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1. Introduction

The energy of the vacuum, the zero-point energy, is a direct consequence of
quantum mechanics. Since the birth of quantum mechanics, a central question has
been whether this vacuum-state energy could have physical (measurable) conse-
quences. Casimir effect is one of the well-known dynamical effects of the quantum
vacuum state. Its importance follows from the fact that this effect was not only the-
oretically predicted but it has also been experimentally verified. The first time the
attraction of two parallel neutral conducting plates due to electromagnetic vacuum
fluctuations was predicted and then a large set of different experiments about the
Casimir’s idea [1] was done by many cooperating experimentalists and theoreticians
(for more information see, e.g., Refs. [2, 6]). The vacuum-state energy should be
of interest from the point of view of modern cosmology due to the production of a
nonzero cosmological constant [7], which can drive the inflation process.

In this paper, we are interested in the vacuum-state energy of a real scalar field
Φ in four situations which differ in a way in which the nonzero vacuum energy
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is caused. In Sect. 2, the scalar field on an interval (finite segment of a line) is
discussed. The nonzero vacuum-state energy appears as the consequence of the
boundaries. This example is most similar to the original Casimir’s idea [1] con-
firmed recently [16] by the measurement of attraction of uncharged conducting
plates. In Sects. 3 and 4, the Casimir’s energy of the scalar field on a circle (one
dimensional sphere) and a two dimensional sphere is discussed. In these cases, the
nontrivial properties of vacuum state follow from the nontrivial (different from the
Minkowski space) topology. In Sect. 5, the new ideas of noncommutative geometry
are implemented: Casimir’s energy is computed on a two dimensional fuzzy-sphere.
In this case, “the problems” with renormalization and regularization disappear.
Noncommutativity yields a natural cut-off by introducing a new fundamental con-
stant, fundamental in the sense of being similar to the Planck constant. In the last
section, we discuss some specific questions concerning the Casimir effect on the
noncommutative sphere and also on the noncommutative cylinder.

2. Scalar field on an interval

We start with a real scalar field Φ = Φ(t, x) defined on a space interval of length
a: x ∈ 〈0, a〉. It means that our space-time is a strip of two dimensional Minkowski
space1 with a space size equal to a. The dynamics of the classical field Φ with the
mass m is given by the Lagrangian density

L =
1
2
∂µΦ∂µΦ − 1

2
m2c2

h̄2 Φ2 , (1)

from which the well-known (Klein-Gordon) equation of motion follows

1
c2

∂2Φ
∂t2

− ∂2Φ
∂x2

+
m2c2

h̄2 Φ = 0 . (2)

We impose now boundary conditions on the (classical) field Φ. We have to be
aware of the importance of the boundary conditions which play an important role
because they define the situation and should be imposed in a physical way in a
realistic situation2. We have chosen the Dirichlet conditions

Φ(t, x = 0) = Φ(t, x = a) = 0 . (3)

The complete orthonormal set of functions obeying the boundary problem (2) and
(3) with respect to the scalar product related to Eq. (2)

(Φ1,Φ2) :=
i
c

a∫
0

dx (Φ∗
1∂tΦ2 − Φ2∂tΦ∗

1) , (4)

1We are using the notation that space-time interval ds is given by ds2 = c2dt2−dx2 = dxµdxµ

and x0 = ct, x1 = x and greek indices ∈ {0, 1}.
2For example, in the case of an electromagnetic field, we have the well-known boundary con-

ditions on the surface of an ideal conductor.
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is as follows

u(±)
n (t, x) =

(
c

aωn

)1/2

e±iωnt sin(knx) , (5)

where

ωn =
[
m2c4

h̄2 + c2k2
n

]1/2

, kn =
πn

a
, n ∈ {1, 2, 3, . . .} .

