nucleon
wave functions. As an example let us apply the above formalism to (G.4) with

Γ1 = γ5 and Γ2 = 1 . (G.19)

That corresponds to a parity-violating (PV) pseudoscalar meson exchange. Leading
terms in the M−1 expansion are

Dx(y) −→
∫

d3x φa

[
f̂

σ · p
2Mb

− σ · p
2Ma

f̂

]
φb

(with ΓB
1 = 1, ΓC

1 = 1, ΓA
1 = 0 = ΓD

1 ) ,

(G.20a)

and

Dy(x) −→
∫

d3y
[
φ†

c(y)φd(y)
]
f̂(x,y) . (G.20b)

However, “hat” on the function f̂ means that the same propagator is shared by both
terms a and b. By performing the partial integration in (G.20a) and by recombining
both terms one finds

HI(γ5, 1) =
∫

d3xd3y

(
φ†

a

iσ · ∇
2Mf

f φb

)
(φ†

cφd) . (G.20c)

From here one can read the first contribution to the V3 appearing in the expression
(9.6) of Ref.[1].
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SLABI MEZONSKI VRHOVI I HIPERNUKLEONSKI POTENCIJAL

Ovaj je članak nastavak ranijeg članka o hipernuklearnim potencijalima. Pred-
stavljamo nov izvod hipernuklearnog potencijala koji krši stranost a posljedica je
izmjene pseudoskalarnih mezona. Usporedba s ranijom metodom pokazuje da je
teorijska netočnost manja od 30%. Raspravljaju se podrobno relativni predznaci
izmjena pseudoskalarnih mezona i vektorskih (aksijalno vektorskih) izmjena. Daju
se dodatne napomene o nerelativističkom približenju.

356 FIZIKA B (Zagreb) 10 (2001) 4, 307–356


