$B \rightarrow f_0(980) K$ DECAYS IN QCD FACTORIZATION

HAI-YANG CHENG a and KWEI-CHOU YANG b

^aInstitute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

^bDepartment of Physics, Chung Yuan Christian University, Chung-Li, Taiwan 320, Republic of China

Dedicated to the memory of Professor Dubravko Tadić

Received 23 October 2004; Accepted 15 November 2004 Online 31 October 2005

The decay $B \to f_0(980)K$ is studied within the framework of QCD factorization. Its decay rate is suppressed relative to $B \to \pi^0 K$ owing to a destructive interference between (S - P)(S + P) and (V - A)(V - A) penguin contributions. The interference between the (S - P)(S + P) penguin contributions arising from the strange and light quark components of $f_0(980)$ is destructive for $\pi/2 > \theta > 0$ and constructive for $-\pi/2 < \sin \theta < 0$, with θ being the mixing angle of strange and nonstrange quark contents of $f_0(980)$ in the two-quark picture for light scalar mesons. A negative mixing angle, as preferred by several $f_0(980)$ production experiments, is also supported by the measurement of $B \to f_0(980)K$ decay. We conclude that the short-distance interactions are not adequate to explain the experimental observation of $f_0(980)K^+ > \pi^0K^+$ and $f_0(980)K^0 \gtrsim \pi^0K^0$ decay rates. Possible mechanisms for the enhancement of $f_0(980)K$ are discussed.

PACS numbers: 13.25.Hv, 11.38.Bx

UDC 539.126

Keywords: hadronic B decay, scalar meson

1. Introduction

The decay of the *B* meson into a scalar meson $f_0(980)$ was first measured by Belle [1] in the charged *B* decays to $K^{\pm}\pi^{\mp}\pi^{\pm}$ and a large branching fraction product for the $f_0(980)K^{\pm}$ final states was found. A recent updated result by Belle yields [2]

$$\mathcal{B}(B^+ \to f_0(980)K^+ \to \pi^+\pi^-K^+) = (7.55 \pm 1.24^{+1.63}_{-1.18}) \times 10^{-6}.$$
 (1)

The Belle result is subsequently confirmed by the BaBar measurement [3]:

$$\mathcal{B}(B^+ \to f_0(980)K^+ \to \pi^+\pi^-K^+) = (9.2 \pm 1.2^{+2.1}_{-2.6}) \times 10^{-6}.$$
 (2)

FIZIKA B 14 (2005) 1, 1–12

The weighted average is [4]

 $\mathbf{2}$

$$\mathcal{B}(B^+ \to f_0(980)K^+ \to \pi^+\pi^-K^+) = (8.49^{+1.35}_{-1.26}) \times 10^{-6}.$$
 (3)

BaBar has also measured the neutral mode $B^0 \to f_0(980)K^0$ with the result [5]

$$\mathcal{B}(B^0 \to f_0(980)K^0 \to \pi^+\pi^-K^0) = (6.0 \pm 0.9 \pm 1.3) \times 10^{-6}.$$
 (4)

This channel is of special interest as possible indications of physics beyond the Standard Model (SM) may be observed in the time-dependent CP asymmetries in the penguin-dominated B decays such as $B^0 \to f_0(980)K_S$. The mixing-induced CP-violation parameter S is expected to be $-\sin\beta$ in the SM. The most recent measurements by BaBar and Belle yield

$$\sin\beta(f_0K_S) = \begin{cases} 0.95^{+0.23}_{-0.32} \pm 0.10 & \text{BaBar F [6]}\\ -0.47 \pm 0.41 \pm 0.08 & \text{Belle [7]}. \end{cases}$$
(5)

The deviation from $\sin 2\beta = 0.726 \pm 0.037$ [8] derived from the decay $B \rightarrow J/\psi K_S$ may hint at a possible new physics.

In order to extract the absolute branching ratios for $B \to f_0 K$, we use the value of $\Gamma(f_0 \to \pi\pi)/[\Gamma(f_0 \to \pi\pi) + \Gamma(f_0 \to K\overline{K})] \approx 0.68$ [9] to obtain $\mathcal{B}(f_0(980) \to \pi^+\pi^-) \approx 0.45$ and

$$\mathcal{B}(B^+ \to f_0(980)K^+) \approx (18.9^{+3.0}_{-2.8}) \times 10^{-6},$$

$$\mathcal{B}(B^0 \to f_0(980)K^0) \approx (13.3 \pm 3.6) \times 10^{-6}.$$
 (6)

Comparing with the averaged branching ratios, $(12.1 \pm 0.8) \times 10^{-6}$ for $B^+ \rightarrow \pi^0 K^+$ and $(11.5 \pm 1.0) \times 10^{-6}$ for $B^0 \rightarrow \pi^0 K^0$ [4], we see that for the decay rates $f_0(980)K^+ > \pi^0 K^+$ and $f_0(980)K^0 \gtrsim \pi^0 K^0$.