Any solution to our boundary problem can be expanded into the series of func-
tions (5). The canonical quantization of the field Φ is performed by means of such
an expansion

Φ(t, x) =
∞∑

n=1

[
u(+)

n (t, x)a+
n + u(−)

n (t, x)an

]
, (6)

where a and a+ are the annihilation and creation operators obeying the canonical
commutation relations[

an, a+
m

]
= δnm , [an, am] =

[
a+

n , a+
m

]
= 0 . (7)

The vacuum state |0〉 is specified as usual by the conditions

an|0〉 = 0 ∀ n . (8)

We are interested in the energy of this state, it means we would like to compute
the vacuum expectation value of the Hamiltonian density H

H =
∂L

∂(∂tΦ)
∂tΦ − L =

h̄c

2

[
1
c2

(∂tΦ)2 + (∂xΦ)2
]

+
1
2

m2c2

h̄2 Φ2 . (9)

Inserting Eq. (6) into Eq. (9) with respect to Eqs. (7) and Eq. (5), we easily get
the energy density in the form

〈0|H|0〉 =
h̄

2a

∞∑
n=1

ωn − m2c4

2ah̄

∞∑
n=1

cos(2knx)
ωn

,

so, the total energy of the vacuum state E(a,m) is the integral over x ∈ 〈0, a〉 of
the energy density given by the previous formula

E(a,m) =
h̄

2

∞∑
n=1

ωn . (10)

The quantity E(a,m) is evidently divergent but there is a standard possibility to
give a meaning to it using a regularization. One of the simplest methods used in the
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original work [1] is to introduce a dumping function (something like the Boltzmann
factor) exp(−εω) with ε > 0 behind the summation sign in Eq. (10). We shall
start disscusion about the regularization with the case of a massless field (m = 0),
because it simplifies the situation. The regularized energy is

Eε(a, 0) =
h̄

2

∞∑
n=1

cπn

a
exp

(
−cπn

a
ε
)

=
cπ

a

h̄

8
1

sinh2
(cπε

2a

) . (11)

We can expand the quantity Eε(a, 0) into the series of powers of the regularization
parameter ε. The series contains a term which is singular when ε approaches zero.

Eε(a, 0) =
cπ

a

h̄

8

[
a2

c2h̄2

4
ε2

− 1
3

+ O(ε2)
]

. (12)

Let us denote by Ephys(a, 0) the physical (relevant) energy of our vacuum state.
We would like to identify this quantity with the nonsingular term in Eq. (12), i.e.
to write

Ephys(a, 0) = −πh̄c

24a
, (13)

but how to argue that this is the case? One kind of argument could be based on
the following. We are not interested in the energy but in the energy differences3,
i.e. the force F = (E(a + da, 0) − E(a, 0))/da is important rather than the energy.
It means that if we perform several regularizations and renormalizations, we should
obtain the same result for the force. We can choose the energy of Minkowski vacuum
per length a: (EM(a,m)) to be zero and define the physical value of the vacuum
energy by

Ephys(a,m) := lim
ε→0+

[
Eε(a,m) − EM

ε (a,m)
]

. (14)

Let us compute EM(a,m) in the canonical way presented above. The result is

EM(a,m) =
h̄a

2π

∞∫
0

ωdk , where ω =
(

m2c4

h̄2 + c2k2

)1/2

. (15)

It is easy to compute the regularized value EM
ε (a,m) for the massless field. One

gets

EM
ε (a, 0) =

h̄a

2π

∞∫
0

ωe−εωdk =
h̄a

2πc

∞∫
0

ωe−εωdω =
h̄a

2πc

1
ε2

. (16)

3That is always true if the gravitation does not play any role.
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Using the definition formula (14) for the physical value of the vacuum state energy,
we instantly get above expected result (13).

Macroscopic effect of the vacuum energy is the force (attractive) between the
end points of the interval obtained from Eq. (13) as

F = −dEphys(a, 0)
da

= − πh̄c

24a2
.

