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MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

1. Introduction

I shall begin a historical survey, quoting a recent article [1] entitled ”Cen-
tral exclusive diffractive production as a spin—parity analyser: from hadrons to
Higgs” , written by four authors: A. B. Kaidalov, V. A. Khoze, A. D. Martin and
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Fig. 1. (a) The central production of a state h by double Reggeon-exchange. (b)
The double-Pomeron exchange contributions to pp — p + h + p, which dominates
at high energies, where the + signs are used to indicate the presence of Pomeron-
induced rapidity gaps.

M. G. Ryskin. 'Pour fixer les idées’, let me reproduce the first figure of the above
paper. In Fig. 1 the reaction of central type

Hs (ps; ¢#3)
+ Hy (pas q#4) (1)

Hy(p1; q#1)
{ } +[hc(pc;‘I~#C)+Xc]

+ Hy (pa2; q#2)

is represented with the following identifications:

1) Initial and tagged final hadron pairs inducing central production

Hi o : initial hadron pair with { momenta  py,2 }

and ¢.#  q1,2 @)
3(— 1)and 4 (« 2) with { momenta pg 4 }

LERE associated hadron pair and ¢.# ¢3.4

2) Centrally produced (hadronic) system h. conditioned by h. | X .

momentum p.
with mass M. = \/p2
and q.# qec

optimized to isolate h
from background .

centrally produced

system of interest

X . . specified conditions

(3)
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MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

As is illustrated by the range of topics discussed in Ref. [1], the general issue of
central production is not restricted to strong interactions, limited as far as quark-
and antiquark flavors are concerned to the three light ones u, d and s, denoted
QCD3 hereafter.

This is our main focus here.

Rather at sufficiently high c.m. energy, strong and electrweak synthesis of the
central system ‘h .’ well includes the following processes, becoming dominantly re-
ducible to fusion of virtual gauge boson pairs formed out of the sequence gluon
(g), photon (7), W and Z. We list only the combinations where h. = QQ

g9(gv,vy) — QQ, g9y — QQ for heavy flavors Q = ¢, b, t and the top quark
induced hadronic production of Higgs boson(s), where h. = h’F gg — tt — h'%:

i) Hadronic production of (single) heavy quark-antiquark pairs, both bound and

open .
@ : J/U,x, - , DD,
he (QCDg) =4 bb : Y x4, , BB, ---

99 — QQ.
ii) Hadronic production of (single) Higgs bosons h©'¢

he(QCDs, Y yreg) ={ h*F, h=F } (5)
gg — tt — h'P.

In Eq. (5), Y} rc s denotes the Yukawa coupling between the Higgs boson(s)
and the top quark.

The association of central production with perturbatively preconceived gauge bo-
son fusion is not fortuitous. It goes back to seminal work on multiparticle production
mainly of electrons and positrons in QED, by Landau, Lifschitz, Pomeranchuk and
others. I only wish to cite a selected subset for historical accuracy [2].

The perturbative approach to QED-governed high-energy elastic scattering am-
plitudes for initial particle pairs e~ e* , e"p , e~ , vp and vy was pioneered by
Cheng and Wu [3]. The proton can be replaced by a nucleus (A,Z), where the
nuclear charge ) = Ze serves to represent ’strong’ coupling, for large Z .

2. Theoretical expectations for primary gluonic binary
(gb) Regge trajectories
We follow the identification of the gluonic binary states lowest in mass discussed

in Ref. [4]. It shall be clear, that here we follow a combination of hypotheses and
theoretical expectations. We will comment on alternatives below.
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MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

We begin with the spectrosopic classification of gluonic binaries [5], which, apart
from the confined nature of binary gluons, is identical to the classification of photon
binaries [6, 7]. It will prove useful to obtain a ‘Richtwert’ for the inverse slope of
the p-Regge trajectory at 0 momentum transfer, since it is this quantity which sets
the unit of mass square with respect to which hadronic resonances, gb and others,
are to be placed in the simplified harmonic and zero width- approximation.

