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This paper discusses gauge invariance issues in semiclassical perturbation theory,
outlining a nonrelativistic single-particle treatment which guarantees perturbative
gauge invariance in a relative sense (that is, in relationship to a chosen “reference”
gauge of the electromagnetic four-potential). The selection of the reference gauge
depends on the intended physical meanings of the calculated quantities, but it ap-
pears that the transverse gauge is the most appropriate choice. Generalizations to
multiparticle systems and relativistic particles are possible.
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1. Introduction

A classical, single-particle nonrelativistic Hamiltonian formalism is introduced
(Sect. 2, Appendix A), similar to the one employed for reparametrization invariant
Lagrangian systems [1, 2]. This allows a (four-dimensional) treatment of time and
space on equal footing, a convenient feature for the use of the minimal replacement
in the presence of an external electromagnetic (EM) perturbation (Sect. 4). The
unperturbed quantum states are examined in Sect. 3, pointing out that the canon-
ical momentum operators possess a gauge freedom (Sect. 2). At the quantum level,
the minimal replacement is done in a fixed gauge for the EM interaction (Sect. 4),
but the gauge freedom of the momentum operators produces exact equations which
are fully invariant with respect to gauge changes of the four-potential (Sect. 5). In
perturbation theory, the invariance is only relative, with the originally chosen EM
gauge acting as a reference (Sect. 5, Appendix B). The selection of this reference
relates to the intended meanings of the calculated quantities, but it appears that
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the transverse gauge is the most appropriate choice (Sect. 6). For a discussion of a
variety of issues relating to gauge choices, see also Ref. [3].

Notation is rather conventional. Specifically, Greek indices run through the
values 0, 1, 2, 3 and the Latin index ` takes on the values 1, 2, 3; other labels are
defined as needed. The summation convention is applied to repeated up and down
indices, and units are such that h̄ = c = 1. An attempt is made at distinguishing
powers from superscripts: for instance, (m)2 is a power, while x2 indicates a specific
variable with superscript 2. The curly bracket notation is used for ordered sets: e.g.,
{xλ} denotes four objects in the order 0 − 3.

2. Momentum operators

In a given frame1 of reference X of real space-time coordinates x = {xλ} =
{t, x`} and pseudoeuclidean metric gµν = gµν = diag(+1,−1,−1,−1), consider a
particle of rest mass m > 0 described classically by its space-time position x(τ),
where τ ∈ < is an evolution parameter [2, 4]. For a nonrelativistic treatment,
introduce the mechanical momentum π = {πλ}, letting π` = −π` be the vector
components

π` = m
dx`

dt
, (1)

and π0 = π0 indicate the particle’s energy

π0 = V (x) +
m

2

3∑
`=1

(
dx`

dt

)2

. (2)

As customary, the components π` are purely kinetic, whereas π0 adds the kinetic
energy to a (real) potential V (x), measured in reference to a chosen “ground” x
such that V (x) = 0.

For now, consider Hamiltonian formulations such that the canonical momentum
p = {pλ} is the same as the mechanical momentum π. For example, choosing τ = t
as the evolution parameter, take the “extended” Hamiltonian [2, 4]

K(x, p) = p0 − V (x) − 1
2m

[(p1)2 + (p2)2 + (p3)2] , (3)

coupled to the constraint
K(x, p) = 0 . (4)

(See Appendix A for more details.)
Then, the quantum mechanical description can be started from the commutation

rules
[Pµ , xν ] = i δ ν

µ , (5)

1Changes of coordinates will not be examined in detail.
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and
[Pµ ,Pν ] = O , (6)

where O is the null operator. Here, P = {Pλ} are the linear hermitian operators
corresponding to p in the coordinate representation, and are given by [5, 6]:

Pµ = ∆µ(x) + i ∂µ , (7)

with
∆µ(x) = ∂µ∆(x) , (8)

where ∆(x) is a well-behaved, arbitrary real function. The special “gauge”

