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At a low resolution scale with Q2 = pu? corresponding to the nucleon bound
state, deep inelastic unpolarized structure functions Fj(x,pu?) and Fy(x,pu?) are
derived, with correct support using the symmetric part of the hadronic tensor un-
der some simplifying assumptions in the Bjorken limit. For doing this, the nucleon
in its ground state has been represented by a suitably constructed momentum
wave packet of its valence quarks in their appropriate SU(6) spin flavour config-
uration, with the momentum probability amplitude taken phenomenologically in
reference to the independent quark model of scalar-vector harmonic potential. The
valence quark distribution functions u,(x,u?) and d,(z, u?), extracted from the
structure function Fi(z,u?) in a parton model interpretation, satisfy normaliza-
tion constraints as well as the momentum sum-rule requirements at a bound state
scale of u? = 0.1 GeV2. QCD evolution of these distribution functions taken as
the inputs, yields at Q2 = 15 GeV?, zu,(z, Q3) and xd,(z, Q%) in good qualitative
agreement with the experimental data. The gluon distribution G(x,Q3) and the
sea-quark distribution gs(x, Q%), which are dynamically generated using the leading
order renormalization group equation, also match reasonably well with the avail-
able experimental data.
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limit, independent quark model of scalar-vector harmonic potential, parton model, com-
parison with experimental data

1. Introduction

It is well known that low-energy description of hadron structure in terms of
constituent quark models have been quite successful in explaining a large body of
relevant experimental data. But at very high energies, quantum chromodynamics
(QCD), the theory of strong interactions of quarks and gluons, sets a different
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framework of a more complex quark-parton picture of hadrons for understanding
the deep-inelastic scattering (DIS) phenomena. In this picture, the deep-inelastic
lepton-nucleon scattering is described in terms of unpolarized structure functions
Fi(z,Q?%) and Fy(x, Q?), which are expressed as the charge squared weighted combi-
nations of quark-parton distribution functions f,(z,@?). These parton distribution
functions f,,(x, @?), interpreted as the probability of finding a parton p (quark or
gluon) in the hadron with a fraction ‘x’ of the hadron momentum when probed with
very high momentum transfer @2, play an important role in the standard model
phenomenology providing a deeper understanding of the quark gluon structure of
the hadron at very high energies. In this connection many experiments have been
made to measure the deep-inelastic structure functions from which parton distri-
butions inside the nucleon at very high energy have been extracted [1,2]. Although
Q?-dependence of the parton distribution functions(PDF) is successfully described
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi( DGLAP) evolution equations [3]
within perturbative QCD, absolute values of these observables are not provided
theoretically by QCD to be compared with the experimental data. This is because
it requires some initial input distribution at lower resolution scale Q2 = ;2, which
has not been possible from a first principle QCD-calculation due to the inadequate
understanding of the non-perturbative QCD in the confinement domain. Although
lattice QCD as a favourite first principle technique has been pursued in this context
[4], it does involve inevitably increasing computational complexity in arriving at
any desirable precision in its prediction. Therefore, it had been a common prac-
tice to take the initial input distributions at a lower reference scale in suitable
parametrized forms, which are fitted ultimately after the QCD evolution with the
available experimental data. Alternatively, there have been attempts to derive the
distribution functions at the bound state scales of the nucleons, described by the
low-energy QCD-inspired phenomenological constituent-quark models, which have
been pursued over the years by many authors [5-13] with the purpose of estab-
lishing a much desired link between the low-energy constituent-quark picture and
the high-energy quark—parton picture of the hadron structure, which may provide
a better understanding of the parton distribution in nucleons inside the nucleus, as
well as of the parton contributions to the proton spin.

The structure functions derivable from a constituent quark model, correspond-
ing to a low-energy resolution scale Q? = p? ~ O(AQQC p), is considered to represent
the twist-2 non-singlet part of the physical structure function. Since at higher Q2-
region, it is the twist-2 part of the physical structure function that dominates,
QCD evolution of the model-derivable structure functions at Q2 = u? can provide
results for comparison with the available data at higher Q2. However, the structure
functions and the parton distributions derived at the bound-state scale in con-
stituent quark models usually encounter a pathological problem by not vanishing
beyond x = 1, as required by energy-momentum conservation, which is commonly
described as a ‘poor support’. Based on the study of one-dimensional Bag model,
Jaffe [14] had suggested a mapping of the distribution function so derived from the
region 0 < x < oo, to the kinematically allowed region 0 < x < 1, which was ap-
plied to three dimensions as well, for removing the support problem. However, this
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was just a prescription only. The problem has been addressed in the centre-of-mass
Bag model [7], where an effective covariant electromagnetic current of the nucleon
is considered, which satisfies the translational invariance and hence conserves the
four momentum. Another approach of using the Peierls-Yoccoz projection was also
suggested by Benesh and Miller [6]. Calculation based on Bethe-Salpeter and light-
cone formalism [11] do avoid the support problem. Bickerstaff and Londergan [12]
have tried with a different picture of the nucleon, where the confined constituent
quarks are treated approximately as a system of infinite free fermion gas at finite
temperature. Most of these early calculations, with or without the support problem,
yield more or less qualitatively reasonable results by way of fitting the experimental
data with the QCD-evolved structure functions or the parton distributions realized
from the model input expressions.