Now we shall rewrite the above described alghoritm into a more convenient and
usable form. The renormalized vacuum energy (14) is of the form

lim
ε→0+


 ∞∑

n=0

Fε(n) −
∞∫
0

Fε(x)dx


 ,

where Fε(n) = (h̄/2)(cπn/a)f(εω), f(εω) is a (smooth) dumping function and F
is an analytic function in the complex z half-plane, Re(z) > 0, and the sum and
integral exist. Then we can use the so-called Abel-Plana formula (see, e.g. Ref. [5])

∞∑
n=0

Fε(n) −
∞∫
0

Fε(x)dx =
1
2
Fε(0) + i

∞∫
0

Fε(it) − Fε(−it)
e2πt − 1

dt . (17)

The integral on the right-hand side of Eq. (17) converges uniformly for all ε > 0,
so we are allowed to perform the limit before the integration. We easily get

Ephys(a, 0) =
1
2
0 + i

∞∫
0

h̄
2

cπ
a (it) − h̄

2
cπ
a (−it)

e2πt − 1
dt = − h̄cπ

a

∞∫
0

tdt

e2πt − 1

= − h̄cπ

a

1
(2π)2

∞∑
k=1

∞∫
0

ue−kudu = − h̄cπ

a

1
(2π)2

π2

6

= − h̄cπ

24a
, (18)

that is in accord with (13).
Another way how to obtain the result (13) is to use the renormalization that

uses the so-called zeta function regularization (see, e.g., Ref. [4]). The idea is to
take the formula (10) and to see that it can be formally understood as follows

E(a, 0) =
h̄

2
cπ

a

∞∑
n=1

n =:
h̄

2
cπ

a
ζ(−1) = Ephys(a, 0) , (19)
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where ζ is the Riemann zeta function defined for complex z with Re(z) > 1 by the
sum

ζ(z) =
∞∑

n=1

n−z .

The expression ζ(−1) has to be understood as the value of analytic continuation
(see, e.g., Ref. [5]) of the Riemann zeta function into a whole complex plane. Such
a continuation is given by the functional formula4 ([5] or [8])

Γ
(z

2

)
π−z/2ζ(z) = Γ

(
1 − z

2

)
π(1−z)/2ζ(1 − z) .

Using the previous formula, we get ζ(−1) = −1/12, so substituting this value into
Eq. (19), we get instantly the result (13).

Now we are going to use the procedure of renormalization based on the Abel-
Plana formula (17) for the massive scalar field Φ. We have from (10) and (5)

Eε(a,m) =
h̄

2

∞∑
n=1

ωne−εωn = −mc2

4
+

∞∑
n=0

ωne−εωn .

The above calculations with Fε(x) = h̄/2
√

m2c4/h̄2 + π2c2/a2x2 lead to the result

Ephys(a,m) = − mc2

4
− h̄c

4πa

∞∫
λ

√
t2 − λ2

et − 1
dt = −mc2

4

− h̄c

4πa
λ2

∞∫
1

√
t2 − 1

eλt − 1
dt

= −mc2

4
− h̄c

4πa
λ2

∞∫
0

sinh2(u)
eλ cosh(u) − 1

du , (20)

where
λ = 2

mca

h̄
.

We mention that the constant additive term −mc2/4 does not contribute to the
force, and that by putting m = 0, we obtain Eq. (12). One can investigate the
behaviour of Ephys(a,m) in the limit of a very massive field (λ → ∞). It is easy
to see that in this case the Casimir’s energy and the corresponding Casimir’s force
are exponentially suppressed by the factor e−λ. Let us notice that λ is nothing else
but double length of our interval measured in the units of the Compton wavelength
of matching particle Φ.

4Γ(z) is the Euler’s gamma function.
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3. Scalar field on a circle

We consider the scalar field Φ on a circle with the radius equal to a > 0. It
means that our space-time is a cylinder of radius a (x is the space coordinate,
x ∈ (0, 2πa)) with time from −∞ to ∞. Equation of motion for such a field is
the Klein-Gordon equation (2). The case now differs from the previous one by
the boundary conditions imposed on the field. Topology of the circle defines the
periodic boundary conditions

Φ(t, 0) = Φ(t, 2πa) ,
∂xΦ(t, 0) = ∂xΦ(t, 2πa) .