P]
µ = i ∂µ (9)

is often chosen in the literature [5, 6]. The coincidence of p and π makes the
quantization procedure reasonably transparent and unambiguous; specifically, it
is clear that the gauge freedom of P originates from the commutators, not from
ambiguities in the classical p’s, as these have the physical meanings specified by π.
In later sections, p and π will no longer coincide; the fundamental quantization rule
will remain as: p → P, where P satisfies Eqs. (5)–(8).
Remark. For definiteness, the description based on Eqs. (3) and (4) will be the
only one examined in the following; relativistic particles, multiparticle systems,
or systems without a clear classical analog will not be considered here explicitely
(however, these generalizations are possible).

It is noted that the variable t plays a double role in the outlined treatment:
as a coordinate, and as the evolution parameter. This creates a possible conflict,
because the consistency of the quantization procedure p → P presumes that dτ
is left unchanged2 by passive transformations of coordinates x → x ′. Luckily,
dt is nearly an invariant in nonrelativistic physics, and is only changed by the
inversion: t ′ = −t + const. Hence, either this inversion is disallowed, or needs to
be accommodated by means of a slight modification of the classical formalism, e.g.,
by redefining τ = t (if t runs forward in relationship to the macroscopic arrow of
time) and τ = −t (otherwise); then, π` = mdx`/dτ , and so on. In this paper, the
forward t option is assumed, with no inversion.

3. Unperturbed states

Before the EM interaction is introduced, the unperturbed wave functions are
chosen by means of compatible eigenvalue equations of the type

L(n)(x,P)Φε(x) = ε(n)Φε(x) , (10)

2Changes of the evolution parameter (not detailed in this paper) go under the name of
reparametrizations, and are independent of the coordinate transformations [1, 2].
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where ε = {ε(n)} are the eigenvalues and n = 0, 1, . . . numbers the equations
needed to specify the states completely (up to normalization). In the special gauge
P], Eq. (10) is written as

L(n)(x,P])Φ]
ε(x) = ε(n)Φ]

ε(x) , (11)

and the normalized eigenfunctions are related by

Φε(x) = exp {i[∆(x) + Cε]} Φ]
ε(x) , (12)

where Cε is a real constant (which can be chosen to vanish with no loss of general-
ity). The linear hermitian operators L(n) in Eqs. (10) and (11) originate from ap-
propriate conserved classical quantities L(n)(x, p), under the replacement of p with
P or P]. For example, if the classical conserved function L(1)(x, p) is L(1) = p0, the
corresponding quantum eigenvalue ε(1) represents the observed particle’s energy.
The Schrödinger equation is included (n = 0), written as an eigenvalue problem
with a vanishing eigenvalue ε(0) = 0 ; the function L(0) coincides with the Hamilto-
nian K.

4. Electromagnetic interaction

In the presence of the interaction with an EM field of components Fµν and (real)
four-potential A = {Aλ} such that

Fµν(x) = ∂µAν(x) − ∂νAµ(x) , (13)

the unperturbed Hamiltonian function K is usually modified [7] as follows (minimal
replacement),

pµ → pµ − qAµ(x) , (14)

where q ∈ < − {0} is the particle’s electric charge. This amounts to a difference
between p and π given by

pµ = πµ + qAµ(x) , (15)

with π formally defined as in Sect. 2. The canonical momentum p (although not
invariant under gauge changes of A) may be interpreted as the particle’s total
momentum, resulting from mechanical and EM contributions [7]. Specifically, any
definite choice of the gauge of A implies a convention on how much EM momentum
belongs to particles, versus how much is attributed to the field (see also Sect. 6).

For a given Fµν , the corresponding four-potential A is arbitrary by a gauge
transformation [7, 8]. A special gauge (transverse gauge) may be selected, which
makes the four-potential physically significant and unique [9]; the symbol A] will
indicate this choice. All other choices are obtained by means of the gauge freedom

Aµ(x) = A]
µ(x) + ∂µΓ(x) , (16)
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where Γ(x) is any well-behaved real function.
For quantization, it is convenient (and correct) to use the A] replacements

Pµ → Pµ − qA]
µ(x) , (17)

or
P]

µ → P]
µ − qA]

µ(x) , (18)

which have a long tradition in the literature [9]. The next section will discuss this
type of replacements in relationship to gauge freedom.