This decay mode has been studied in Refs. [10] and [11] within the framework of the pQCD approach based on the $k_{\rm T}$ factorization theorem. It is found that the branching ratio is of order 5×10^{-6} (see Fig. 2 of Ref. [11]), which is smaller than the measured value by a factor of $3 \sim 4$. In the present paper, we wish to re-examine this decay and see if the discrepancy between theory and experiment can be resolved in the QCD factorization approach [12, 13, 14].

2. $B \rightarrow f_0(980) K$ decays in QCD factorization

2.1. Framework

To proceed, we first discuss the decay constants and form factors. The decay constants are defined by

$$\langle K(p)|A_{\mu}|0\rangle = -\mathrm{i}f_{K}p_{\mu}, \qquad \langle f_{0}|V_{\mu}|0\rangle = 0, \qquad \langle f_{0}|\bar{q}q|0\rangle = m_{f_{0}}\bar{f}_{q}. \tag{7}$$

FIZIKA B ${\bf 14}~(2005)$ 1, 1–12

The scalar meson $f_0(980)$ cannot be produced via the vector current owing to charge conjugation invariance or conservation of vector current. The decay constant \tilde{f}_q will be discussed later. Form factors for $B \to P$ and $B \to S$ transitions (P: pseudoscalar meson, S: scalar meson) are defined by [15]

$$\langle P(p_P)|V_{\mu}|B(p_B)\rangle = \left(p_{B\mu} + p_{P\mu} - \frac{m_B^2 - m_P^2}{q^2} q_{\mu}\right) F_1^{BP}(q^2) + \frac{m_B^2 - m_P^2}{q^2} q_{\mu} F_0^{BP}(q^2),$$
(8)

where $q_{\mu} = (p_B - p_P)_{\mu}$, and $[16]^1$

$$\langle S(p_S)|A_{\mu}|B(p_B)\rangle = -i \left[\left(p_{B\mu} + p_{S\mu} - \frac{m_B^2 - m_S^2}{q^2} q_{\mu} \right) F_1^{BS}(q^2) + \frac{m_B^2 - m_S^2}{q^2} q_{\mu} F_0^{BS}(q^2) \right].$$
(9)

Fig. 1. Penguin contributions to $B^- \to f_0(980) K^-$.

The penguin-dominated $B^- \to f_0 K^-$ receive two different types of penguin contributions as depicted in Fig. 1. Within the framework of QCD factorization [12], its decay amplitude reads

$$\begin{aligned} A(B^{-} \to f_{0}K^{-}) &= \\ &- \frac{G_{F}}{\sqrt{2}} \Biggl\{ \lambda_{u} \left[a_{1} + a_{4}^{u} + a_{10}^{u} - 2(a_{6}^{u} + a_{8}^{u})r_{\chi} \right] + \lambda_{c} \left[a_{4}^{c} + a_{10}^{c} - 2(a_{6}^{c} + a_{8}^{c})r_{\chi} \right] \Biggr\} \\ &\times f_{K}(m_{B}^{2} - m_{f_{0}}^{2})F_{0}^{Bf_{0}^{u}}(m_{K}^{2}) \\ &- \Biggl\{ \lambda_{u}(2a_{6}^{\prime u} - a_{8}^{\prime u}) + \lambda_{c}(2a_{6}^{\prime c} - a_{8}^{\prime c}) \Biggr\} \tilde{f}_{s} \frac{m_{f_{0}}}{m_{b}} (m_{B}^{2} - m_{K}^{2})F_{0}^{BK}(m_{f_{0}}^{2}) \\ &+ \mathcal{A}_{ann}(B^{-} \to f_{0}K^{-}), \end{aligned}$$
(10)

¹As shown in Ref. [16], a factor of (-i) is needed in Eq. (9) in order for the $B \to S$ form factors to be positive. This also can be checked from heavy quark symmetry [16].

