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USE OF MONTE CARLO METHOD WITH SIMULATED ANNEALING
ALGORITHM IN THE ANALYSIS OF MÖSSBAUER SPECTRA
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A convenient and robust procedure for Mössbauer analysis based on Monte Carlo
method is described. The method uses simulated annealing approach to find the
optimum Mössbauer parameters in the Lorentzian profile as initial values for the
Monte Carlo search program. A succession of solutions to the function describ-
ing the spectrum is then randomly generated until the solution with the minimum
chi-square with respect to the experimental data is reached. The result having the
reduced chi-square close to 1 shows the validity of the method.
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spectra

1. Introduction

The method presented in this paper concerns the Monte Carlo computation of
a given Mössbauer spectrum and compares it with the experimental spectrum to
find the best fit. For the theoretical computation, we express the spectrum in the
Lorentzian line shape. For each line component, I, we assume [1]

I =
Aj

1 + [(xi − Pj)/Bj ]2
, (1)

where Aj , Pj and Bj are the height, the position and the half width at half maxi-
mum, respectively, for the jth peak, and xi is the ith channel. Equation (1) leads to
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the expression for the total spectrum of n peaks and a count channel yi such that

yi = E + Fxi + Gx2
i +

n∑
j=1

Aj

1 + [(xi − Pj)/Bj ]2
, (2)

where E, F and G are the parameters for non-linear background. The quadratic
background is of instrumental origin, mainly due to the periodical change of the
detector solid angle during the movement of the transducer. The summation rep-
resents the sum of n Lorentzians.

The method proceeds iteratively starting from the solution to Eq. (2) in terms
of optimum values of the peaks parameters, which are provided by simulated an-
nealing algorithm (SAA), and generates a succession of solutions tending to the
one that is consistent with the experimental data. The concepts of annealing in
a combinatorial optimization were first introduced, in the early 1980’s, by Kirk-
patrick, Gelatt and Vecchi [2], and independently by Cerny [3]. These concepts are
based on a strong analogy between the physical annealing process of solids and
the problem of solving large combinatorial optimization problems. Pursuing this
analogy, SAA is introduced as a stochastic method to avoid getting stuck in local,
non-global minima, when searching for global minima [4]. A strong feature of this
algorithm is that it finds high-quality solutions, which do not strongly depend on
the choice of the initial solution, i. e., the algorithm finds the global minima by the
currently tested point rather than the point which has initially been chosen. This
feature enables the Monte Carlo search program to start with good initial values
and thus the user can avoid conducting several trials, which have been necessary
for setting suitable initial values.

In this paper, we use SAA with the modifications made by A. Corana et al.
[5] and Goffe et al. [6] to obtain the parameters that will give a “best fit” to the
experimental observations. We define the “best fit” in a least-squared sense, and
look for those parameters which minimize the function χ2, defined by

χ2 =
m∑

i=1

1
yi

[y(x) − yi]2 , (3)

where y(x) is the experimental value, yi is the calculated (theoretical) data, i is
number of experimental measurements and m is the number of channels in the data
collection system.

In each step of the algorithm search for the global minima, a trial point is
randomly generated. The search process follows the path (the direction along which
the trial points are generated) and moves both uphill and downhill to accept or
reject the point. Any downhill step is accepted and the process is repeated from
this new point. The uphill step is also accepted with a certain probability known as
“Metropolis criterion” [7–8]. In this way, the search procedure ‘escapes’ from the
local minima to the global (or near-global) minima.
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2. Description of the procedure

2.1. Simulated annealing algorithm

SAA starts at some ‘high’ value of the control parameter, C, and a sequence
of solutions Si, with i = 1, 2, 3, . . ., is generated until their average value of the
cost function, χ2, reaches a stable value. The step length is then adjusted and the
best solution reached for this value of C is recorded as Sopt. C is then carefully
reduced until the termination criteria are met. The following steps explain how the
algorithm proceeds:

(i) Set the initial value of the control parameter (C0), the initial value of step
length vector (Ls), the number of iterations before the control parameter
reduction (Nitr), the number of cycles before the step length adjustment (Ns),
the value for termination criterion (εs), the control parameter reduction factor
(α) and the starting values of the height (Aj), the peak position (Pj) and the
half width at half maximum (Bj) of each peak in the spectrum.