(21)

Canonical quantization leads to the expansion of the field Φ given by Eq. (6) with
the operators an and a+

n obeying canonical commutation relations (7). Normalized
mode functions u

(±)
n are given by the formulae

u(±)
n (t, x) =

(
c

2aωn

)1/2

exp(±i(ωnt − knx)) ,

ωn =
[
m2c4

h̄2 + c2k2
n

]1/2

and kn =
n

a
with n ∈ Z . (22)

Using the expansion (6) with respect to the formulae (22), we can get the unrenor-
malized energy of the vacuum (once again specified by (8)) in the form

E(a,m) =

2πa∫
0

〈0|H(t, x)|0〉dx =
h̄

2

+∞∑
n=−∞

ωn = −mc2

2
+ h̄

∞∑
n=0

ωn . (23)

The sum expressing E(a,m) is again divergent and should be renormalized. We are
going to renormalize5 it using the Abel-Plana formula (17) with

F (z) =
h̄c

a

√
λ2 + z2 where λ =

mca

h̄
. (24)

The result is

Ephys(a,m) = −2h̄c

a

∞∫
λ

√
t2 − λ2

e2πt − 1
dt = −2h̄c

a
λ2

∞∫
0

sinh2(u)
e2πλ cosh(u) − 1

du . (25)

The special case is the massless field, which corresponds to the situation λ being
zero. In this case, we are able to express Ephys in an algebraical form

Ephys(a, 0) = − h̄c

12a
. (26)

5The meaning of the definition formula (14) in this case is the same as in Sect. 2, because the
Minkowskian vacuum now corresponds to the same one, the vacuum of Φ in the two dimensional
Minkowski space-time.
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We note that at λ À 1 both Casimir’s energy and force are again exponentially
suppressed by the factor e−λ (see Fig.1). This follows from Eq. (25).

1 2 3 4

0.25

0.5

0.75

1

1.25

1.5

Fig. 1. Typical dependence of the Casimir’s energy of a scalar field on both a line

segment and a circle on λ parameter - the function f(λ) =
∞∫
λ

√
x2 − λ2/(exp(x)−1).

4. Scalar field on a two-dimensional sphere

We consider a real scalar field on a two dimensional sphere (S2) of the radius a.
It means that our space-time is S2 × R1. It is somewhat more difficult to describe
the dynamics of the field than in the previous two sections. It is so due to the fact
that our current space-time is curved (its Riemann curvature tensor is not zero).
In general, a lot of problems follow from this fact at the quantum level (see, e.g.,
Ref. [3]). Our point of view will be canonical. We define the dynamics of the field
Φ giving the Lagrangian density

L =
1
2

√
|g| [gµν∂µΦ∂νΦ − [m2 − ΞR]Φ2

]
, (27)

where gµν are the components of the metric. In the standard spherical coordinates
(θ, φ) one has

g = c2dt ⊗ dt − a2
[
dθ ⊗ dθ + sin2(θ)dφ ⊗ dφ

] ≡ gµνdxµ ⊗ dxν ,

where |g| is the absolute value of the determinant of the metric, m is the mass
of the field, R is the scalar curvature (computed with respect to the Levi-Civita
connection) and Ξ is a coupling constant to the scalar curvature. At the moment,
Ξ is not specified.