where $\lambda_q \equiv V_{qb} V_{qs}^*$, and \mathcal{A}_{ann} is the weak annihilation contribution

$$\mathcal{A}_{ann}(B^{-} \to f_{0}K^{-}) = \frac{G_{F}}{\sqrt{2}} \Biggl\{ \lambda_{u} c_{2}\mathcal{A}_{1}^{i} + (\lambda_{u} + \lambda_{c}) \Biggl[(c_{3} + c_{9})\mathcal{A}_{1}^{i} + (c_{5} + c_{7})\mathcal{A}_{i}^{3} + N_{c} \Bigl[c_{6} + c_{8} + \frac{1}{N_{c}} (c_{5} + c_{7}) \Bigr] \mathcal{A}_{3}^{f} \Biggr] \Biggr\},$$
(11)

where \mathcal{A}_3^f is the factorizable annihilation amplitude induced from (S - P)(S + P)operator and $\mathcal{A}_{1,3}^i$ are nonfactorizable ones induced from (V - A)(V - A) and (S - P)(S + P) operators, respectively. The explicit expressions of $\mathcal{A}_{1,3}^i$ and \mathcal{A}_3^f are given by (see also Refs. [13, 14])

$$\mathcal{A}_{1}^{i} = \kappa \int_{0}^{1} \mathrm{d}x \mathrm{d}y \left\{ \Phi_{f_{0}}(x) \Phi_{K}(y) \left[\frac{1}{y(1-x\bar{y})} + \frac{1}{\bar{x}^{2}y} \right] + \frac{4\mu_{\chi}m_{f_{0}}}{m_{b}^{2}} \Phi_{f_{0}}^{p}(x) \Phi_{K}^{p}(y) \frac{2}{\bar{x}y} \right\},$$

$$\mathcal{A}_{3}^{i} = \kappa \int_{0}^{1} \mathrm{d}x \mathrm{d}y \left\{ \frac{2\mu_{\chi}}{m_{b}} \Phi_{f_{0}}(x) \Phi_{K}^{p}(y) \frac{2\bar{y}}{\bar{x}y(1-x\bar{y})} - \frac{2m_{f_{0}}}{m_{b}} \Phi_{K}(y) \Phi_{f_{0}}^{p}(x) \frac{2x}{\bar{x}y(1-x\bar{y})} \right\},$$

$$\mathcal{A}_{3}^{f} = \kappa \int_{0}^{1} \mathrm{d}x \mathrm{d}y \left\{ \frac{2\mu_{\chi}}{m_{b}} \Phi_{f_{0}}(x) \Phi_{K}^{p}(y) \frac{2(1+\bar{x})}{\bar{x}^{2}y} + \frac{2m_{f_{0}}}{m_{b}} \Phi_{K}(y) \Phi_{f_{0}}^{p}(x) \frac{2(1+y)}{\bar{x}y^{2}} \right\}, \quad (12)$$

where $\kappa \equiv (C_F/N_c^2)\pi\alpha_s f_B f_K(\tilde{f}_s - \tilde{f}_u)$ with $C_F = (N_c^2 - 1)/(2N_c)$, and Φ_M (Φ_M^p) is the twist-2 (twist-3) light-cone distribution amplitude of the meson M.

In Eq. (10), $r_{\chi}(\mu) = m_K^2 / [m_b(\mu)(m_u(\mu) + m_s(\mu))]$ and the expressions for the parameters a_i^q (q = u, c) will be discussed shortly. The superscript u of the form factor $F_0^{Bf_0^u}$ reminds us that it is the u quark component of f_0 involved in the form factor transition [see Fig. 1(a)]. In contrast, the subscript s of the decay constant \tilde{f}_s indicates that it is the strange quark component responsible for the penguin contribution of Fig. 1(b).

For comparison, we also write down the $B^- \to \pi^0 K^-$ decay amplitude [17]

$$\begin{aligned} A(B^{-} \to \pi^{0} K^{-}) \\ &= \mathrm{i} \frac{G_{F}}{2} \Biggl\{ \lambda_{u} \left[a_{1} + a_{4}^{u} + a_{10}^{u} + 2(a_{6}^{u} + a_{8}^{u})r_{\chi} \right] + \lambda_{c} \left[a_{4}^{c} + a_{10}^{c} + 2(a_{6}^{c} + a_{8}^{c})r_{\chi} \right] \Biggr\} \\ &\times f_{K} (m_{B}^{2} - m_{\pi}^{2}) F_{0}^{B\pi} (m_{K}^{2}) \\ &+ \frac{\mathrm{i}}{\sqrt{2}} \Biggl[\lambda_{u} a_{2} + \frac{3}{2} (\lambda_{u} + \lambda_{c}) (-a_{7} + a_{9}) \Biggr] f_{\pi} (m_{B}^{2} - m_{K}^{2}) F_{0}^{BK} (m_{\pi}^{2}) \\ &+ \mathrm{i} \mathcal{A}_{\mathrm{ann}} (B^{-} \to \pi^{0} K^{-}). \end{aligned}$$
(13)

FIZIKA B 14 (2005) 1, 1–12

We see that a_4 and a_6 terms contribute constructively to $\pi^0 K^-$ but destructively to $f_0 K^-$ decay.