5. Perturbation theory

In presence of the interaction (13), the replacement (17) transforms the unper-
turbed Hamiltonian operator K(x,P) into K(x,P − qA]), where

Pµ − qA]
µ(x) = [∆µ(x) + i ∂µ] − qA]

µ(x) = i ∂µ − qAµ(x) , (19)

with the definition

Aµ(x) = A]
µ(x) + ∂µ

[
−∆(x)

q

]
, (20)

corresponding to
∆µ(x) = q [A]

µ(x) − Aµ(x)] . (21)

Since the function ∆ is arbitrary, the original four-potential A] may be put into
any possible gauge A by means of Eqs. (20) and (21). Thus, the operator

K(x,P − qA]) = K(x, i∂ − qA) (22)

displays the usual EM quantum gauge invariance [6, 7] in relationship to the equa-
tion (Schrödinger equation with EM interaction)

K(x, i∂ − qA)Ψ(x) = 0 . (23)

Here, Ψ(x) indicates a wave-function and the notation ∂ = {∂λ} has been intro-
duced. In addition to Eq. (23), other compatible gauge-invariant equations of a
similar form

W (x, i∂ − qA)Ψ(x) = ω Ψ(x) , ω ∈ < , (24)

may be possible. In all cases of this type, the special gauge P] produces equations
written in the transverse gauge of the four-potential. For instance, starting from
K(x,P]) and using (18), one obtains

K(x, i∂ − qA])Ψ](x) = 0 , (25)
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in place of Eq. (23).
Equations like (23)–(25) are called “exact” equations, although they provide

only a partial description of the physics associated with EM interactions. A more
precise formalism would have to include and quantize the nonhomogeneous EM
field [7] equations (with one of the sources being the four-current of the charge q
itself). At any rate, even when Fµν is treated as a given classical external field
(which is the approach of this paper), the exact equations are typically difficult to
solve, and perturbation theory is often introduced.

In rather general terms, all perturbative calculations [7] are characterized by
the application of linear hermitian operators of the type[

R(x,P − qA]) + S(x,P)
]

(26)

on states like those specified in Sect. 3. Thus, it is interesting to compare the results

Υε(x) =
[
R(x,P − qA]) + S(x,P)

]
Φε(x) , (27)

and
Υ]

ε(x) =
[
R(x,P] − qA]) + S(x,P])

]
Φ]

ε(x) . (28)

Making use of Eqs. (19)–(21), these expressions can also be written as

Υε(x) = [R(x, i∂ − qA) + S(x, i∂ + D)] Φε(x) , (29)

and
Υ]

ε(x) =
[
R(x, i∂ − qA]) + S(x, i∂)

]
Φ]

ε(x) , (30)

from which, with the help of Eq. (12):

Υε(x) = exp {i[∆(x) + Cε]} Υ]
ε(x) . (31)

Here, the notation D = {∆λ} was introduced at Eq. (29). For a concrete example
of a perturbative approach, one may start from the Hamiltonian of Eq. (3) with
the unperturbed quantum states (10), in order to obtain the perturbative operator
(26) corresponding to the particle’s change in total energy [10, 11] due to the EM
interaction (interaction energy operator). This can be done by defining

R(x,P) = −K(x,P) , (32)

and
S(x,P) = [ other EM interaction terms ] − R(x,P) . (33)

(See also Appendix B.) The expression in square brackets denotes interactive energy
terms containing Fµν (but not its four-potential) which cannot be generated from
the minimal replacement. For instance, the minimal replacement in a spinless model
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Hamiltonian like (3) produces no EM spin interactions: if needed, all spin effects
must be inserted “by hand” [10, 11].