(ii) Calculate the baseline.

(iii) Find the solution, Sj , to Eq. (1) in terms of Aj , Pj and Bj . Incorporating
the baseline (as in Eq. (2)), find the corresponding χ2 value according to Eq.
(3).

(iv) Set Sopt = Sj and χ2
opt = χ2

j .

(v) Generate a new solution, S′
j , with randomly selected values for the peak

parameters by setting A = Aj + RLs, B = Bj + RLs and P = Pj + RLs,
where R is a random number generated in the range [-1,1] by a pseudorandom
number generator, and then calculate χ2 ′

j .

(vi) If χ2 ′ ≤ χ2
j , accept the solution S′

j . Set Sj = S′
j and χ2

j = χ2 ′
j . If χ2 ′

j > χ2
j ,

use Metropolis criterion to decide on the acceptance or rejection of S′
j . That

is, accept the solution with the probability p given by

p = exp

(
χ2

j − χ2 ′
j

C

)
> R .

If the solution is accepted, set Sj = S′
j and χ2

j = χ2 ′
j . Otherwise, this indicates

that the solution lies outside the χ2 domain, reject it and choose another one
for the function evaluation.

(vii) If χ2 ′ < χ2
opt, set Sopt = S′

j and χ2
opt = χ2 ′

j .

(viii) To widely sample the function, adjust Ls so that, approximately, half of the
evaluation will be accepted.
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(ix) Check whether the termination criteria are met. That is, if the final χ2
j values

of the last iterations for each control parameter reduction differ from χ2
j at

the current control parameter by less than εs, and the final χ2
j value at the

current control parameter also differs from the current optimum χ2
j value by

less than εs, report the optimized solution, Sopt, and its corresponding Aopt,
Popt and Bopt. If the termination criteria are not met, prepare for another
loop by staring on the best current optima. Reduce C by an appropriate
factor, α, and go to step (v) until convergence.

2.2. Monte Carlo method

If the values obtained from SAA are not optimal, as they usually are, good near-
optimal values will then be obtained [5]. Whatever the case, generation of further
solutions is required in order to get the best one. The following steps explain this
point as follows:

(i) Use the optimal values Aopt, Popt and Bopt resulting from SAA to calculate
the theoretical spectra (recorded as yk) according to Eq. (2) and calculate
the corresponding χ2

k.

(ii) Generate a sequence of random solutions, yk+l (with l = 1, 2, 3, . . .), around
yi. Calculate the χ2

k+l value corresponding to each solution.

(iii) Sort the theoretical data according to χ2 values. Stop the program at a value
εm, which is low enough that no further useful improvement can be expected,

that is, when
∣∣∣∣χ2

k+l − χ2
k+l−1

χ2
k+l

∣∣∣∣ ≤ εm.

(iv) Print the theoretical data, which belongs to the best χ2 value (the smallest
one).

3. Results and discussion

The method was applied to a simple Mössbauer spectrum of α-Fe, where the
peaks are well resolved and their number is known: nine peaks appear in the
spectrum presented in this paper. The plot of the computed spectrum and the
experimental one is shown in Fig. 1. For the program execution, the following
values of input parameters were used:

C = 100, α = 0.85, εs = 10−5, εm = 10−6, Nitr = 5, Ns = 20.

