LETTER TO THE EDITOR

POLYGONAL DERIVATION OF THE NEUTRINO MASS MATRIX
 ERNEST MA
 Physics Department, University of California, Riverside, California 92521, USA

Dedicated to the memory of Professor Dubravko Tadić

Received 17 September 2004; Accepted 20 June 2005
Online 18 November 2005

Representations of the symmetry group D_{n} of the n-sided regular polygon have generic multiplication rules if n is prime. Using D_{n} with $n=5$ or greater, a particular well-known form of the Majorana neutrino mass matrix is derived.

PACS numbers: 14.60.Pq
UDC 539.126
Keywords: Majorana neutrino mass matrix, representations of symmetry group D_{n}

The form of the 3×3 Majorana neutrino mass matrix \mathcal{M}_{ν} has been the topic of theoretical study for some time. If \mathcal{M}_{ν} has less than the full 6 parameters, then there exists at least one relationship among masses and mixing angles, which may be tested against the increasingly more precise experimental data from neutrino oscillations. However, even if such a comparison is successful, the question still remains as to why it has such a form. A possible answer is that it comes from an underlying symmetry. In this paper, it is shown how

$$
\mathcal{M}_{\nu}^{(e, \mu, \tau)}=\left(\begin{array}{lll}
a & c & d \tag{1}\\
c & 0 & b \\
d & b & 0
\end{array}\right)
$$

may be derived from D_{n}, the symmetry group of the regular n-sided polygon, where n is a prime number, equal to or greater than 5 .

Consider D_{5}, the symmetry group of the regular pentagon. It has 10 elements, 4 equivalence classes, and 4 irreducible representations. Its character table is given in Table 1.

TABLE. 1. Character table of D_{5}.

class	n	h	χ_{1}	χ_{2}	χ_{3}	χ_{4}
C_{1}	1	1	1	1	2	2
C_{2}	5	2	1	-1	0	0
C_{3}	2	5	1	1	$\phi-1$	$-\phi$
C_{4}	2	5	1	1	$-\phi$	$\phi-1$

Here n is the number of elements and h is the order of each element. The number ϕ is the Golden Ratio (or Divine Proportion) known to the ancient Greeks

$$
\begin{equation*}
\phi=\frac{\sqrt{5}+1}{2} \simeq 1.618 \tag{2}
\end{equation*}
$$

and satisfies the equation

$$
\begin{equation*}
\phi^{2}=\phi+1 \tag{3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\phi^{k+1}=\phi F_{k+1}+F_{k}, \tag{4}
\end{equation*}
$$

where F_{k} are the Fibonacci numbers. [Zadar on the Dalmatian coast in Croatia is an ancient city with a rich history and a university whose origin dates back to 1396. One person who taught there was Luca Pacioli, whose famous work Divina Proportione (1509) was illustrated by Leonardo da Vinci.]

The character of each representation is its trace and must satisfy the following two orthogonality conditions

$$
\begin{equation*}
\sum_{C_{i}} n_{i} \chi_{a i} \chi_{b i}^{*}=n \delta_{a b}, \quad \sum_{\chi_{a}} n_{i} \chi_{a i} \chi_{a j}^{*}=n \delta_{i j}, \tag{5}
\end{equation*}
$$

where n is the total number of elements. The number of irreducible representations must be equal to the number of equivalence classes.

The two irreducible two-dimensional representations of D_{5} may be chosen as follows. For 2, let

$$
\begin{align*}
& C_{1}:\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad C_{2}:\left(\begin{array}{cc}
0 & \omega^{k} \\
\omega^{5-k} & 0
\end{array}\right),(k=0,1,2,3,4) ; \\
& C_{3}:\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{4}
\end{array}\right), \quad\left(\begin{array}{cc}
\omega^{4} & 0 \\
0 & \omega
\end{array}\right), \quad C_{4}:\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{3}
\end{array}\right),\left(\begin{array}{cc}
\omega^{3} & 0 \\
0 & \omega^{2}
\end{array}\right), \tag{6}
\end{align*}
$$

where $\omega=\exp (2 \pi i / 5)$, then $\mathbf{2}^{\prime}$ is simply obtained by interchanging C_{3} and C_{4}. Note that

$$
\begin{equation*}
2 \cos (2 \pi / 5)=\phi-1, \quad 2 \cos (4 \pi / 5)=-\phi \tag{7}
\end{equation*}
$$

as expected.