From Eqs. (27)–(31), it is deduced that perturbation theory (calculated in terms
of suitable matrix elements) is gauge-invariant as described above, but only in a
relative sense. That is, each perturbative calculation agrees with the corresponding
calculation performed in the transverse gauge of the four-potential; A] is used as a
reference gauge. If this reference is changed into

A]]
µ (x) = A]

µ(x) + ∂µΓ]](x) , (34)

at the level of Eqs. (17) and (18), the new perturbative calculations may not agree
with the old. Conceptually, this is not a major flaw, because the exact equations are
fully gauge-invariant (hence, independent of the reference). Nevertheless, one must
justify why A] is the appropriate choice for those calculations where the reference
gauge does matter. This issue will be addressed in the next section.

6. Reference gauge

For a given Fµν vanishing with sufficient rapidity at spatial infinity3, the
four-potential A] is the only solution A of Eq. (13) with components Aµ vanishing
at spatial infinity and satisfying the constraint [7, 9]

∂`A
`(x) = 0 . (35)

To some extent, the choice of A] as the reference gauge for perturbative calculations
is a matter of convention, in that it relates to the intended meanings of the calcu-
lated quantities. For example, in the case of Eqs. (32) and (33), the interpretation
of (26) as the particle’s interaction energy operator depends on having established
a convention on how much EM energy and vector momentum pertain to particles,
versus how much belong to the field. Specifically, the transverse gauge attributes
to the (spinless) particles in the field all of the EM energy (and vector momentum)
which are not in the form of EM radiation [7]. This can be shown by examining
the classical EM theory in some detail (see part III of chapter XXI of Ref. [7]).

Hence, it appears that the transverse gauge is a more suitable reference than
others for performing perturbative calculations comparable to experiment; for in-
stance, the particle’s interaction energy is determined by measuring (directly or
indirectly) its energy exchanges with a radiation field. This corresponds to the
type of “bookkeeping” prescribed by the transverse gauge, which separates the
radiation (i.e., transverse) field from the rest of the EM environment.

3Highly idealized situations (e.g., a magnetic field which is constant and uniform throughout
space-time) can be corrected by the introduction of appropriate “damping” factors, in order to
obtain a more realistic behaviour at spatial infinity.
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7. Conclusions

Generalizations to nonrelativistic multiparticle systems are possible, as well
as to relativistic cases (i.e., Dirac equation and Klein-Gordon equation), or
nonrelativistic cases with relativistic corrections. The existence of a reference gauge
for perturbation theory relates to the intrinsic ambiguity in the distinction of par-
ticle attributes from field attributes; this ambiguity is solved de facto by the exper-
imental procedures.

Appendix A. Hamiltonian formalism

This is a brief review of the Hamiltonian formalism associated with Eqs. (3)
and (4). In general, if a Hamiltonian function H(x, p) is given, the corresponding
canonical equations for x(τ) and p(τ) are as follows [2]

dxµ

dτ
=

∂H(x, p)
∂pµ

,
dpµ

dτ
= −∂H(x, p)

∂xµ
. (36)

Specifically for the Hamiltonian K of Eq. (3), this reads as

dx0

dt
= 1 ,

dx`

dt
= −p`

m
, (37)

and
dpµ

dt
=

∂V (x)
∂xµ

, (38)

while the constraint (4) represents the definition

p0 = V (x) +
1

2m
[(p1)2 + (p2)2 + (p3)2] . (39)

After the EM field Fµν is introduced, modify the unperturbed function K of
Eq. (3) into the new function

K̃(x, p) = K(x, p − qA) , (40)

and use K̃ as the Hamiltonian for Eq. (36); then, take into account the constraint

K̃(x, p) = 0 . (41)

It is readily proved that this type of classical treatment leads to results for x(t)
that are invariant under gauge changes of the four-potential. In fact, one obtains

dx0

dt
= 1 ,

dx`

dt
= −

[
p` − qA`(x)

m

]
, (42)
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and
dpµ

dt
=

∂ [V (x) + qA0(x)]
∂xµ

+ q

[
p` − qA`(x)

m

] [
∂A`(x)

