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By allowing the distribution of states for a harmonic oscillator to admit to a mul-
tifractal distribution at high frequencies, we demonstrate that the spectral distri-
bution of energy for photons admitting the modified statistics has a high energy
anomalous behaviour and the equation of state of a photon gas is also modified.

PACS numbers: 05.20.-y UDC 536.75

Keywords: harmonic oscillator, multifractality, modified statistics, photon gas, anomalous

behaviour

1. Introduction

One of the most sacred and yet rather mysterious principles of quantum the-
ory is the spin statistics connection [1,2]. Geroch and Horowitz [3] have suggested
that the exclusion principle is a result of topological properties in spin space and
has a basis independent of its derivation from quantum-field theoretic consider-
ations. In this regard the spin – statistics connection can be derived for a rela-
tivistic quantum field theory assuming the field operators commute over space-like
intervals and with the added restriction imposed by the commutation and anti-
commutation relations [4–6]. If, however, particles retain some memory of their
collisions, or if long-range interactions are present, both the Boltzmann-Gibbs the-
ory and Bose and Fermi statistics can be violated. To accommodate the existence
of a non-Markovian memory in particle collisions, Tsallis [7] has invented a new
statistics based on multifractality and scale invariance. Unlike the modified statis-
tical approach of Haldane [8] and Medvedev [9], it has its basis rooted in notions of
non-linearity and self-similarity. Applications to the solar plasma [10–12], a general-
ized H theorem [13–15], the fluctuation dissipation theorem [16], the Langevin and
Fokker-Planck equation [17], the equipartition theorem [18], the Ising chain [19,20],
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paramagnetic systems [21] and the Planck radiation law [22] have led to modifica-
tions of the conventional theory that await experimental confirmation. Limits on
the non-extensive statistics parameter in Tsallis statistics can be set by finding out
how the new statistics affects the primordial helium abundance in cosmology [23].
We have also applied Tsallis statistics to a two-level system [24], a two-state para-
magnetic system [25,26], the Debye theory of specific heats [27] and the spectral
distribution of photons in black body radiation [28]. As emphasized in Ref. [22],
non-extensive statistics applies whenever the linear size of the system is smaller
than or comparable to the range of the relevant interaction between the elements
of the system. In this regard, it is reasonable to think that the present cosmic
microwave background radiation might be slightly different than the Planck dis-
tribution due to the long-range gravitational influence. This influence could be a
small long-range memory of times when matter and light were still strongly cou-
pled leading to a correlation between the energy levels at a given frequency that
exhibits these long-range memory effects and does not generate a distribution of
the usual Bose-Einstein form. In the present note, we continue the study of Ref.
[28] by allowing the non-extensive parameter to depend on frequency. In Ref. [28],
we applied the q statistics of Tsallis to a bosonic oscillator, which might suggest an
inconsistency since Abe [29] and Tsallis [30] had explicitly related the q statistics
to the q deformed commutation relations. However, as discussed by Tirnakli et al.
[31], a generalized q statistics can be thought of as independent of the bosonic,
fermionic, or intermediate statistics of the particles involved and can be applied to
the energy levels of the system exclusively. Here the statistics of particles is put
in at another stage. In the present discussion, we do not use the q expectation
value which involves lumping together the q form of the entropy and the deformed
commutation relations. Instead, we apply the q (Tsallis) modified entropy with the
conventional form of the expectation value of the energy as discussed in Ref. [31].
This point was previously made in a paper on the anharmonic oscillator and Tsallis
statistics [32]. Since we assume that a slightly non-extensive behaviour exists for
the microwave background due to long-range memory of times when matter and
light were still strongly coupled, we would have a natural tendency to believe that
these memory effects are more pronounced for high frequencies where matter and
radiation were more strongly coupled. This assumption would lead to a depen-
dence of q on the frequency of the mode. Since any curve locally can be fit to a
parabolic form, we assume for the dependence of q − 1 on ν a parabolic form with
no linear term. Below the value hν = kT , we assume that the modes conform to
Boltzmann-Gibbs statistics with q = 1, since here the memory effects would most
likely be insignificant. For a frequency dependence of the non-extensive parameter
α = q − 1 = α0 + α1ν

2 (α0 > α1), we find the cut-off as a function of tempera-
ture. We then calculate the total energy and pressure of the modified photon gas.
Our calculations lead to a dependence of the energy density on the temperature as
U = αT 4 − γT 6 and a corresponding modified pressure. Such results would modify
the cosmological evolution of a photon gas during the radiation era and also lead
to anomalies in the spectral emission of condensed astrophysical objects that emit
in the X-ray and γ-ray region.
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2. Equation of state for photons admitting to Tsallis
statistics