For D_{n} with n prime, there are $2 n$ elements divided into $(n+3) / 2$ equivalence classes: C_{1} contains just the identity, C_{2} has the n reflections, C_{k} from $k=3$ to $(n+3) / 2$ has 2 elements each of order n. There are 2 one-dimensional representations and $(n-1) / 2$ two-dimensional ones. For $D_{3}=S_{3}$, the above reduces to the "complex" representation with $\omega=\exp (2 \pi i / 3)$ discussed in a recent review [1].

The group multiplication rules of D_{5} are

$$
\begin{align*}
& 1^{\prime} \times 1^{\prime}=1, \quad 1^{\prime} \times 2=2, \quad 1^{\prime} \times 2^{\prime}=2^{\prime}, \tag{8}\\
& 2 \times 2=1+1^{\prime}+2^{\prime}, \quad 2^{\prime} \times 2^{\prime}=1+1^{\prime}+2, \quad 2 \times 2^{\prime}=2+2^{\prime} \tag{9}
\end{align*}
$$

In particular, let $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \sim \mathbf{2}$, then

$$
\begin{equation*}
a_{1} b_{2}+a_{2} b_{1} \sim \mathbf{1}, \quad a_{1} b_{2}-a_{2} b_{1} \sim \mathbf{1}^{\prime}, \quad\left(a_{1} b_{1}, a_{2} b_{2}\right) \sim \mathbf{2}^{\prime} \tag{10}
\end{equation*}
$$

Similarly, in the decomposition of $\mathbf{2}^{\prime} \times \mathbf{2}^{\prime},\left(a_{2}^{\prime} b_{2}^{\prime}, a_{1}^{\prime} b_{1}^{\prime}\right) \sim \mathbf{2}$, and in the decomposition of $\mathbf{2} \times \mathbf{2}^{\prime},\left(a_{2} a_{1}^{\prime}, a_{1} a_{2}^{\prime}\right) \sim \mathbf{2}$, and $\left(a_{2} a_{2}^{\prime}, a_{1} a_{1}^{\prime}\right) \sim \mathbf{2}^{\prime}$.

The most natural assignment of the 3 lepton families under D_{5} is

$$
\begin{equation*}
\left(\nu_{i}, l_{i}\right), l_{i}^{c} \sim \mathbf{1}+\mathbf{2} \tag{11}
\end{equation*}
$$

Assuming two Higgs doublets $\Phi_{1} \sim \mathbf{1}, \Phi_{2} \sim \mathbf{1}^{\prime}$, the charged-lepton mass matrix is then of the form

$$
\mathcal{M}_{l}=\left(\begin{array}{ccc}
a & 0 & 0 \tag{12}\\
0 & 0 & b-c \\
0 & b+c & 0
\end{array}\right)
$$

where a, b come from $\left\langle\phi_{1}^{0}\right\rangle$, and c from $\left\langle\phi_{1}^{0}\right\rangle$. Redefining $l_{2,3}^{c}$ as $l_{3,2}^{c}, \mathcal{M}_{l}$ becomes diagonal with $m_{e}=|a|, m_{\mu}=|b-c|, m_{\tau}=|b+c|$.

Assuming that neutrino masses are Majorana and that they come from the naturally small vacuum expectation values [2] of heavy Higgs triplets $\xi_{1} \sim \mathbf{1}, \xi_{2,3} \sim$ 2, then

$$
\mathcal{M}_{\nu}=\left(\begin{array}{lll}
a & c & d \tag{13}\\
c & 0 & b \\
d & b & 0
\end{array}\right)
$$

as advertised, where a, b come from $\left\langle\xi_{1}^{0}\right\rangle$, and $c=f\left\langle\xi_{3}^{0}\right\rangle, d=f\left\langle\xi_{2}^{0}\right\rangle$. The two texture zeros are the result of the absence of a Higgs triplet transforming as $\mathbf{2}^{\prime}$. In the case of $D_{3}=S_{3}$, there is only one two-dimensional representation, hence these zeros cannot be maintained without also making $c=d=0$.