The parameters a_i^q with q = u, c can be calculated in the QCD factorization approach [12]. They are basically the Wilson coefficients in conjunction with shortdistance nonfactorizable corrections such as vertex corrections and hard spectator interactions. In general, they have the expressions [13, 14]

$$a_i^q(M_1M_2) = c_i + \frac{c_{i\pm 1}}{N_c} + \frac{c_{i\pm 1}}{N_c} \frac{C_F \alpha_s}{4\pi} \Big[V_i(M_2) + \frac{4\pi^2}{N_c} H_i(M_1M_2) \Big] + P_i^q(M_2),$$
(14)

where $i = 1, \dots, 10$, the upper (lower) signs apply when i is odd (even), M_1 is the emitted meson and M_2 shares the same spectator quark with the B meson. The quantities $V_i(M_2)$ account for vertex corrections, $H_i(M_1M_2)$ for hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the B meson and $P_i(M_2)$ for penguin contractions. The explicit expressions of these quantities can be found in [13, 14], in particular, Eq. (46) of Ref. [13], except that the hard spectator function $H_{K\pi}$ is replaced by H_{Kf_0} which reads

$$H_{Kf_0} = \frac{\tilde{f}_u f_B}{F_0^{Bf_0^u}(0)m_B^2} \int_0^1 \frac{\mathrm{d}\rho}{\rho} \Phi_B(\rho) \int_0^1 \frac{\mathrm{d}\xi}{\bar{\xi}} \Phi_K(\xi) \int_0^1 \frac{\mathrm{d}\eta}{\bar{\eta}} \left[\Phi_{f_0}(\eta) + \frac{2m_{f_0}}{m_b} \frac{\bar{\xi}}{\bar{\xi}} \Phi_{f_0}^p(\eta) \right] ,$$
(15)

where $\bar{\xi} \equiv 1 - \xi$. As for the parameters $a_{6,8}^{\prime q}$ appearing in Eq. (10), they have the same expressions as $a_{6,8}^q$ except that the function G_K (see Eq. (50) of Ref. [13]) is replaced by G_{f_0} , Φ_K by Φ_{f_0} , \hat{G}_K (see Eq. (55) of Ref. [13]) by \hat{G}_{f_0} and Φ_K^p by $\Phi_{f_0}^p$. Formally, $a_i(i \neq 6, 8)$ and $a_{6,8} r_{\chi}$ should be renormalization scale and scheme independent. In practice, there exists some residual scale dependence in $a_i(\mu)$ to finite order.

2.2. Distribution amplitudes

In the present paper we will take the asymptotic forms for kaon twist-2 and twist-3 distribution amplitudes:

$$\Phi_K(x) = 6x(1-x), \qquad \Phi_K^p(x) = 1.$$
(16)

As for the distribution amplitude of $f_0(980)$, it needs some elaboration.

It is known that the underlying structure of scalar mesons is not well established theoretically (for a review, see e.g. Refs. [18, 19, 20]). It has been suggested that the light scalars below or near 1 GeV – the isoscalars $f_0(600)$ (or σ), $f_0(980)$, the isodoublet κ and the isovector $a_0(980)$ – form an SU(3) flavor nonet, while scalar mesons above 1 GeV, namely, $f_0(1370)$, $a_0(1450)$, $K_0^*(1430)$ and $f_0(1500)/f_0(1710)$, form another nonet. A consistent picture [20] provided by the data suggests that the scalar meson states above 1 GeV can be identified as a conventional $q\bar{q}$ nonet

with some possible glue content, whereas the light scalar mesons below or near 1 GeV form predominately a $qq\bar{q}\bar{q}$ nonet [21, 22] with a possible mixing with 0⁺ $q\bar{q}$ and glueball states. This is understandable because in the $q\bar{q}$ quark model, the 0⁺ meson has a unit of orbital angular momentum and hence it should have a higher mass above 1 GeV. On the contrary, four quarks $q^2\bar{q}^2$ can form a 0⁺ meson without introducing a unit of orbital angular momentum. Moreover, color and spin-dependent interactions favor a flavor nonet configuration with attraction between the qq and $\bar{q}\bar{q}$ pairs. Therefore, the 0⁺ $q^2\bar{q}^2$ nonet has a mass near or below 1 GeV. This four-quark scenario explains naturally the mass degeneracy of $f_0(980)$ and $a_0(980)$, the broader decay widths of $\sigma(600)$ and $\kappa(800)$ than $f_0(980)$ and $a_0(980)$, and the large coupling of $f_0(980)$ and $a_0(980)$ to $K\bar{K}$.