We shall use the coordinates (t, θ, φ) in what follows, so we put down g =
ca2 sin(θ). The scalar curvature is given by

R = − 2
a2

.
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The equation of motion which follows from the Lagrangian density (27) is the
covariant wave equation

|g|−1/2∂µ

(
|g|1/2gµν∂νΦ

)
+ (m2 − ΞR)Φ = 0 . (28)

In the coordinates we are using, one obtains

∂2Φ
∂t2

− c2

a2
∆θφΦ + c2

(
m2c2

h̄2 +
2Ξ
a2

)
Φ = 0 , (29)

where ∆θφ is the standard Laplace operator on S2.
We see that a nonzero value of Ξ corresponds only to the redefinition of the

mass. It is so due to the time independence of the metric. In the general case, the
coupling to the curvature is very important and leads to many effects (see Ref. [3]).
We shall use the so-called conformal coupling Ξ = 1/8. We can introduce the new
(effective) mass M as follows

M2c2

h̄2 :=
m2c2

h̄2 +
2Ξ
a2

. (30)

Now we have to find a complete orthonormal set of solutions to Eq. (29), say
u(±)(t, θ, φ). One can separate variables in Eq. (29) by putting

Φ(t, θ, φ) = exp(iωt)Ylm(θ, φ) ,

where Ylm are the spherical harmonics. They are eigenfunctions of the Laplace
operator ∆θφ on the sphere with eigenvalues −l(l + 1) where l ∈ {0, 1, 2, . . .} and
m ∈ {−l,−l + 1, . . . , l}. Substituiting this ansatz to Eq. (29), we get the following
set u(±) of solutions to our equation

u
(+)
lm (t, θ, φ) =

1
a

√
c

2ωl
exp(iωlt)Ylm(θ, φ) ,

u
(−)
lm (t, θ, φ) = (u(+)

lm (t, θ, φ))∗ ,

(31)

which is orthonormal (with respect to the scalar product (4)) and complete (this
follows from the properties of the spherical harmonics). The frequency ωl (as well
as energy) depends only on the quantum number l and is given by

ωl =
[
m2c4

h̄2 +
c2

a2
(2Ξ + l(l + 1))

]1/2

=
[
M2c4

h̄2 +
c2

a2
l(l + 1)

]1/2

. (32)

The field operator Φ can be expanded into the modes u
(±)
lm as follows

Φ =
∞∑

l=0

l∑
m=−l

[
u

(+)
lm a+

lm + u
(−)
lm alm

]
, (33)
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where a+ and a are creation and annihilation operators obeying the commutation
relations

[a+
lm, al′m′ ] = −δll′δmm′ [alm, al′m′ ] = [a+

lm, a+
l′m′ ] = 0 .

Now we can insert this expansion into the Hamiltonian density, constructed from
the Lagrangian density (27) in a canonical way, integrate over all sphere with the
result that the unrenormalized energy of the vacuum state is6

E(a,m) =
h̄

2

∞∑
l=0

(2l + 1)ωl = h̄
∞∑

l=0

(
l +

1
2

)
ωl =

= h̄
∞∑

l=0

(
l +

1
2

)√
M2c4

h̄2 +
c2

a2
l(l + 1)

=
h̄c

a

∞∑
l=0

(
l +

1
2

) √
m2c2

h̄2 +
(

l +
1
2

)2

. (34)

Since E(a,m) is divergent, it should be renormalized. We are going to use the Abel-
Plana formula (a little modified) to do this. But first, we would like to mention that
M2 ≥ 0 follows from the formulae (31) and (32) and their physical interpretation.
If it were not the case we would get at least one exponentially (in time) expanding
and one decreasing mode that do not conserve the probability. One can understand
this fact as a constraint to the value of Ξ at the given values of m and a.

The possibility to use something like Abel-Plana formula (17) is based on the
fact (we are using now the same logic as in Sect. 2) that the energy of Minkowski
vacuum (2+1 Minkowski space) per area of the sphere of radius a (4πa2) is given
by

EM(a,m) = 4πa2 h̄

2

∞∫
−∞

∞∫
−∞

dk1dk2

(2π)2
c

√
k2
1 + k2

2 +
m2c2

h̄2 =

a2h̄c

∞∫
0

dkk

√
k2 +

m2c2

h̄2 =
h̄c

a

∞∫
0

dzz

√
z2 +

M2c2a2

h̄2 . (35)

Now, combining the last two formulae, we can use the half-integer Abel-Plana

6In this formula the following property of spherical harmonics has been used:

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ, φ) =

2l + 1

4π
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formula (see [5])

∞∑
n=0

F (n + 1/2) −
∞∫
0

dzF (z) = −i

∞∫
0

dz
F (iz) − F (−iz)

e2πz + 1
,

with F (z) = h̄c/az
√

z2 + λ2, where

λ =
mca

h̄
,

to get the final result for the Casimir’s energy. Computations lead to the result

Ephys(a,m) = 2mc2λ2

1∫
0

z
√

1 − z2

exp(2πλz) + 1
dz . (36)

Plots of this function and of its first derivative are shown in Fig. 2.