The decomposition $\mathbf{2} \times \mathbf{2}=\mathbf{1}+\mathbf{1}^{\prime}+\mathbf{2}^{\prime}$ holds not only in D_{5}, but also in D_{n} with n prime and $n>5$. For example in D_{7}, there are 3 two-dimensional irreducible representations, corresponding to the 3 cyclic permutations of

$$
C_{3}:\left(\begin{array}{cc}
\omega & 0 \tag{14}\\
0 & \omega^{6}
\end{array}\right), \quad\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{6}
\end{array}\right),
$$

$$
\left.\begin{array}{l}
C_{4}:\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & \omega^{5}
\end{array}\right), \\
C_{5}:\left(\begin{array}{cc}
\omega^{5} & 0 \\
0 & \omega^{2}
\end{array}\right), \tag{16}\\
0
\end{array} \frac{0}{\omega^{4}}\right), \quad\left(\begin{array}{cc}
\omega^{4} & 0 \\
0 & \omega^{3}
\end{array}\right), .
$$

where $\omega=\exp (2 \pi i / 7)$. It is clear that

$$
\begin{equation*}
\mathbf{2}_{1} \times \mathbf{2}_{1}=\mathbf{1}+\mathbf{1}^{\prime}+\mathbf{2}_{2}, \quad \mathbf{2}_{2} \times \mathbf{2}_{2}=\mathbf{1}+\mathbf{1}^{\prime}+\mathbf{2}_{3}, \tag{17}
\end{equation*}
$$

etc. Hence Eq. (13) is valid in all these symmetries.
Phenomenologically, Eq. (13) has been studied [3] as an example of the class of neutrino mass matrices with two texture zeros. It was first derived from a symmetry (Q_{8} or D_{4}) only recently [4]. Whereas Q_{8} or D_{4} allows other forms, D_{n} with n prime and $n \geq 5$ allows only Eq. (13). Models based on $D_{4} \times Z_{2}$ have also been proposed [5]. The 4 parameters of Eq. (13) imply that $m_{1,2,3}$ are related to the mixing angles. Given the present global experimental constraints [6]

$$
\begin{align*}
& \Delta m_{\text {atm }}^{2}=(1.5-3.4) \times 10^{-3} \mathrm{eV}^{2}, \quad \sin ^{2} 2 \theta_{\text {atm }}>0.92, \tag{18}\\
& \Delta m_{\text {sol }}^{2}=(7.7-8.8) \times 10^{-5} \mathrm{eV}^{2}, \quad \tan ^{2} \theta_{\text {sol }}=0.33-0.49, \tag{19}
\end{align*}
$$

and $\left|\sin \theta_{13}\right|<0.2$, the allowed region in the $m_{3}-m_{2}$ plane has been obtained in Ref. [5]. That figure is reproduced here for the convenience of the reader. It shows that there are lower bounds on m_{2} and m_{3} and that $m_{3}<m_{2}$ up to about 0.1 eV . The parameter a in Eq. (13) measures neutrinoless double beta decay and has a lower bound of about 0.02 eV in this case.

Fig. 1. Allowed region in $m_{2}-m_{3}$ plane for Eq. (13).

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837. It is dedicated to the memory of Professor Dubravko Tadić.

References

[1] E. Ma, talk at SI2004, Fuji-Yoshida, Japan, hep-ph/0409075.
[2] E. Ma and U. Sarkar, Phys. Rev. Lett. 80 (1998) 5716; E. Ma, Phys. Rev. Lett. 81 (1998) 1171.
[3] P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536 (2002) 79; Z.-Z. Xing, Phys. Lett. B 530 (2002) 159; 539 (2002) 85; M. Frigerio and A. Yu. Smirnov, Phys. Rev. D 67 (2003) 013007.
[4] M. Frigerio, S. Kaneko, E. Ma and M. Tanimoto, Phys. Rev. D 71 (2005) 011901 [hep-ph/0409187].
[5] W. Grimus and L. Lavoura, Phys. Lett. B 572 (2003) 189; W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura and M. Tanimoto, JHEP 0407 (2004) 078 [hep-ph/0407112].
[6] See for example the recent update of M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6 (2004) 122 [hep-ph/0405172].

MA: POLYGONAL DERIVATION OF THE NEUTRINO MASS MATRIX

POLIGONSKI IZVOD MATRICE NEUTRINSKIH MASA

Predstavljanja grupe simetrija D_{n} pravilnog n tero-stranog poligona sadrže tvorbena pravila množenja ako je n primbroj. Primjenom D_{n} sa $n=5$ ili većim, izvodi se dobro poznata matrica masa Majoraninih neutrina.