While the above-mentioned four-quark assignment of $f_0(980)$ is certainly plausible when the light scalar meson is produced in low-energy reactions, it is dubious that the energetic $f_0(980)$ produced in B decays is dominated by the four-quark configuration as it requires to pick up two energetic quark-antiquark pairs to form a fast-moving light four-quark scalar meson. The Fock states of $f_0(980)$ consists of $q\bar{q}, q^2\bar{q}^2, q\bar{q}g$ etc. Naively, it is thus expected that the distribution amplitude Φ_{f_0} would be smaller in the four-quark model than in the two-quark picture. Then one will not be able to explain the observed $B \to f_0(980)K$ decays.

In the naive 2-quark picture, $f_0(980)$ is purely an $s\bar{s}$ state and this is supported by the data of $D_s^+ \to f_0 \pi^+$ and $\phi \to f_0 \gamma$ implying the copious $f_0(980)$ production via its $s\bar{s}$ component. However, there also exists some experimental evidence indicating that $f_0(980)$ is not purely an $s\bar{s}$ state. First, the observation of $\Gamma(J/\psi \to f_0\omega) \approx \frac{1}{2}\Gamma(J/\psi \to f_0\phi)$ [23] clearly indicates the existence of the non-strange and strange quark content in $f_0(980)$. Second, the fact that $f_0(980)$ and $a_0(980)$ have similar widths and that the f_0 width is dominated by $\pi\pi$ also suggests the composition of $u\bar{u}$ and $d\bar{d}$ pairs in $f_0(980)$; that is, $f_0(980) \to \pi\pi$ should not be OZI suppressed relative to $a_0(980) \to \pi\eta$. Therefore, isoscalars $\sigma(600)$ and f_0 must have a mixing

$$|f_0(980)\rangle = |s\bar{s}\rangle\cos\theta + |n\bar{n}\rangle\sin\theta, \qquad |\sigma_0(500)\rangle = -|s\bar{s}\rangle\sin\theta + |n\bar{n}\rangle\cos\theta, \quad (17)$$

with $n\bar{n} \equiv (\bar{u}u + \bar{d}d)/\sqrt{2}$. The distribution amplitudes Φ_s and Φ_n corresponding to $f_0^s = \bar{s}s$ and $f_0^n = \bar{n}n \equiv (\bar{u}u + \bar{d}d)/\sqrt{2}$, respectively, are

$$\begin{split} \langle f_0^n(p) | \bar{q}(z) \gamma_\mu q(0) | 0 \rangle &= p_\mu \tilde{f}_n \int_0^1 \mathrm{d}x \, e^{\mathrm{i}x p \cdot z} \Phi_n(x), \\ \langle f_0^s(p) | \bar{s}(z) \gamma_\mu s(0) | 0 \rangle &= p_\mu \tilde{f}_s \int_0^1 \mathrm{d}x \, e^{\mathrm{i}x p \cdot z} \Phi_s(x), \\ \langle f_0^n(p) | \bar{n}(z) n(0) | 0 \rangle &= m_{f_0} \tilde{f}_n \int_0^1 \mathrm{d}x \, e^{\mathrm{i}x p \cdot z} \Phi_n^p(x), \end{split}$$

CHENG AND YANG: B \rightarrow $f_0(980)$ K decays in QCD factorization

$$\langle f_0^s(p)|\bar{s}(z)s(0)|0\rangle = m_{f_0}\tilde{f}_s \int_0^1 \mathrm{d}x \, e^{\mathrm{i}xp \cdot z} \Phi_s^p(x)$$
 (18)

where f_q is defined in Eq. (7). They satisfy the relations $\Phi_{n,s}(x) = -\Phi_{n,s}(1-x)$ due to charge-conjugation invariance (that is, the distribution amplitude vanishes at x=1/2) and $\Phi_{n,s}^p(x) = \Phi_{n,s}^p(1-x)$ and hence $\int_{0}^{1} \mathrm{d}x \, \Phi_{n,s}(x) = 0$ and $\int_{0}^{1} \mathrm{d}x \, \Phi_{n,s}^p(x) = 1$. For the scalar meson made of $q\bar{q}$, its general distribution amplitude has the form [24]

$$\Phi_S(x) = 6x(1-x) \left[B_0 + \sum_{n=1}^{\infty} B_n C_n^{3/2} (1-2x) \right],$$
(19)

where B_0, B_n are constants and $C_n^{3/2}$ is the Gegenbauer polynomial. For the isosinglet scalar mesons σ and $f_0, B_0 = 0$. Hence, the leading twist-2 distribution amplitude for f_0 reads