In our earlier work, we also attempted to derive the structure functions of
the nucleon at a low resolution scale in an alternative constituent quark model
of relativistic independent quarks, confined by an effective scalar-vector harmonic
potential in a Dirac formalism, whose model parameters had been fixed earlier at
the level of hadron spectroscopy and static hadron properties [15]. The predictive
power of this model had also been successfully demonstrated in wide ranging low-
energy hadronic phenomena which include the weak and electromagnetic decays
of light and heavy flavour mesons [16], elastic form factors and charge radii of
nucleon [15], pion and kaon [17] and the electromagnetic polarizability of proton
[18]. Extending this model to the study of deep-inelastic scattering of electrons off a
nucleon, we had obtained quite encouraging predictions for the polarized structure
functions ¢¥ (z, Q%) and g5 (z, Q?) [19], as well as the unpolarized structure functions
FY(z,Q?%), Fi(z,Q?) with the resulting parton distributions [20] at a qualitative
level. In these works we had taken the usual approximation that the nucleon at
some static point of Q? = u?, consists only of the valence quarks with no gluons
or sea-quarks as constituents. The model solutions for the bound valence quark
eigenmodes provide the essential model input in expressing the electromagnetic
currents which ultimately define the relevant hadronic tensor for deep-inelastic
process. Explicit functional forms of the polarized as well as unpolarized structure
functions were then derived analytically from the antisymmetric and symmetric
part, respectively, of the hadronic tensor in the Bjorken limit. However the structure
functions so derived at the model scale expectedly encountered the support problem,
although it was found to be minimal. Therefore, in the present work, we would like
to improve upon our earlier attempts by a somewhat different approach within the
scope of the same model in order to realize correct support in the structure function
from which the parton distributions in the nucleon can be extracted.

For doing this, we describe the nucleon in its ground state by a suitably con-
structed momentum wave packet of its valence quarks in appropriate SU(6) spin-
flavour configuration, where each of these quarks is taken in its respective mo-
mentum states with a momentum probability amplitude derivable from its bound
state energy eigenmode obtained in the model. The wave packet includes explicitly
a four delta function to ensure energy—momentum conservation at the compos-
ite level. The quark-field operators defining the electromagnetic currents in the
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hadronic tensor are expressed as free field expansions. Then the unpolarized struc-
ture functions F7(z,u?), derived from the symmetric part of the hadronic tensor
with certain simplifying assumptions in the Bjorken limit, are found to be free from
the support problem. It becomes also true for the valence-quark distributions ex-
tracted from the structure function after appropriate comparison with its parton
model interpretation, which furthermore satisfy the normalization requirements as
well as momentum sum-rule constraints at the bound state scale. Therefore, we
believe that these valence quark distributions can provide adequate model based
inputs for QCD-evolution to experimentally relevant higher Q?-region for a mean-
ingful comparison with the experimental data.

The paper is organized in the following manner. In Sect. 2, we discuss briefly
the basic formalism with necessary model inputs to describe the nucleon in its
ground state as a wave-packet conserving energy-momentum from its constituent
level of the three valence quarks taken in their respective definite momentum
states with appropriate momentum probability amplitudes corresponding to their
ground state eigenmodes. In Sect. 3, we derive the unpolarized structure func-
tions Fy(z,Q?) and Fy(x,Q?) for the nucleon from the symmetric part of the
hadronic tensor under certain simplifying assumptions in the Bjorken limit. Sec-
tion 4 provides an appropriate parton-model interpretation of Fi(z,Q?), lead-
ing to the extraction of the valence quarks distribution functions wu,(z, Q%) and
dy(x,Q%) at a model scale of low Q2 = u2. These valence distribution functions
are found to satisfy the required normalization constraints. The bound-state scale
of Q% = p?, which is not explicitly manifested in the expressions for the distri-
bution functions, is fixed on the basis of the renormalization group equations [13]
by taking the experimental data of the momentum carried by the valence quarks
at Q2 = 15 GeV? along with the same at Q% = p?. The valence distribution
functions w,(z, Q?), d,(z,Q?) are evolved to the higher reference scale Q3 = 15
GeV? using the QCD non-singlet evolution equations, from which valence contri-
butions to the structure functions such as [F} (z, Q3)].,Fa(x, Q3)], and the com-
bination [F}(z, Q3) — F3'(x,Q3)]v = £[uv(z, QF) — du(x,QF)] are evaluated for a
comparison with the available experimental data. In Sect. 5, we attempt to obtain
the gluon and the sea-quark distributions G(z, Q3) and g,(x, Q3), respectively, by
dynamically generating them from the well known leading-order renormalization
group equation [21,22] with the valence distributions as the inputs. Then we eval-
uate the momentum fraction carried by the quark sea, the gluons and the valence
quarks at Q2 = 15 GeV?, leading to the saturation of the momentum sum-rule.
Finally, to realize the complete structure functions F3'" (x, Q%) and their difference
[FP(z, Q%) — F3(x,Q3)], taking into account appropriate sea contributions together
with the corresponding valence parts, we consider some specific prescriptions for the
flavour decomposition of the sea. The results are then compared with the available
experimental data. At the end, Sect. 6 provides a brief summary and conclusion.

