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Representations of the symmetry group Dn of the n−sided regular polygon have
generic multiplication rules if n is prime. Using Dn with n = 5 or greater, a par-
ticular well-known form of the Majorana neutrino mass matrix is derived.
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The form of the 3 × 3 Majorana neutrino mass matrix Mν has been the topic
of theoretical study for some time. If Mν has less than the full 6 parameters, then
there exists at least one relationship among masses and mixing angles, which may
be tested against the increasingly more precise experimental data from neutrino
oscillations. However, even if such a comparison is successful, the question still
remains as to why it has such a form. A possible answer is that it comes from an
underlying symmetry. In this paper, it is shown how

M(e,µ,τ)
ν =

(

a c d
c 0 b
d b 0

)

(1)

may be derived from Dn, the symmetry group of the regular n−sided polygon,
where n is a prime number, equal to or greater than 5.

Consider D5, the symmetry group of the regular pentagon. It has 10 elements,
4 equivalence classes, and 4 irreducible representations. Its character table is given
in Table 1.
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TABLE. 1. Character table of D5.

class n h χ1 χ2 χ3 χ4

C1 1 1 1 1 2 2

C2 5 2 1 −1 0 0

C3 2 5 1 1 φ − 1 −φ

C4 2 5 1 1 −φ φ − 1

Here n is the number of elements and h is the order of each element. The number
φ is the Golden Ratio (or Divine Proportion) known to the ancient Greeks

φ =

√
5 + 1

2
≃ 1.618, (2)

and satisfies the equation
φ2 = φ + 1, (3)

which implies that
φk+1 = φFk+1 + Fk, (4)

where Fk are the Fibonacci numbers. [Zadar on the Dalmatian coast in Croatia
is an ancient city with a rich history and a university whose origin dates back to
1396. One person who taught there was Luca Pacioli, whose famous work Divina

Proportione (1509) was illustrated by Leonardo da Vinci.]

The character of each representation is its trace and must satisfy the following
two orthogonality conditions

∑

Ci

niχaiχ
∗

bi = nδab,
∑

χa

niχaiχ
∗

aj = nδij , (5)

where n is the total number of elements. The number of irreducible representations
must be equal to the number of equivalence classes.

The two irreducible two-dimensional representations of D5 may be chosen as
follows. For 2, let

C1 :

(

1 0
0 1

)

, C2 :

(

0 ωk

ω5−k 0

)

, (k = 0, 1, 2, 3, 4);

C3 :

(

ω 0
0 ω4

)

,

(

ω4 0
0 ω

)

, C4 :

(

ω2 0
0 ω3

)

,

(

ω3 0
0 ω2

)

, (6)

where ω = exp(2πi/5), then 2
′ is simply obtained by interchanging C3 and C4.

Note that

2 cos(2π/5) = φ − 1, 2 cos(4π/5) = −φ, (7)

as expected.
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For Dn with n prime, there are 2n elements divided into (n + 3)/2 equivalence
classes: C1 contains just the identity, C2 has the n reflections, Ck from k = 3 to
(n + 3)/2 has 2 elements each of order n. There are 2 one-dimensional representa-
tions and (n − 1)/2 two-dimensional ones. For D3 = S3, the above reduces to the
“complex” representation with ω = exp(2πi/3) discussed in a recent review [1].

The group multiplication rules of D5 are

1
′ × 1

′ = 1, 1
′ × 2 = 2, 1

′ × 2
′ = 2

′, (8)

2 × 2 = 1 + 1
′ + 2

′, 2
′ × 2

′ = 1 + 1
′ + 2, 2 × 2

′ = 2 + 2
′. (9)

In particular, let (a1, a2), (b1, b2) ∼ 2, then

a1b2 + a2b1 ∼ 1, a1b2 − a2b1 ∼ 1
′, (a1b1, a2b2) ∼ 2

′. (10)

Similarly, in the decomposition of 2′×2
′, (a′

2b
′

2, a
′

1b
′

1) ∼ 2, and in the decomposition
of 2 × 2

′, (a2a
′

1, a1a
′

2) ∼ 2, and (a2a
′

2, a1a
′

1) ∼ 2
′.

The most natural assignment of the 3 lepton families under D5 is

(νi, li), lci ∼ 1 + 2. (11)

Assuming two Higgs doublets Φ1 ∼ 1, Φ2 ∼ 1
′, the charged-lepton mass matrix is

then of the form

Ml =

(

a 0 0
0 0 b − c
0 b + c 0

)

, (12)

where a, b come from 〈φ0
1〉, and c from 〈φ0

1〉. Redefining lc2,3 as lc3,2, Ml becomes
diagonal with me = |a|, mµ = |b − c|, mτ = |b + c|.

Assuming that neutrino masses are Majorana and that they come from the
naturally small vacuum expectation values [2] of heavy Higgs triplets ξ1 ∼ 1, ξ2,3 ∼
2, then

Mν =

(

a c d
c 0 b
d b 0

)

(13)

as advertised, where a, b come from 〈ξ0
1〉, and c = f〈ξ0

3〉, d = f〈ξ0
2〉. The two texture

zeros are the result of the absence of a Higgs triplet transforming as 2
′. In the case

of D3 = S3, there is only one two-dimensional representation, hence these zeros
cannot be maintained without also making c = d = 0.

The decomposition 2×2 = 1+1
′+2

′ holds not only in D5, but also in Dn with
n prime and n > 5. For example in D7, there are 3 two-dimensional irreducible
representations, corresponding to the 3 cyclic permutations of

C3 :

(

ω 0
0 ω6

)

,

(

ω 0
0 ω6

)

, (14)
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C4 :

(

ω2 0
0 ω5

)

,

(

ω5 0
0 ω2

)

, (15)

C5 :

(

ω3 0
0 ω4

)

,

(

ω4 0
0 ω3

)

, (16)

where ω = exp(2πi/7). It is clear that

21 × 21 = 1 + 1
′ + 22, 22 × 22 = 1 + 1

′ + 23, (17)

etc. Hence Eq. (13) is valid in all these symmetries.

Phenomenologically, Eq. (13) has been studied [3] as an example of the class of
neutrino mass matrices with two texture zeros. It was first derived from a symmetry
(Q8 or D4) only recently [4]. Whereas Q8 or D4 allows other forms, Dn with n prime
and n ≥ 5 allows only Eq. (13). Models based on D4 ×Z2 have also been proposed
[5]. The 4 parameters of Eq. (13) imply that m1,2,3 are related to the mixing angles.
Given the present global experimental constraints [6]

∆m2
atm = (1.5 − 3.4) × 10−3 eV2, sin2 2θatm > 0.92, (18)

∆m2
sol = (7.7 − 8.8) × 10−5 eV2, tan2 θsol = 0.33 − 0.49, (19)

and | sin θ13| < 0.2, the allowed region in the m3 − m2 plane has been obtained in
Ref. [5]. That figure is reproduced here for the convenience of the reader. It shows
that there are lower bounds on m2 and m3 and that m3 < m2 up to about 0.1 eV.
The parameter a in Eq. (13) measures neutrinoless double beta decay and has a
lower bound of about 0.02 eV in this case.
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Fig. 1. Allowed region in m2 − m3 plane for Eq. (13).
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POLIGONSKI IZVOD MATRICE NEUTRINSKIH MASA

Predstavljanja grupe simetrija Dn pravilnog ntero-stranog poligona sadrže tvor-
bena pravila množenja ako je n primbroj. Primjenom Dn sa n = 5 ili većim, izvodi
se dobro poznata matrica masa Majoraninih neutrina.
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