0.25 0.5 0.75 1 1.25 1.5 1.75

0.005

0.01

0.015

0.02

energy

0.25 0.5 0.75 1 1.25 1.5 1.75

0.005

0.01

0.015

0.02

0.025

0.03

force

Fig. 2. Casimir’s energy and force on the two dimensional sphere. Plots of the func-

tion f(λ) = λ2
1∫
0

z
√

1 − z2/(exp(2πλz) + 1)dz (energy, left) and its first derivative

(absolute value of the force).

The Casimir’s energy on a sphere is not exponentially suppressed at large values
of the field mass m, but the force is. So, we obtained the similar result for the
behaviour of the Casimir effect at the very large value of the field mass as in the
two previous sections. The energy Ephys(a,m) increases as the radius increases, so
the Casimir’s force makes the sphere small - it is attractive.

5. Scalar field on a non-commutative two-dimensional
sphere

Since the works of Connes [9], the ideas of the non-commutative (NC) geometry
have been applied to physics many times. In the case of three- and two-dimensional
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models (two space dimensions + external commutative time or one space dimen-
sion and one noncommuting time), there are many papers in which the quantum
mechanics and the field theory have been formulated. For the review see Ref. [13]
and the references therein. Special effects have been investigated in Refs. [11] and
[12]. The physical idea to replace our standard point of view on the space-time
by the NC geometry is based on the statement that at very short distances, the
standard concept of a smooth manifold would change into somewhat else. “The
short distances” are usually accepted to be of the Planck length lP

lP =
(

κh̄

c

)1/2

≈ 10−35m,

where κ = 6.67 × 10−11 Nm2kg−2 is the Newton gravitational constant. One of
the main goals of the field theories formulated on noncommutative versions of
the standard spaces is that the UV-regularization appears automatically in such
theories if the space under consideration is compact (like S2). This is due to the fact
that all operators have finite dimensional representations (they can be written as
the matrices of finite rank) and, therefore, there is no place for UV-divergences. But
in the case of non-compact spaces, the situation quite differs and UV-divergences
persist in the theory [14], and moreover, the new divergences appear. We will discuss
this effect for a special case in the last section of this paper.

As we have seen in Sect. 4, the scalar field on the standard, commutative sphere
can be expanded into the series (33), where the space-dependence of Φ is encoded
in the spherical harmonics Ylm(θ, φ). So, for a fixed moment of time, one can write

Φ(t,x) = Φ(x) =
∑
lm

αlmYlm(x) ,

where αlm are complex constants obeying αl−m = α∗
lm, due to the fact the field is

real. It means that the scalar field Φ is a function S2 → R at a fixed moment of
time. In Ref. [10], the idea is used that the property Φ is defined on S2 is encoded
in the properties of spherical harmonics Ylm that are a functional representation of
the rotation group SO(3). The function Φ can be also treated as the function of
three real parameters (x1, x2, x3) ∈ R3 with the constraint x2

1 + x2
2 + x2

3 = a2 > 0.
The set of all those functions forms the commutative algebra A∞7.