2. Model framework

In a parton model study of deep inelastic scattering (DIS) of electrons off the
nucleon, which is pictured as three valence quarks embedded in the sea of virtual
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quark antiquark pairs and gluons, the partons within the nucleon are treated as
approximately free because of the asymptotic freedom property of QCD-interaction
and light cone dominance of DIS. But from the point of view of a phenomenologi-
cal quark model to start with, it may be quite justified to consider the nucleon as
consisting only of three valence quarks, which eventhough might be dressed by the
sea-quarks and the gluon, can be taken as the only resolvable individual units with
no further discrenible internal structure at the hadronic scale of low Q% = p2. The
gluon and the sea-quark contents at Q% > p? can be realized through dynamic
generation via gluon bremsstrahlung and quark pair creation in the framework of
QCD. The valence quarks constituting the nucleon at the model scale, being bound
by the confining interaction within the hadronic volume, are not really free to be in
any definite momentum states. However, in order to establish a link with the parton
model picture of DIS, one can argue in principle that the bound valence quarks in a
nucleon, during the virtual Compton scattering envisaged in the description of DIS,
can be sensed by the interacting virtual photon in various momentum states with
certain probabilities appropriate to their bound state energy eigenmodes. These
momentum probability amplitudes can be realized from the Fourier projections of
their energy eigenmodes. In that case, the nucleon at the low resolution scale, can
be thought of as a bundle of free valence quarks in SU(6) spin flavour configurations
with some appropriate momentum distribution satisfying in some heuristic manner
the energy-momentum conservation. Then one can analyse the deep inelastic scat-
tering in terms of free valence quarks interacting with the virtual photon at definite
momentum states with specific momentum probabilities, which can enable one to
establish a link between the low energy description of DIS with the parton model
interpretation at high energy.

In view of our above motivation, we prefer to represent the nucleon in its ground
state with a definite momentum P and spin projection S, to a first approximation,
by a normalized momentum wave packet of free valence quarks in the form

d3k;
|PS>= /H U

54(k1+k2+k3—P) | T'(ky1, k2, k3;S) > . (1)

Here, | T(ky1,k2,ks3;S) > provides the SU(6) spin flavour configuration of the
valence quarks in definite momentum states expressed as

| T(ky, ko ks S) > = > 2N (N} es)
1—2,3
X (Z;l (kl, )\1)0,:;2 (kg, )\2)&23(’63, Ag) | 0>. (2)
We must mention here that Z . ({\;} € S) denotes the usual spin flavour co-

efficients and a,(k, )\),a:;(lm)\) are, respectively, the free quark annihilation and
creation operators with definite momentum k and spin projection ‘A’, which obey
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the usual anticommutation relations. Finally, Gx(k1, ke, k3) represents the mo-
mentum profile function of the three quarks which is subjected to the constraint of
energy-momentum conservation, provided through the delta function in an adhoc
manner. If we consider G,(k,\’) as the momentum probability amplitude of the
bound valence quark ‘q’ in its lowest energy eigenmode @;;A(r), to be found in a

free state of definite momentum k and spin projection X, then

, 1 ufl(p, ) )
Gqp,\) = (27)% ﬁ /d3r @;’/\(r) exp (—ip-r)

= Gq(P)%x ) (3)

where E, = /|p|? + m2 and u,(p, /\,) is the usual free Dirac spinor. With reference

to a specific phenomenological quark model, such as the independent quark model

with scalar vector harmonic potential [15], G4 (k, A") can be worked out in the form
[16]

Gk, \) = Gy(k)dyy (4)
where
iNg78, (Ep + Ey) | (E, +my) i TN
Gq(k) = 02 A E, Xp (—T) . (5)

Here E, is the ground state binding energy of the bound quark in the potential
field V(r) = (1/2)(1 4+ 7°)(ar? + Vp) with rog = (a)\q)fé, and

N2 — 8(E‘1 + mq) .
T mrog(3E, +mg — Vo)

(6)

Then the momentum profile function Gy (k1, ko, k3) of the three quarks in the
nucleon can be expressed in the product form

Gn(k1, ko, ks) = G(k1)G(k2)G(k3) . (7)

It may however be noted that the momentum probability amplitude G, (k) of
individual quarks would be flavour independent in the non-strange sector, since the
model adopted here assumes SU(2) flavour symmetry. Finally, we have taken an
overall normalization factor in Eq. (1) as [N(P)]~"/2, which can be determined
considering the covariant normalization condition

<P,S|P,S >=(2r)*2Ex0*(P — P')égg . (8)
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Using Eq. (1) in Eq. (8) and expressing the momentum probability distribution for
quark ¢; as p;(k) = |Gi(k)|?, one can obtain

NV(P)| = % [N (9)
and
JN—/Hdgk ki)0H (ks + b+ ks — P). (10)

The integral in Eq. (10) can be evaluated in a quark mass limit my, — 0 for the
nucleon at rest. For doing this, we express the energy delta-function term appearing
in the expression as

(M — || — |kal)
K1 |[Fel

6([ka| + k2| + |(k1 + k2)| — M) = 6(z—2). (11)

Here z = cos 6y,, which sets the limits of integrations for |ks| as

M M
(7 = [k1l) < |ka| < 5 (12)
Then defining
Pi(kl) = / Ak [pi(k py (M — |K| — |K']),
Yk
v = [ dlklon(KDaRD. (13)
0

so that the normalization constant for the nucleon state corresponding to its rest
frame can be found as

3(0) ,
16006 Y

The integrals for p;;(|k|) and Iy can either be evaluated analytically or numerically.

N(P =0) = (14)

3. Structure functions in the model
The hadronic tensor describing the deep-inelastic electron-nucleon scattering,

which is expressed as the Fourier transform of single-nucleon matrix element of the
commutator of two electromagnetic currents in the form

W= 4 [ €69 < PS| (7,0, 1,0))| P.S >, (15)
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can be analysed in the present model framework to derive the nucleon structure
functions. In Eq. (15), ¢ is the virtual photon four-momentum and (P,S) are,
respectively, the four-momentum and spin of the target nucleon, such that

P'P, = M? S"S,=—M?*and P"S,=0. (16)

The coventional kinematic variables are usually defined as Q* = —¢?> > 0 and
= Q?/2v, where v = P-q and 0 < z < 1. In the rest frame of the target nucleon,

one takes P=(M,0,0,0) and q=(v/M, 0,0, /v2/M? + Q2).