$$\Phi_{f_0}(x) = 6B_1 x(1-x)(3-6x). \tag{20}$$

In the present work, we shall use $B_1 = 1.1$ as inferred from the analysis in Ref. [24]. As for the twist-3 distribution amplitude $\Phi_{f_0}^p(x)$, its asymptotic form is the same as the light pseudoscalar meson to the leading conformal expansion [25]. Hence, we take

$$\Phi^{p}_{f_{0}}(x) = 1. \tag{21}$$

In the $q\bar{q}$ description of $f_0(980)$, it follows from that

$$F_0^{B^- f_0} = \frac{1}{\sqrt{2}} \sin \theta \, F_0^{B^- f_0^{u\bar{u}}}, \qquad F_0^{B^0 f_0} = \frac{1}{\sqrt{2}} \sin \theta \, F_0^{B^0 f_0^{d\bar{d}}}, \tag{22}$$

where the superscript $q\bar{q}$ denotes the quark content of f_0 involved in the transition. The form factor for B to the scalar meson transition has been calculated in the covariant light-front model [16]. From Table VI of Ref. [16], it is clear that $F_0^{Bf_q\bar{q}}(0)$ with $q\bar{q} = u\bar{u}$ or $d\bar{d}$ is of order 0.25 which is very similar to $F_0^{B\pi}(0)$. Based on the sum-rule technique, the decay constant f_s defined by $\langle f_0^s | \bar{s}s | 0 \rangle = m_{f_0} f_s$ has been estimated in Refs. [26] and [27] with similar results, namely, $f_s \approx 0.18$ GeV. However, this quantity is scale-dependent. For our purpose, we need to evolute it from the typical sum rule scale of the order of 0.5 GeV to $\mu = 2.1$ GeV. It turns out that $f_s(2.1 \text{ GeV}) \approx 0.30$ GeV [32]. In the two-quark scenario, the decay constants \tilde{f}_s and \tilde{f}_u are related to f_s by

$$\tilde{f}_s = f_s \cos \theta, \qquad \tilde{f}_u = f_s \sin \theta / \sqrt{2}.$$
 (23)

FIZIKA B 14 (2005) 1, 1–12

Experimental implications for the $f_0 - \sigma$ mixing angle have been discussed in detail in Ref. [28]. A typical mixing angle is $\theta \approx \pm 35^{\circ}$. As pointed out in Ref. [28], the solution $\theta \sim -35^{\circ}$ is preferred by the measurements of $J/\psi \rightarrow f_0\phi$ and $J/\psi \rightarrow f_0\omega$, the $f_0(980)$ coupling to $\pi\pi$ and $K\bar{K}$ and the radiative decays $\phi \rightarrow f_0\gamma$ and $f_0 \rightarrow \gamma\gamma$. As we shall see shortly, a negative $f_0-\sigma$ mixing angle is also supported by the measurement of $B \rightarrow f_0(980)K$ decays.

In the four-quark picture, $f_0(980)$ has the flavor function $s\bar{s}(u\bar{u}+d\bar{d})/\sqrt{2}$. However, the estimate of its decay constant and form factors is beyond the conventional quark model.

Using the asymptotic distribution amplitudes of the kaon and $f_0(980)$, the annihilation contributions are simplified to

$$\begin{aligned}
\mathcal{A}_{1}^{i} &\approx \kappa \left[18B_{1}(3\pi^{2} - 10) + \frac{8\mu_{\chi}m_{f_{0}}}{m_{b}^{2}}X_{A}^{2} \right], \\
\mathcal{A}_{3}^{i} &\approx 12\kappa \left[\frac{3\mu_{\chi}}{m_{b}}B_{1}X_{A}(-X_{A} + 4) - \frac{m_{f_{0}}}{m_{b}}X_{A}(3X_{A} - 2) \right], \\
\mathcal{A}_{3}^{f} &\approx 12\kappa \left[-\frac{\mu_{\chi}}{m_{b}}B_{1}(6X_{A} - 11) + \frac{m_{f_{0}}}{m_{b}}X_{A}(2X_{A} - 1) \right],
\end{aligned}$$
(24)

where the endpoint divergence $X_A \equiv \int_0^1 dx/x$ is parametrized as [13]

$$X_A = \ln\left(\frac{m_B}{\Lambda_h}\right) \left(1 + \rho_A e^{\mathrm{i}\phi_A}\right) \tag{25}$$

with Λ_h being a hadronic scale of order 500 MeV and ρ_A a real parameter $0 \le \rho_A \le 1$.