∂xµ

]
, (43)

which combine as

d2x`

dt2
= − 1

m

[
∂V (x)
∂x`

]
+

[ q

m
F `

α(x)
] (

dxα

dt

)
, (44)

with the constraint (41) giving the definition

p0 = [V (x) + qA0(x)] +
1

2m

3∑
`=1

[p` − qA`(x)]2 . (45)

The outlined formulation presumes that Fµν is a given external field, strictly
vanishing in the case of Eqs. (37)–(39). A more complete (and complex) description
would have to include the nonhomogeneous EM field equations, with one of the
sources being the charge q itself [7]. This feedback mechanism generates the classical
emission of EM radiation by accelerated particles [12]; at the quantum level, the
appropriate theory becomes quantum electrodynamics [13].

In closing, note that Eq. (36) generates the usual Poisson bracket structure of
classical mechanics [2]

dZ

dτ
=

∂Z(x, p)
∂xα

∂H(x, p)
∂pα

− ∂Z(x, p)
∂pα

∂H(x, p)
∂xα

. (46)

If dZ/dτ = 0, the quantity Z(x, p) is conserved.

Appendix B. Interaction

Here are provided some details relating to Sect. 5. Consider the interaction
energy operator discussed therein, given by

I = −K(x, i∂ − qA) + K(x,P) , (47)

having disregarded the terms in square bracket at Eq. (33). After some algebra, it
may be written as

I = qA]
0(x) − (q)2

2m

3∑
`=1

[A]
`(x)]2 − iq

m

3∑
`=1

A]
`(x) [∂` + iqA`(x)] . (48)

It is reminded that the gauge of A and that of P at Eq. (47) are linked by Eq. (21).
For this reason, and irrespective of the gauge of A, the expression (48) contains the
gauge covariant derivatives ∂` +iqA` and the four-potential reduced to its tranverse
reference gauge; such an operator allows for the type of gauge invariance shown at
Eqs. (27)–(31).

FIZIKA B 11 (2002) 4, 191–200 199



raspini: a note on gauge invariance in perturbation theory

References

[1] O. Bolza, Lectures on the Calculus of Variations, Dover Publisher, New York (1961).

[2] R. A. Matzner and L. C. Shepley, Classical Mechanics, Prentice Hall, Englewood Cliffs,
NJ (1991).

[3] P. Gaigg, W. Kummer and M. Schweda, Physical and Nonstandard Gauges, Springer-
Verlag, Berlin (1990).

[4] C. Lanczos, The Variational Principles of Mechanics, 4th ed., Univ. Toronto Press,
Toronto (1970).

[5] A. Messiah, Quantum Mechanics, vol. I, John Wiley, New York (1966).

[6] R. Shankar, Principles of Quantum Mechanics, Plenum Press, New York (1980).

[7] A. Messiah, Quantum Mechanics, vol. II, John Wiley, New York (1966).

[8] J. D. Jackson Classical Electrodynamics, John Wiley, New York (1975).

[9] J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, MA (1973).

[10] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory,
Addison-Wesley, Reading, MA (1965).

[11] A. Raspini, J. Physics B 18 (1985) 3859.

[12] A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles, MacMillan,
New York (1964).

[13] M. Kaku, Quantum Field Theory, Oxford University Press, Oxford (1994).

BILJEŠKA O BAŽDARNOJ INVARIJANTNOSTI U TEORIJI SMETNJI

U radu se raspravljaju pitanja baždarne invarijantnosti u poluklasičnoj teoriji smet-
nji, opisujući nerelativistički jednočestični račun koji osigurava baždarnu invarijant-
nost smetnje (tj., u odnosu prema odabranoj referentnoj baždarnosti elektromag-
netskog četiri-potencijala). Odabir referentne baždarnosti ovisi o željenom fizičkom
značenju računatih veličina, ali se čini da je poprečna baždarnost najpovoljniji od-
abir. Moguća su poopćenja na vǐsečestične sustave i relativističke čestice.
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