The hadronic tensor in Eq. (15) can be decomposed into a symmetric part
Wﬁf) and an antisymmetric part W,E’;l), respectively, where W;Sf) defines the spin
averaged structure functions F (z, Q%) and Fy(x, Q?) through a covariant expansion
in terms of the scalar functions Wi (x, Q%) and Wa(x, Q?) as

Pq):| WQ(%,Q2) (17)

s) _ quqv 2 P-q
W) = — v+ Wl(va )+[(P;L_Quq_2)(Pv_QV 2 M2

uv 2
q

The deep-inelastic unpolarized structure functions F;(z, Q%) and Fy(z, Q?), which
become the scaling functions of the Bjorken variable z in the Bjorken limit
(Q? — o0, and v — oo, with x fixed) are defined as Fy(z, Q?)=W;(z,Q?) and
Fy(z,Q*)=vWa(x,Q?)/M?2. Tt is well known that, while Fy(z, Q%) provides the con-
tributions of the transverse virtual photons, a combination such as W (z, Q%) =
[Fa(x, Q%) /22 — Fi(x,Q?)] owes it to the longitudinal virtual photons. It can be
shown that Wp,(x, Q%) = %W@% , so that with W as finite in the Bjorken limit,
W1, — 0 satisfies thereby the so called Callan-Gross relation

Fy(2,Q%) = 2zFy(x, Q). (18)
Now, for a model derivation of the structure functions, one can start with Eq.
(15) with a static no-gluon approximation for the target nucleon considered at
rest with the nucleon state | P, S > represented as a momentum wavepacket of the

constituent valence quarks as given in Eq. (9). However, it is convenient to recast
Eq. (15) into a more suitable form [5]

+oo
1 ; "
Wiul0:5) = Gy | et [ [

X < P,S|[Ju(r,t), J,(r,0)] | P,S > . (19)

The electromagnetic current of the target nucleon is taken here in the form .J (&) =
D eqq(€) V1 (€), where e4 is the electric charge of the valence quark of flavour ¢
q

inside the nucleon. The quark field operators 1,(£) are expressed here appropriately
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by the free field expansion

_ 1 &’p . —ip. o ip
Pe(§) = W;/ o, [aq(p, Nu(p, N)e P + ag(p, No(p, A)e™],  (20)

where the free Dirac spinors for the valence quarks taken in the zero mass limit as

u(p,\) = VE, (o'-pl/Ep> XA
o0 = VB (7P ) 1)

Now expanding the curent commutator in Eq. (19) and taking the free quark prop-
agator appearing in the expansion under impulse approximation written in the zero
mass limit as

lim Sp(z k fre(ko) 6(k?) eFike, (22)

m—0

where €(ko) = sign(ko), and the symmetric part of the hadronic tensor WF([E) can

be obtained as

W;Ef) = [g,ukgucr + JuoGu — g,ul/g)\cr]T/\a 5 (23)
where
+oo
T2 = [32746%(0 0)0(k?) / dt ellaotko)t
X /dgr B o=@ HR)(r=T")  po (24)
and
< A7 >=< va | [,(Z)q(r’t),ya,wq(,’,"o) - 1[)(](7’/,0)")/077[}(1(7',15)] ‘ va > . (25)

Since it is evident from Eq. (17) that Fl(az Q?) = Wi(x,Q?) is the coefficient of

(—gyw) in the covariant expansion of W2, Eq. (23) in the same token can yield

Fi(z,Q%) = groT7 . (26)
Thus we find

R =Bt [ (d4’“

or)?

e(ko)d(k?) /dt el(gotko)t
X /d?’rdgrle_i(qJ’k)'(r_T/) <T >, (27)

FIZIKA B 11 (2001) 1, 27-48 35



BARIK AND MISHRA: PARTON DISTRIBUTIONS IN NUCLEON ON THE BASIS OF A ...

where

<T>=<PS|) e2[Wy(r, )T, (r',0) = Ty(r',0kTy(r,t)] | P,S > . (28)

Now substituting the nucleon state | P, S > as in Egs. (1) and (2), along with the
free-field expansions of the field operators as in Egs. (20) and (21), we can realize
after some necessary algebra

Fi(z,Q%) = [f+(2,Q%) — f-(2,Q%)], (29)

where

5(0) < €2 > 5(|k| + k
fe(2,Q%) = WNEIO)/GU% kOG(kO)/dgk%

B3k kk, (kxk),
></ Lo(lkr]) |1 4 = +1( 1 }53(k+qik1)§(qo+koiEkl)

2By, Ly, Ly,
d3kod3k
/ ﬁpﬂkﬂmﬂks\)fsg(kl + ko + k3) 0(Ey, + By, + Ex, — M).  (30)
ko ks

It is to be noted here that, with the SU(2) flavour symmetry assumed in the present
model, the spin flavour sum of the square of the quark charges of each flavour
weighted by the respective probability |Zév |2 corresponding to its SU(6) configu-
ration denoted here as < eg >, gets decoupled from the rest of the integrals after
simplification. Then one can independently evaluate < 63 > for the spin up proton
target as 1 and the same for the neutron target as 2/3.