We begin by considering the expression for the Doroczy-Tsallis entropy for N
particles (N oscillators)

S =
kN

q − 1

(∑
Pi −

∑
P q

i

)
, Pi =

Ni

N
, q = non-extensive parameter. (1)

By varying Eq. (1) with respect to Ni and using the constraints
∑

Ni = const,
∑

Niεi = const , (2)

we find the following expression for Ni (µ/τ and −1/τ are Lagrange multipliers,
where τ = kT )

Ni =
N

q1/(q−1)

(
1 +

µ − εi

τ
(q − 1)

)1/(q−1)

. (3)

If we write q − 1 = α and expand µ = µ0 + αµ1 + α2µ2 (α = perturbation
parameter, q = 1 for Boltzmann-Gibbs statistics), we find

Ni = Ne−1 e(µ0−εi)/τ

[
1 + α

(
1
2

+
µ1

τ
− (µ0 − εi)2

2τ2

)]
. (4)

In Ref. [27] we found

eµ0/τ =
e∑

e−εi/τ
, µ1 =

τ

2
+

1
2τ

∑
e(µ0−εi)/τ (µ0 − εi)2∑

e(µ0−εi)/τ
. (5)

If we consider the states of the harmonic oscillator εn = (n + 1
2 )hν, we find for the

average energy of an oscillator

〈ε〉 =
∑

εiNi

N
. (6)

Using Eqs. (2.4), (2.5), (2.6) and εn = (n+ 1
2 )hν, we found in Ref. [28] for hν/τ > 1

(to order α)

〈ε〉 =
hν

2
+

hν

ehν/τ − 1
− α

8
(hν)3

τ2
+

α

8τ
(hν)2 . (7)

If we now consider α to depend on frequency (such that α = 0 for hν/τ < 1, α =
α0 + α1ν

2 for hν/τ > 1, α0 > α1), we find that after subtracting off the vacuum
term hν/2 that 〈ε〉 = 0 at a critical frequency νc, where

hνc

ehνc/τ − 1
− 1

8
(α0 + α1ν

2
c )

(hνc)3

τ2
+

1
8τ

(α0 + α1ν
2
c )(hνc)2 = 0 . (8)
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If we consider νc = ν0 + ε̄ν1, where α1 → α1ε̄ (0 ≤ ε̄ ≤ 1), we find the following
solution to the transcendental equation in Eq. (8) (to first order in α1)

hν0

ehν0/τ − 1
=

1
8
α0

(hν0)3

τ2
− 1

8
α0

(hν0)2

τ

or

hν0e−hν0/τ =
1
8
α0

(hν0)3

τ2
− 1

8
α0

(hν0)2

τ
,

(
hν0

τ
= C̄ >> 1

)
, (9)

and

ν1
∼= α1C̄

5

8h3
τ3 , (10)

(where we kept the dominant term in ε̄ → 1 and assumed α0(hν0/τ)2 < 1). Here
hν0/τ = C̄ solves Eq. (9). Thus

νc =
C̄τ

h
+ ᾱτ3 ,

(
ᾱ =

α1C̄
5

8h3

)
. (11)

Thus for ν > νc, the spectrum cuts off and we assume 〈ε〉 = 0 for ν > νc (after
subtracting the vacuum term). Thus

〈ε〉 =
hν

ehν/τ − 1
for

hν

τ
< 1 , (12)

and

〈ε〉 =
hν

ehν/τ − 1
− 1

8
(α0 +α1ν

2)
(hν)3

τ2
+

1
8

(
α0 + α1ν

2
) (hν)2

τ
for

hνc

τ
>

hν

τ
> 1

(13)
and 〈ε〉 = 0 for ν > νc. Actually 〈ε〉 = 0 for ν > νc would require

α(ν) =
hν

(ehν/τ − 1)
(

(hν)3

8τ2
− (hν)2

8τ

) , (14)

which has the property α → 0 at ν → ∞. We will assume that the spectrum has a
cut-off at νc and calculate the total energy. For the total energy per unit volume,
we have from Eqs. (12) and (13)