The noncommutativity of the sphere is introduced putting down the nontrivial
commutation relations

[x̂i, x̂j ] = iγεijkx̂k i, j, k ∈ {1, 2, 3} , (37)

where γ is a real fundamental constant characterising the space non-commutativity
and operators x̂i supply the standard cartesian coordinates xi. The constraint

7Algebra is a linear space when a product “.”: A∞×A∞ → A∞ is defined and some standard
axioms hold. In our case, the algebra’s product is nothing else but the pointwise product of real-
valued functions, (Φ1.Φ2)(x) := Φ1(x)Φ2(x), which is, of course, commutative: Φ1.Φ2 = Φ2.Φ1

for each pair of functions Φ1, Φ2.
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defining the sphere radius
x̂2

1 + x̂2
2 + x̂2

3 = a2Id , (38)

is considered, too8. It is easy to verify that these two relations are not in contradic-
tion. Now we loose the interpretation of x̂i as the points due to nontrivial commu-
tation relations (37). This situation is well-known from the phase-space picture of
quantum mechanics where the Heisenberg uncertainty principle, as a consequence
of commutation relation [x, px] = ih̄, removes the idea of pointwise phase space of
the classical mechanics. There are no points but only the cells of area 2πh̄ in which
a particle can be localized. By the scalar field Φ̂ on the NC sphere, we shall consider
any (operator-valued) function of (x̂1, x̂2, x̂3) like in commutative case. The set of
all those functions forms again an algebra but now the algebra is non-commutative
due to Eq. (37). We denote it by AN , where the number N should be specified by
construction of a representation of our commutation relation.

In Ref. [10], the representation of the commutation relations (37) with the
constraint (38) has been done using the Wigner-Jordan realization of the generators
x̂i of our NC algebra. The result is that such a representation is finite-dimensional
with dimension N that depends on the values of a and γ,

a

γ
=

√
N

2

(
N

2
+ 1

)
. (39)

Some differential operators, like Laplacian, play an important role in the field the-
ory, especially on the sphere. In our case, we should be interested in Laplacian
(squared angular momentum). On the standard sphere, ∆ =

∑3
i=1 J2

i , where Ji

are the anglular momentum operator which may be treated as the Killing’s vector
fields on the sphere. They act on a function Φ ∈ A∞ as follows

(JiΦ)(x) = −iεijkxj
∂Φ
∂xk

(x) .

There are natural analogues Ĵi of the operators Ji in the case of NC algebra AN

[10]
ĴjΦ̂ := [X̂i, Φ̂] ,where X̂i = x̂i/γ and Φ̂ ∈ AN . (40)

The operators Ĵi satisfy the same commutation relations as Ji (su(2) commutation
relation), [Ĵi, Ĵj ] = iεijkĴk. In Ref. [10], the eigenfunctions Ŷlm of

∑
i Ĵ2

i =: Ĵ2 are
constructed. They are similar to the spherical harmonics,

Ĵ2Ŷlm = l(l + 1)Ŷlm with l ∈ {0, 1, 2, . . . , N(a, γ)} m ∈ {−l, . . . , l} .

8If we considered the relations (37), we would not get in a straighforward way the NC version
of the three-dimensional space (the standard configuration space for a free particle). This is due
to the fact that the relations (37) are not invariant under space translations which are usually
considered to be the fundamental symmetry of the space.
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The number N(a, γ) is a natural cut-off. Now we can add to our algebra AN one
external commutative parameter, the time, in accord with the expansion (33). Then
the field expansion on the NC sphere, with added commutative time, is of the form

Φ̂ =
N(a,γ)∑

l=0

l∑
m=−l

[
eiωltŶlma+

lm + e−iωltŶ ∗
lmalm

]
, (41)

where N(a, γ) is given by (39). So, if we omit all no-interesting parameters (like
mass, speed of light), we can write for the energy of ground vacuum state

ENC(a, γ) ∼ a2

N(a,γ)∑
l=0

(2l + 1)

√
1 +

1
a2

l(l + 1) . (42)

We see that ENC(a, γ) is finite, so no regularization is needed. The dependence of
the Casimir’s energy (42) on the sphere radius a is shown in Fig. 3. For a large
value of N , i.e., large value of the fraction a/γ, it is almost proportional to a4, so
the Casimir’s force, which is also attractive, is proportional to a3. For small values
of the fraction a/γ, this dependence is stair-step, but the Casimir energy never
decreases with the sphere radius. So we see that the result is not in accord with
the commutative one where the Casimir’s force achieves a maximum at the suitable
combination of parameters a and m.
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Fig. 3. Casimir’s energy on a noncommutative two-sphere.