In order to be able to perform the kg-integration first amongst the nested
integrals, we first make a reasonable approximation to extract §(ko + gotEj,)
from within the ki-integration as §(ko + qo£FE) with Ey,~FE corresponding to
the peak position of the momentum distribution p(k;) under the expressions for
fx(z,Q%). It would then imply kg = —(go+E), which are always negative in
the Bjorken limit for f; and f_ respectively. Then putting K = q + k so that
|K| = K > K,, = (|]q| — |k|), where K,, can reasonably be assumed to be much
less than (qo, |g| or |k|) in the Bjorken limit. Now doing the ko-integration, we can
write for the proton

5(0 T d|k| K2 _
120,03 = 5y [ donateostn) [ 0 - k1 £ )
0
d*k, kky . (kxki).] .
X/QEklp(|k:1|)[1+ Tt k)

d3kyd3k; 5

36 FIZIKA B 11 (2001) 1, 27-48



BARIK AND MISHRA: PARTON DISTRIBUTIONS IN NUCLEON ON THE BASIS OF A ...

The delta function 6(go — |k|£=E) in Eq. (31) sets the value of |k| = k as k+ = qo+E
and 63(K+ky) sets the struck quark momentum as k; = FK. This now leads to
certain kinematic relations relevant in further simplifying the expression f% (z,Q?)
in the Bjorken limit, which are as follows

K,=Ki(z) = [(EFMu),
cosfg =~ (Mz¥E)/K,
cosf costp =~ —(MaxFE)/K,
d(cosOp)k3 ~ KdK. (32)

Now using these kinematic relations together with the same procedure as described
in Egs. (11) and (12), and finally substituting A'(0) as in Eq. (13) to (14), after
the necessary simplifications, we get

M T dK
D 2\ __
fE(x, p®) = in 2P
Ki(x)

(K)p(K)[K — K+(z)], (33)

where we have used K+ (x) = (EF Mx). It may be noted here that 5(K) represents
the effects of the spectator quarks.

Thus using Eq. (33) in (29), we can obtain the structure function F7(z, Q?) for
the proton at its bound state scale. Similar calculation can lead to Fj*(z,Q?) for
the neutron, which would be 2F?(z,Q?) in the present model with SU(2) flavour
symmetry. Since as usual it can be shown here that W (x, Q?) is finite [24] in
the Bjorken limit, which would lead to W —0 satisfying the Callen-Gross rela-
tion from which F}""(z,Q?) can also be realized using the expressions derived for

P (2,Q%).

4. Valence quark distribution functions

In a parton picture, if we define the quark parton distribution functions in
the (u,d) flavour sector inside the nucleon in the usual manner as a combination
of valence and sea components, such as, u(z,Q?) = u,(x,Q?) + us(z,Q?) and
d(z,Q%) = dy(r,Q?) + ds(z,Q?%) with the corresponding antiparton distributions
defined accordingly, then

FY(z,Q%) = 1/18[{4u(z,Q*) + d(w, Q*)} + {4a(z, Q%) + d(=,Q*)}],
Fl'(z,Q%) = 1/18[{4d(z, Q) + u(x,Q*)} + {4d(z, Q%) + u(z,Q*)}]. (34)

Now comparing expressions in Eq. (34) with Eq. (29) and attributing as usual
for such models the negative part of the distributions in Eq. (29) to the anti-partons
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in Eq. (34), effective parton distributions can be identified [5] as

w(z, Q) = 2d(z,Q*) =4f{(x,Q%),
ﬂ(‘er2) = 2J(£7Q2):_4ff(va2)' (35)

It is to be noted here that the negative antiparton distributions, so obtained at
the model scale calculation, can be treated only as a model artifact which in fact
is encountered in all such constituent quark models [5]. This spurious contribution
needs to be appropriately eliminated in extracting the valence quark distribution
correctly from the effective parton distributions in Eq. (35). Thus keeping in mind
that @, (z,Q?) = 0 = d,(z,Q?) as per our initial assumption, and considering the
spurious parton and anti-parton sea to be symmetric (i.e., us(z) = 4s(x) = a(z)
and d(x) = d,(z) = d(x) etc.), we get the appropriate valence distributions as

uv(z, Q%) = 2dy (x, Q%) = 4[f} (2, Q%) + f2 (x,Q%)]. (36)

Thus the valence quark distribution functions w,(z,Q?) and d,(z, Q%) can be
extracted at a model scale of low Q? = p? in terms of analytically obtained ex-
pressions f¥(x,Q?) as functions of the Bjorken variable x, which can be evaluated
by taking the model parameters (a,Vp) and other relevant model quantities such
as (mgy, Eq,Toq, etc.) described in Sect. 2 as per their values found in its earlier
applications in Refs. [15,16] such as

(a,Vo) = (0.017166 GeV3, —0.1375 GeV),
(mg = my =ma, By, 10q) = (0.01GeV,0.45129 GeV,3.35227 GeV 1) . (37)

However, in view of such a current quark mass limit adopted in the model applica-
tions earlier, we believe in the justification of making all our calculations meant for
the ultimate Bjorken limit with m,; — 0 on the grounds of derivational simplic-
ity. In that case, the corresponding model quantities I/, and 7y, relevant for our
calculations, are not much different from those given in Eq. (37), since their values
now would be

(B, 70) = (0.4490 GeV, 3.37489 GeV ™), (38)

with the same potential parameters (a, Vp) as in Eq.(4.4).