3. Results and Discussion

It is ready to perform numerical calculations. At the scale $\mu = 2.1$ GeV, the numerical results for the relevant a_i^q are

$$a_{4}^{u} = -0.0366 - i \, 0.0137, \qquad a_{4}^{c} = -0.0423 - i \, 0.0054,$$

$$a_{6}^{u} = -0.0583 - i \, 0.0122, \qquad a_{6}^{c} = -0.0616 - i \, 0.0034,$$

$$a_{8}^{u} = (74.0 - i \, 4.5) \times 10^{-5}, \qquad a_{8}^{c} = (73.2 - i \, 2.4) \times 10^{-5},$$

$$a_{10}^{u} = (-60.7 + i \, 66.4) \times 10^{-5}, \qquad a_{10}^{c} = (-62.1 + i \, 68.4) \times 10^{-5},$$

$$a_{1} = 1.0739 + i \, 0.0216, \qquad a_{6,8}^{\prime u} = a_{6,8}^{u}, \qquad a_{6,8}^{\prime c} = a_{6,8}^{c}. \qquad (26)$$

For current quark masses, we use $m_b(m_b) = 4.4$ GeV, $m_c(m_b) = 1.3$ GeV, $m_s(2.1 \,\text{GeV}) = 90$ MeV and $m_q/m_s = 0.044$.

8

FIZIKA B ${\bf 14}~(2005)$ 1, 1–12

In Fig. 2 is shown the branching ratio of $B^- \to f_0(980)K^-$ versus the strangenonstrange mixing angle θ . It turns out that the annihilation contribution is rather small. When $\theta = 0$, f_0 is a pure $s\bar{s}$ state and hence the penguin diagram Fig. 1(a) does not contribute (i.e. the form factor $F_0^{Bf_0^u}$ vanishes). On the other extreme with $\theta = \pm 90^\circ$, f_0 is purely a $n\bar{n}$ state and the penguin diagram Fig. 1(b) vanishes (i.e. $\tilde{f}_s = 0$). For a finite mixing angle, the interference between a_6^q and $a_6'^q$ penguin terms arising from Figs. 1(a) and 1(b), respectively, is destructive for $\pi/2 > \theta > 0$ and constructive for $-\pi/2 < \sin \theta < 0$. As stated before, a negative mixing angle is preferred by experiments. It is evident from Fig. 2 that the negative angle solution is also supported by the measurement of $B \to f_0 K$. We obtain $\mathcal{B}(B^- \to f_0 K^-) =$ 2.8×10^{-6} for $\theta = 35^\circ$ and 8.4×10^{-6} for $\theta = -35^\circ$. However, even the maximal branching ratio 8.8×10^{-6} occurring at $\theta \approx -25^\circ$ is still too small by a factor of 2 compared to experiment.

Fig. 2. Branching ratio of $B^- \to f_0(980)K^-$ versus the mixing angle θ of strange and nonstrange components of $f_0(980)$.

The fact that the observed $f_0(980)K^-$ rate is significantly higher than the naive model prediction calls for some mechanisms beyond the conventional short-distance model considerations. Some possibilities are:

- Final state interactions. The predicted $B \to \pi K$ rates in the short-distance approach are in general smaller than the data by around 20% (see e.g. Ref. [29]). Long-distance rescattering via charm intermediate states (or the socalled charming penguins) will not only enhance πK rates but also drive sizable direct CP violation observed recently in the $B^0 \to K^+\pi^-$ mode [29]. The same rescattering effects are expected to enhance $f_0(980)K$ rates by (20-30)%.
- Gluonic coupling of the scalar meson. It is known that a possible explanation of the enormous production of $B \to \eta' K$ and $B \to \eta' X_s$ may be ascribed to the process $b \to s + g + g$ and the two gluons fragment into η' . The same mechanism may be also responsible for the enhancement of $f_0(980)K$ [30].

CHENG AND YANG: B \rightarrow $f_0(980)$ K decays in QCD factorization

• Subleading corrections arising from the three-parton Fock states of final-state mesons. It has been shown that this effect alone can enhance the branching ratio of $K\eta'$ to the level above 50×10^{-6} [31]. By the same token, it is expected that the three-parton Fock state contributions will play an eminent role for the enhancement of $f_0(980)K$, which we will report in a separate work [32].

4. Conclusions

We have studied the decay $B \to f_0(980)K$ using the QCD factorization approach. Its decay rate is suppressed relative to $B \to \pi^0 K$ owing to a destructive interference between a_4 and a_6 penguin contributions. In order to enhance $f_0(980)K$ rates, the interference between the (S - P)(S + P) penguin contributions arising from the strange and light quark components of $f_0(980)$ should be constructive, implying a negative strange-- nonstrange mixing angle in the two-quark picture for $f_0(980)$. We conclude that the short-distance interactions are not adequate to explain the observed large $f_0(980)K$ branching ratios. Several possible mechanisms for the enhancement of $f_0(980)K$ are discussed.