6. Discussion

In this paper, we have investigated the Casimir effect in various situations. In
Sects. 2, 3 and 4, the computations of the Casimir’s energy of a scalar field on
the standard smooth spaces have been done. Two different ways of appearing of
the Casimir effect have been presented: in Sect. 2, the Casimir’s energy is caused
by the boundaries and in Sect. 3 and Sect. 4 by the topologies of spaces under
consideration. These results are known and they or their little modifications may
be found in the literature (e.g., see Refs. [2,3] and the references therein). The new
result is presented in Sect. 5, where the Casimir’s energy on a non-commutative
two-sphere has been computed. This case differs from the others because of the
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finite number of field modes caused by the noncommutativity. So, the Casimir’s
energy (42) is finite without any renormalization and depends on the radius of the
sphere and the parameter of noncommutativity γ. One expects that it would be
interesting to investigate what happens as γ tends zero. It is very often quoted that
one can obtain the standard (commutative) results from the noncommutative ones
in the limit γ = 0. This statement is true if one is investigating the noncommutative
modifications of the quantum mechanics (e.g., see Ref. [15]). We see that this is
not the case for the Casimir effect because if we do the limit γ → 0 in (42) we
will not obtain the result (36). We would get only the infinite expression which
could be understood as the starting point for the renormalization procedure. This
difference between the features of the Casimir effects on a commutative space and
its noncommutative version is known in the case of a noncommutative cylinder [11].
In that case, the space-time is a cylinder times the real time. Noncommutativity
appears only on the cylinder (the time is commutative). The noncommutativity
does not lead to a natural cut-off of the field modes because the cylinder is not a
compact space. So, the computation of Casimir’s energy involves a renormalization
and regularization as it was done in the above mentioned work. The result (the
formula (3.16) of Ref. [11]) is essentially different from the commutative one. In the
case of a noncommutative cylinder, the Casimir’s energy per unit length does not
depend on the cylinder radius r but in the commutative case this quantity depends
on r as r−2. There is also another questionable point in the computation of the
Casimir’s energy according Ref. [11], namely, the cylinder-radius nondependent
(divergent) term in Eq. (3.15) of Ref. [11], from which the final result is obtained,
contains a logarithmically divergent (in the regularization parameter) part that
does not appear in the expression for the regularized energy density of the massless
scalar field on the commutative plane. In our opinion, the presence of this term
can be explained by the fact that we have to consider the noncommutative plane
instead the commutative one to use the formula (14). In this way we have defined
the parameter of noncommutativity of the plane but it remains an open question
whether this definition of the noncommutativity parameter of the plane is model
(mass/type of the field, etc.) independent. Such discrepances might be caused by
the fact that our (or of Refs. [11] and [12]) field theories are not built on the space-
times with usual symmetries - the time is always added to the noncommutative
space as an external commuting parameter which cannot be mixed with others
coordinates. In this way, the situation is more similar to the nonrelativistic quantum
mechanics than to a relativistic theory. Maybe, one should find another way how to
construct a field theory on a noncommutative space as presented above or in Refs.
[11] and [12].
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CASIMIROV EFECT U ČETIRI SLUČAJA, UKLJUČIVŠI NEKOMUTATIVNU
DVOSFERU

Daju se ishodi računa Casimirovog efekta za realno skalarno polje u četiri slučaja:
na dužini, na kružnici, te na komutativnoj i nekomutativnoj dvosferi. Glavni je cilj
ovog rada raspraviti Casimirovu energiju na nekomutativnoj sferi u okviru teorije
s komutativnim vremenom. Raspravlja se takod–er (ne)komutativni valjak.
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