We take here the actual physical mass of the proton M = 0.940 GeV and
E ~ 0.18 GeV, corresponding approximately to the peak position of the momentum
distribution p(|k1]). The distributions zu,(z, Q%) and xd,(z,Q?) are evaluated
numerically as functions of z which are presented in Figs. 1 and 2, respectively,
showing correct support. It is found that these distribution functions for the valence
quarks satisfy the normalization requirement as

[e(seg) (=) o
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1.2

Fig. 1. The calculated zu,(z,Q?) at Q% = p?> = 0.1 GeV? (dotted line) and QCD
evolved result at Q% = 15 GeV? (solid line) compared with the data taken from T.
Sloan et al. in Ref. [2].

12

0.2

Fig. 2. The QCD evolved result for xd,(x, Q%) at Q2 = 15 GeV? (solid line) is given
in comparison with the experimental data taken from T. Sloan et al. in Ref. [2].

while the total momentum carried by the valence quarks at this low reference scale
comes out as

/ z[uy (2, Q?) + dy(x, Q?)]dr = 0.994 ~ 1. (40)
0

Thus, with a close consistency in the requirements of normalization and momentum
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saturation at the model scale, it can be justified to use these valence distributions
as appropriate model scale inputs for QCD evolution to higher Q2. Realizing the
valence distributions at experimentally relevant higher Q?-region through the QCD
evolution, one can further evaluate the valence parts of the structure functions
such as F} (z,Q?%)], = tau,(z, Q%) and [F}'(z,Q?)], = szu,(z,Q?) as well as the

valence part of the combination [F} (z,Q?) — F3(z,Q?)]y = sauy(z, Q).

However, the model scale of low Q? = p? is neither explicit in the derived
expressions for the structure functions nor in the valence distributions wu, (z, Q?)
and d,(z,Q?). Therefore, we need to first fix the model scale Q% = u? with the
help of the renormalization group equation [13], as per which

/1’2 = A?QCDeLa (41)

where

—o 2
L= [V"=2(Q3) V=2 ()] In (20,
QCD

and

vi=2(Q?) = / Al (2, Q%) + dy (1, Q)]
0

as the momentum carried by the valence quarks at Q?>. Now taking the exper-
imental reference scale Q3 = 15 GeV? for which V"=2(15GeV?)~0.4 [2,8] and
V=2(u?)~1 as in Eq. (40) together with Agcp = 0.232 GeV and a%73? = 32/81
for 3-active flavours, one can obtain p? = 0.1 GeV?. If one believes that the per-
turbation theory still makes sense down to this model scale for which the relevant
perturbative expansion parameter g (u?)/2m is less than one (~ 0.358), one can
evolve the valence distributions u,(x, u?) = 2d,(x, 4?) to higher Q2%, where exper-
imental data are available. In fact, one does not have much choice here, because
taking any higher model scale on adhoc basis would require a non-zero initial in-
put sea quark and gluon constituents for which one does not have any dynamical
information at such scale and hence it would complicate the picture. Therefore,
when a,(p?)/2m is well within the limit to justify the applicability of perturbative
QCD at the leading order, and further since non-singlet evolution is believed to
converge very fast [23], to remain stable even for small values of Q?/ Aéc D, one
may think of a reliable interpolation between the low model scale of Q2 = u? < 0.1
GeV? and the experimentally relevant higher Q2 >> u2, if one does not insist
upon quantitative precision. With such justification and belief, many authors in
the past have used the choice of low Q2 = p?(for example, y? = 0.063 GeV? [9],
0.068 GeV2, 0.09 GeV? [10] and 0.06 GeV? [12]) as their static point for evolu-
tion. In fact, the choice of low Q% = u? = 0.1 GeV? in such models is linked
with the initial sea and gluon distributions being taken approximately zero at the
model scale. Following such arguments, we choose to evolve the valence distribu-
tions by the standard convolution technique based on nonsinglet evolution equa-
tions in leading order [3,23] from the static point of u? = 0.1 GeV? to Q3 = 15
GeV? for a comparison with the experimental data. Our results for zu,(z, Q3) and
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xd,(z,Q3) at Q3 = 15 GeV? are provided in Figs. 1 and 2, respectively, along
with the experimental data, which on comparison shows satisfactory agreement
over the entire range 0 < & < 1. The valence components of the structure functions
such as [F}(x,Q3)], and [F3(z, Q3)],, together with the valence part of the com-
bination [F¥(z, Q%) — F3'(z,Q3)], calculated at Q3 = 15 GeV?, are also compared
with the respective experimental data in Figs. 3, 4 and 5, respectively. We find that

0.6 T

05 - 1

04 - 1

0.1 -

0 i
0 0.2 0.4 0.6 0.8 1

Fig. 3. The calculated [FY(z,Q%)]ya at Q* = p?> = 0.1 GeV? (dotted line)
and its QCD evolved result at Q3 = 15 GeV? (dashed line). FY (z,Q?) (va-
lence+asymmetric sea: solid line) in comparison with experimental data taken
from R. G. Roberts. et al. in Ref. [1].

0.4 T

03 -

0.1

O i
0 0.2 0.4 0.6 0.8 1
X

Fig. 4. The QCD evolved result for [F3(z,Q%)]va at Q3 = 15 GeV? (dashed line)
and F3(x,Q?) (valence+asymmetric sea: solid line) in comparison with data from
R. G. Roberts. et al. in Ref [1].
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Fig. 5. The QCD evolved result for [F3 (z, Q%) — F3(x, Q3)] (dot-dashedline-valence
only; solid line- valence+asymmetric sea) at Q3 = 15 GeV? compared with the data
(over the Q*-range of the experiments as per Ref. [2]).

the agreement with the data in all these cases is reasonably better in the region
x > 0.2. This is because in the small x region, the sea contributions to the structure
functions not included in the calculation so far, are significant enough to generate
an appreciable departures from the data as observed here.