Acknowledgements

We are grateful to Chuang-Hung Chen for useful discussions. This work was supported in part by the National Science Council of R.O.C. under Grant Nos. NSC93-2112-M-001-043 and NSC93-2112-M-033-004.

References

- [1] Belle Collaboration, A. Garmash et al., Phys. Rev. D 65 (2002) 092005.
- [2] Belle Collaboration, K. Abe et al., Belle-Conf-0410.
- [3] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 70 (2004) 094001.
- [4] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag.
- [5] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 94 (2005) 041802.
- [6] BaBar Collaboration, B. Aubert et al., hep-ex/0408095.
- [7] Belle Collaboration, K. Abe et al., hep-ex/0409049.
- [8] Z. Ligeti, hep-ph/0408267.
- [9] J. A. Oller and E. Oset, Nucl. Phys. A 652, (E)407 (1999).
- [10] C. H. Chen, Phys. Rev. D 67 (2003) 014012.
- [11] C. H. Chen, Phys. Rev. D 67 (2003) 094011.
- [12] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett. 83 (1999) 1914; Nucl. Phys. B 591 (2000) 313.
- [13] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606 (2001) 245.

FIZIKA B ${\bf 14}~(2005)$ 1, 1–12

CHENG AND YANG: B \rightarrow $f_0(980)$ K decays in QCD factorization

- [14] M. Beneke and M. Neubert, Nucl. Phys. B 675 (2003) 333.
- [15] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29 (1985) 637; M. Bauer, B. Stech and M. Wirbel *ibid.* 34 (1987) 103.
- [16] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69 (2004) 074025.
- [17] Y. H. Chen, H. Y. Cheng, B. Tseng and K. C. Yang, Phys. Rev. D 60 (1999) 094014.
- [18] S. Spanier and N. A. Törnqvist, Note on Scalar Mesons, in Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.
- [19] S. Godfrey and J. Napolitano, Rev. Mod. Phys. **71** (1999) 1411.
- [20] F. E. Close and N. A. Törnqvist, J. Phys. G 28 (2002) R249; [hep-ph/0204205].
- [21] R. L. Jaffe, Phys. Rev. D 15 (1977) 267; *ibid.* (1977) 281.
- [22] M. Alford and R. L. Jaffe, Nucl. Phys. B 578 (2000) 367.
- [23] Particle Data Group, S. Eidelman et al., Phys. Lett. B **592** 1 (2004) 1.
- [24] M. Diehl and G. Hiller, J. High Energy Phys. 06 (2001) 067; [hep-ph/0105194].
- [25] V. M. Braun, G. P. Korchemsky and D. Mueller, Prog. Part. Nucl. Phys. 51 (2003) 311; [hep-ph/0306057].
- [26] F. De Fazio and M. R. Pennington, Phys. Lett. B **521** (2001) 15.
- [27] I. Bediaga, F. S. Navarra and M. Nielsen, Phys. Lett. B 579 (2004) 59.
- [28] H. Y. Cheng, Phys. Rev. D 67 (2003) 034024.
- [29] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71 (2005) 014030.
- [30] P. Minkowski and W. Ochs, Eur. Phys. J. C 39 (2005) 71.
- [31] K. C. Yang, Phys. Rev. D 69 (2004) 054025.
- [32] H. Y. Cheng and K. C. Yang, Phys. Rev. D 71 (2005) 054020.

RASPADI B \rightarrow f₀(980) K U QCD FAKTORIZACIJI

Proučava se raspad B \rightarrow f₀(980) K u okviru QCD faktorizacije. Vjerojatnost raspada je potisnuta u odnosu na B \rightarrow π^0 K raspad zbog destruktivne interferencije pingvinskih doprinosa (S–P)(S+P) i (V–A)(V–A). Interferencija pingvinskih doprinosa (S–P)(S+P), koja nastaje zbog komponenata stranog i laganog kvarka u f₀(980), je destruktivna za $\pi/2 > \theta > 0$ i konstruktivna za $-\pi/2 < \sin \theta < 0$, gdje je θ kut miješanja sadržaja stranog i nestranog kvarka u f₀(980) u dvokvarkovskoj slici lakih skalarnih mezona. Negativan kut miješanja izvodi se u analizama više mjerenja tvorbe f₀(980), uz potvrde mjerenjima B \rightarrow f₀(980) K. Zaključujemo da kratkodosežna međudjelovanja nisu dostatna za objašnjenje eksperimentalnih opažanja da je f₀(980)K⁺ > π^0 K⁺ i f₀(980)K⁰ $\gtrsim \pi^0$ K⁰. Raspravljaju se mogući mehanizmi povećane vjerojatnosti f₀(980)K.