The parameter εs was set to ensure that the solution had converged to the global
minima, while εm was chosen to get the difference of successive χ2 values that is
sufficient to stop the calculation. As the search algorithm proceeds, the searched

22 FIZIKA B 11 (2002) 1, 19–26



ali et al.: use of monte carlo method with simulated . . .

area is restricted to a suitable range by setting upper and lower bound values for

Fig. 1. Plotted output of Monte Carlo sum to nine Lorentzians (line) and experi-
mental spectrum (squares).

TABLE 1. Result of simulated annealing.

Optimal chi-squired value (reduced) 1.43
Number of function evaluations 162001
Number of accepted evaluations 81020
Final value of C 0.304E-06
Step length O(E-4)
Number of out of bound evaluations 0

the peak parameters. This restriction forces the algorithm to search only the re-
gion of interest so that very large values (which may cause floating-point errors) or
very small values (which may not allow a complete search of the function) should
not be run through the statistical function χ2. Table 1 shows the result obtained
by simulated annealing. Almost half of the function evaluations is accepted. This
ensures that the step length vector is correctly adjusted and the function is widely
investigated. Before the search procedure reaches the optimal values, a large num-
ber of intermediate results with different step length values are executed to give a
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valuable information about χ2. Table 2 shows two steps from these intermediate
results (from more than 150); the first step and the last step before using simu-
lated annealing subroutine. The step length starts with a large value to give an
approximate estimation of the function χ2, and accordingly, most of the moves are
accepted. As the control parameter C declines, the step length decreases and the
calculation is focused on the most promising area.

TABLE 2. The intermediate result from SAA.

Intermediate results
First step Last step

Current value of C 100.0 0.3419E-6
Min function value so far 3.54 1.463
Total moves 900 900
Downhill 453 363
Accepted uphill 396 66
Rejected uphill 51 471
Step length 4.0 O(E-4)-O(E-5)
Trails out of bounds 0 0

The optimal solution given by SAA is quite useful for this method since only few
solutions (21 in our case) need to be performed by Monte Carlo search for the best
computed spectrum. Perhaps this is also useful for some other fitting procedures
where good initial values are recommended. The constraints among the parameters
can be easily applied without affecting smooth running of the program. The ability
of the SAA to identify corner solutions for functions that do not exist in some
regions [6] gives the possibility for finding the peak(s), if any, that was (were) not
included in the computations.

The major limitation of this method is that it is costly in terms of function
evaluations, i.e., to reach the global optima, C should be decreased slowly. This is
a lengthy, time consuming process. However, the execution time can be minimized
by an appropriate choice of α and Nitr prior to the calculation. Coupled with the
rapid increase of computer power, this limitation will no longer affect the method
and its applicability with regards to the computation time.

4. Summary and conclusion

We have applied the Monte Carlo method to analyze Mössbauer spectra. The
application shows that SAA can be effectively used to Mössbauer analysis and offers
a viable way of optimizing functions fit to Mössbauer data. The method is conve-
nient for its simplicity and general applicability because no specific information
about the function to be optimized is needed prior to application. Coupled with
the fact that SAA is capable to optimize difficult functions (with large number of
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parameters), this procedure may also be used to analyze other profiles that describ-
ing Mössbauer spectra. The source code is written in Fortran and is available from
the authors.
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PRIMJENA MONTE CARLO METODE S ALGORITMOM SIMULIRANOG
OPUŠTANJA U ANALIZI MÖSSBAUEROVIH SPEKTARA

Opisujemo pogodan i snažan postupak za analizu Mössbauerovih spektara zas-
novan na Monte Carlo metodi. Primjenjuje se pristup simuliranog opuštanja za
nalaženje najpovoljnijih parametara Lorentzovih profila Mössbauerovih spektara
koji su početne vrijednosti za Monte Carlo program traženja. Zatim se nasumice
stvara niz rješenja za funkciju koja opisuje spektar dok se ne postigne rješenje koje
je u najboljem skladu s eksperimentalnim podacima. Postignuti ishod je u dobrom
skladu s mjerenim spektrom, što pokazuje vrijednost metode.
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