Therefore, for a complete description of the nucleon structure functions and
hence the parton distributions in the nucleon, the valence contributions discussed
above need to be supplemented by the expected gluon and sea-quark contributions
at high energies.

5. Gluon and sea quark distributions

The gluon and the sea-quark distributions at high energy inside the nucleon can
be generated purely radiatively with appropriate input of the valence distributions,
using the well known leading-order renormalization-group (RG) equations [22,23].
Considering that at higher energy, heavier flavours may be excited above each
flavour threshold, we define the total sea quark distribution here upto three flavours
as

65(2, Q%) = 2[us(z, Q%) + dy(w, Q%) + 5(z, Q%)) (42)
and the gluon distribution by G(x,Q2). Their moments ¢7(Q?) and G™(Q?), re-
spectively, can be obtained in terms of the corresponding moment V"(Q?) of the

input valence distributions V(z, Q%) = [u,(z, Q%) + dy(z,Q?)] according to the
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RG-equations such as

6@ = (S ey — @), (13)
M (Q?) = [LeF{a" Ly ™ + (1— a™ Ly " — Ly "N V™ (Q?), (44)

where the n-th moments of the functions A(z, Q*)={G(z,Q?), ¢s(z, Q?),V(z,Q%)}
are defined as

AM(Q?) = / dz 2"~ A(z, Q?), (45)
0

and the RG-exponents such as {a", 5", ag,a’} } in the conventional notations are
derivable for the n-th moment as per Ref. [23]. Finally, Ly = as(u?)/as(Q3) =
ln(Qg/ AQQCD)
In(u?/A%cp)
by the valence quarks at Q3 on the basis of the momentum saturation by valence
quarks at the model scale Q2 = u? as

, which can also be expressed here in terms of the momentum carried

~1/a}5

Lo=| / dz 2V (z, Q2) . (46)
0

With al7é? = 32/81 for three active flavours considered here, the value of L,
comes out as Lg =~ 9. Then calculating the appropriate RG-exponents as per
Ref. [23] for n = 2,4,6,8 (higher moments being significantly smaller are not con-
sidered here) and the corresponding moments V" (Q3 = 15 GeV?) from the evolved
valence distribution wu,(z, Q%) = 2d,(z, Q%) at Q2 = 15 GeV?, we evaluate the
respective moments G™(Q%) and ¢”(Q3) from Egs. (43) and (44). Then the gluon
and sea-quark distributions can be extracted by a matrix inversion technique with
the help of simple parametric expressions taken for G (z, Q3) and zq,(z, Q3) as

G (7, Q}) = [a12® + azx + a3z + as /7 ], (47)

2qs(2,Q3) = [b1a? + box + b3 +by/ VT ]. (48)

The moments calculated from these parametric expressions would now provide a
set of simultaneous equations for each set of parameters {a;} and {b;} separately.
Solving these equations by matrix inversion method, we arrive at the values of these
parameters as

{a;,i=1,2,3,4} = (—0.8659, 2.0447, —2.1086, 0.9223)
{b;,i=1,2,3,4} = (—0.2229, 0.5093, —0.5007, 0.2123) . (49)
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Thus, we generate somewhat reasonable functional forms for xqs(z,Q3) and
rG(x,Q3) at Q2 = 15 GeV? which are provided in Figs. 6 and 7, respectively, in
comparison with the available experimental data. We find the qualitative agreement
with the data quite encouraging with almost vanishing contributions in both cases
beyond x > 0.5.

12 T

0.8

0.4

0.5

Fig. 6. The dynamically generated wqs(x,Q?)(solid line) at Q3 = 15 GeV?, com-
pared with the data from T. Sloan et al. in Ref [2].

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 7. The dynamically generated zG(z,Q?)(solid line) at Q3 = 15 GeV?, com-
pared with the data from T. Sloan et al. in Ref [2].

44 FIZIKA B 11 (2001) 1, 27-48



BARIK AND MISHRA: PARTON DISTRIBUTIONS IN NUCLEON ON THE BASIS OF A ...

We find next the momentum distributions for different constituent partons at
Q3 = 15 GeV? by calculating the second moments of the distribution functions
uy(2,Q3), dy(z,Q3), qs(z,Q3) and G(z, Q%), respectively, so as to obtain them as

uy(Q32) = 0.279,(0.275 £ 0.011),
d,(Q3) = 0.140,(0.116 £ 0.017),
qs(Q3) = 0.106,(0.074 £ 0.011),
G(Q3) = 0.475,(0.535). (50)

For a comparison, the experimental values are shown within the brackets against
the calculated values. We find that the parton distributions realized at a qualitative
level in the model at Q% = 15 GeV? saturate the momentum sum-rule. Finally,

to evaluate the complete structure functions F2(p ’n)(x, Q3) by supplementing the
respective valence components with the necessary sea-contributions, we consider
a flavour decomposition of the net sea-quark distribution g(x, Q3). With an old
option of a complete symmetric sea in SU(3)-flavour sector

75 (2, Q) = [FE (2, QB)lsea = 74, OR). (51)