U(τ) =

τ/h∫
0

hν

(ehν/τ − 1)
8πν2dν

C3
+

(C̄τ/h)+ᾱτ3∫
τ/h

hν

(ehν/τ − 1)
8πν2dν

C3

+

(C̄τ/h)+ᾱτ3∫
τ/h

(
− (hν)3

8τ2
+

(hν)2

8τ

)
(α0 + α1ν

2)
8πν2dν

C3
,

(15)
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where C is the velocity of light. Changing integration variables to x = hν/τ ,
ν = τx/h, we find for Eq. (15) (letting ε̄ = 1 in α = α0 + εα1ν

2 and νc = ν0 + εν1)

U(T ) = T 4 8π

C3

k4

h3

C̄+ᾱhτ2∫
0

x3dx

ex − 1

− T 4 α0h
3

8
8π

C3

k4

h6

C̄+ᾱhτ2∫
1

x5 dx − T 6 α1h
3

8
8π

C3

k6

h8

C̄+ᾱhτ2∫
1

x7 dx

+ T 4 α0h
2

8
8π

C3

k4

h5

C̄+ᾱhτ2∫
1

x4 dx + T 6 α1h
2

8
8π

C3

k6

h7

C̄+ᾱhτ2∫
1

x6 dx

(16)

(here α depends on α1 to the first order).
If we expand Eq. (16) to first order in α1, we obtain

U = βT 4 − γT 6 (17)

to first order in α1.
For the pressure of the photon gas corresponding to Eq. (16), we have the

relation (
∂Ū

∂V

)
T

= T

(
∂P

∂T

)
V

− P . (18)

Here Ū = U(T )V , where Ū is the total energy in volume V and U is the energy
per unit volume. From Eqs. (17) and (18), we have

U = T
dP

dT
− P ,

or
dP

dT
− P

T
= βT 3 − γT 5 . (19)

This equation can be written as (d/dT )(P/T ) = βT 2 − γT 4 and integration gives
P = βT 4/3 − γT 6/5. Thus, for the photon gas obeying Tsallis statistics with
α = α0 + α1ν

2, for τ/h < ν < νc, we have

U = βT 4 − γT 6

P = βT 4/3 − γT 6/5 .

(20)
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3. Conclusion

The above calculations suggest that both the energy density and the pressure
receive corrections due to Tsallis-like modifications of the entropy of an ensemble of
harmonic oscillators. In a previous note [33] using the Haldane approach to modified
statistics (Ref. [8]), we calculated corrections to the equation of state for a photon
gas when α varies just in the low frequency range (α = parameter in Haldane
approach), just in the high frequency range, and for all ν. The corrections were
all lower than the 4th power of T . Also in Ref. [34], we calculated the corrections
to U and P induced by the discrete spatial character of the space in which the
photon propagates. One possible way to look for the corrections induced by Tsallis
statistics in Eq. (20) is in the influence these modifications have on a cosmological
evolution around the period of recombination. The equation of state in Eq. (20)
will modify the temporal evolution of the cosmological scale factor leading to a
modification of the temperature scale factor relation (TR = C) during the radiation
era. This in turn will effect the red-shifting of the cosmic microwave background
(CMB) from distance sources and lead to a distance inhomogeneity as well as
the usual angular anisotropy of the CMB. In the conventional theory, there is
no distance inhomogeneity because the radiation at any distance is red-shifted
down to the present wavelength of the CMB (enforced by TR = C). Thus a slight
variation of a CMB energy density versus distance would signal the presence of
Tsallis modified statistics for photons. In the early universe, both anomalies in
photon statistics and anomalies due to quantum-gravity-induced discrete spatial
effects would have to be taken into account in the calculation of the equation of
state of radiation that drives the cosmological expansion. Recent studies [35,36] in
non-commutative geometry have suggested discrete spatial effects and modifications
in particle statistics that could very well modify the equation of state of photons
driving the early universe expansion. Lastly, if the calculation of the modified
energy density leads to a modified pressure that turned negative, it might serve to
suggest that inflation [37] can result from a Tsallis like description of the photon gas
without the contrived use of Higgs potentials based on the uncertainties of C.U.T.
theories [38].
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JEDNADŽBA STANJA ZA FOTONE PREMA TSALLISOVOJ STATISTICI

Pretpostavkom da raspodjela stanja harmoničkog oscilatora na visokim frekven-
cijama slijedi multifraktalnu raspodjelu, pokazujemo da spektralna raspodjela en-
ergije za fotone koji slijede izmijenjenu statistiku ima anomalna svojstva, te se stoga
promijeni i jednadžba stanja fotonskog plina.
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