However, it has been almost established experimentally that the nucleon quark
sea is flavour asymmetric both in SU(2) as well as SU(3) sector. Experimental
violation of the Gottfried sum rule [25] and more recent and precise asymmetry
measurements in the Drell-Yan process with nucleon targets [26] have shown a
strong x-dependence of the ratio [ds(z, Q?)/us(x, Q?)] with ds(z, Q%) > us(z, Q?)
for x < 0.2 and ds(z,Q?) running closer to us(z,Q?) for x > 0.2, whereas
around = = 0.18, ds(z, Q?)~2u,(z,Q?). Neutrino charm production experiment
by CCFR collaboration [26] also provides evidence in favour of the relative abun-

dance of strange to non-strange sea quarks in the nucleon measured by a factor

2 < xsg > . .
K= s = 0.47740.063. Therefore, keeping these experimental facts
< [rus + xds] >

in mind, we make a reasonable choice for the flavour structure of the sea-quark
distribution as defined in Eq. (42) by taking
ds(xv Q(2)) = QUS(xa Qg) 9

5, Q3) = s, @3) + e, Q3)). (52)

Then we find the sea contributions to the structure functions F\*™ (z, Q?) as

[FQP(x’ Qg)]sea = éxQS(xa Q(2)) s

13

15 (@, Q8 = 35 200, Q3) (53)
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Then the complete structure functions F} (x, Q2) and F3'(z, Q3) with the valence
and quark sea components taken together are calculated and shown in Figs. 3 and 4
.We find that the overall qualitative agreement is reasonable for the region x > 0.04.
We have also shown in Fig. 5 the structure-function combination [F}(x, Q%) —
F(z,Q3)] by taking into account the asymmetric sea contribution as in Eq. (53),
which provides a relatively better agreement with the available experimental data
taken over a Q%-range [2].

6. Summary and conclusion

Starting with a constituent quark model of relativistic independent quarks in an
effective scalar-vector harmonic potential, and representing the nucleon as a suit-
ably constructed wave-packet of free valence quarks only of appropriate momentum
probability amplitudes corresponding to their respective bound-state eigen-modes,
we have been able to analytically derive the deep-inelastic unpolarized structure
function F¥(z,Q?) at the model scale of low Q? = p? = 0.1 GeV? with the cor-
rect support. The valence quark distributions u,(z, Q%) and d,(x, Q?) have been
appropriately extracted taking the parton model interpretation of F¥ (z,@?). The
valence distributions w,(z, @?), d,(z, Q%) satisfy the normalization requirement as
well as the momentum sum-rule constraints, providing thereby suitable low en-
ergy model inputs for QCD-evolution to experimentally relevant Q% = Q3 = 15
GeV?2. The valence distributions in the form zu,(x,Q3) and xd,(z,Q%), the va-
lence components [F3'"(x,Q3)],, as well as the valence part of the combination
[FY(2,Q3) — Fi(z,Q%)], are then realized through the QCD-evolution at Q2 = 15
GeV?, which compare reasonably well with the experimental data in the expected
range of the Bjorken variable.

The gluon distribution G(z,Q3) and the total sea-quark distribution gs(z, Q3)
are dynamically generated from the renormalization group equations, taking the
moments of the valence quark distributions at Q3 = 15 GeV? as inputs. The re-
sults for G (z, Q3) and xqs(z, Q3) find good agreement with the experimental data.
Calculation of the constituent parton momenta also yields the momentum percent-
age in the valence-quark sector as ~27.9% and ~14.0% for the ‘v’ and ‘d’ flavour
quarks, respectively, whereas in the gluon and sea quark sector we find the same to
be 247.5% and ~10.6%, respectively, satisfying thereby the expected momentum
sum-rule. Incorporating the sea-quark contributions to the valence part of the struc-
ture functions, the complete unpolarized structure functions F}(x, Q3), F3'(x, Q3)
and the combination [F} (x, Q%) —F5(z, Q3)] are obtained in a reasonable agreement
with the data in the region x > 0.1.

Of course, there are various finer features of the nucleon structure functions
together with their behaviour near the region x = 0, which would be beyond the
limit of this simplistic approach in the model to address. Nevertheless, within
its limitations, the model is found to provide a simple parameter-free analysis of
the deep-inelastic unpolarized structure functions of the nucleon leading to the
realization of its constituent parton distributions at Q2 = 15 GeV? with an over-all
qualitative agreement with experimental data.
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PARTONSKE RASPODJELE U NUKLEONU NA OSNOVI
RELATIVISTICKOG MODELA NEOVISNIH KVARKOVA

Upotrebom simetri¢nog dijela hadronskog tenzora, uz pojednostavljenje u Bjorken-
ovoj granici, izveli smo duboko-neelasti¢ne strukturne funkcije bez polarizacije
Fy(z,p4?) i Fy(x,p4?) za slabo razluéivanje sa Q? = p?, §to odgovara vezanom
nukleonskom stanju. Nukleon se u svom osnovnom stanju predstavlja pogodno
odabranim impulsnim valnim paketom svojih valentnih kvarkova u prikladnom
SU(6) spinskom okusnom sklopu, a impulsne amplitude vjerojatnosti uzimaju se
fenomenoloski prema modelu neovisnih kvarkova skalarno-vektorskog harmonickog
potencijala. Iz strukturne funkcije Fy(z, u?) izvode se funkcije raspodjele valentnih
kvarkova wu,(z, u?) i d,(x, u?) u partonskom modelu, i one zadovoljavaju uvjete
normalizacije i impulsnog zbrojnog pravila na ljestvici vezanja pu? = 0.1 GeV2. Po-
lazedi od tih funkcija za Q3 = 15 GeV2, QCD razvoj daje zu,(x,Q3) i xd,(z, Q3),
u dobrom skladu s mjernim podacima. Gluonska G(x, Q%) i kvarkovska gs(z, Q3)
raspodjela tvore se dinamicki upotrebom jednadzbe renormalizacijske grupe u pr-
vom redu i takoder se dobro slazu s mjernim podacima.
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