In this objective we define the quantity mg (0 = t), which represents the o
mass square as seen in the limit of spacelike momentum transfer ¢ — 0 through
the electromagnetic form factor of charged pions F' " (1)

m;2(0) = dFT (t)/(dt)

[

1 /,.2\7

N AT (6)
7T+ . .

In Eq. (6) < r? >7 denotes the e.m. mean square charge radius of charged pions.

This quantity is presently beeing investigated by Caprini, Colangelo and Leutwyler
[8], from where I quote the preliminary result

(r2)7 + [ 0.4332 £ 0.005 (stat.) + 0.0004 (syst.) £ 0.0004 (P)
"y T - 04332 +£1.3% fm?.
7
Converting to GeV units, we obtain @)
(0) = 0.5393 + 1.3 % GeV 2
(0) — m2, = 05211 + 1.3 % GeV ? (8)
= (721.9 £ 0.65 % MeV)>.

m

m

DN N

The quantity m, (0) in Eq. (8) deviates substantially from the resonance parame-
ters of the g, whether obtained from the pole position in the complex energy plane
or other parametrizations of physical cross sections. For comparison I quote a recent
determination by the KLOE collaboration [9]

m, = 7759 £ 0.5 £ 0.3 MeV ()
I', = 1439 £ 1.3 £ 1.1 MeV.

0 =

The relation to the inverse Regge slope parameter (a/ )~ lis

(a)7t = 2(m3(0) — m%)

1.0422 4+ 1.3 % GeV 2 (10)
= (10209 + 0.65% GeV ) 2.

We remark here, that the relation in Eq. (10) is not a rigorous one. We can compare
with the direct ¢ > 0 spectroscopic masses along the A baryon trajectory, assumed
unperturbed

’

L(m2 (A%2) —m? (AY?H)) = (ay) 7! =1.034 £ 0.010GeV ?

L (m? (A2H) —m2 (AV2H)) = (d/y) "' = 1.069 + 0.024 GeV 2.

(11)
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MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

3. Quantum numbers of binary gluonic mesons

The binary gluon system is only singled out in the present discussion, because
it is expected to contain gluonic meson resonances, lower in mass than the ternary
or more complex multi-gluonic mesons.

Let us first consider the finite dimensional (nonunitary) representations of
SL2C x SL2C restricted and unrestricted to the covering group of the real Lorentz
group. Details are presented in appendices A.1 and A.2 . To this end, we associate
with a bosonic resonance a free, massive state or collection of spin states. Let the
total spin be J. The spinor wave functions are obtained by direct products of full
and chiral spin 1/2 spinors, and the four-momentumi p, neglecting here the width
of the associated resonance.

toras—ay (P} {Spin})e_ipx = (Q bayas—an (7) |p; {spin})
N=2J, p2=M?, p° = E>M

totally symmetric under
talag-naN =ta

: . . Q) o«
= permutations of the indices ' N

aj = 1,2 , j=1---N (12)

EN32N (s {spin} ) e TP = ( QTN (2) |p; {spin} )
totally symmetric under

permutations of the indices
¥ =12, j=1.---N.

tN‘Yl’Yz"“YN — t~1 A1 AN

In Eq. (12), {spin} denotes the spin state, to be specified in a general frame of
motion, and (¢ o, ¥ 2) a pair of free fields (right chiral, left chiral ), associated
with the particle in question.

The transformation rules of the spinor wave functions (t,, t X) are

{spin} — s, #s = N+1

tﬁ(Ap;S) = Sﬁé(a)té(p;S/)Dss' (13)
f1(Apss) = 857 () T2(p;s)) D,y
Dssl = D;]s,(A’p) ] b =a.

The sought representations of the Lorentz group are obtained as symmetric prod-
ucts of the spin 1/2 chiral spinors. They are presented in Appendix A.1.

There is a small step from binary photon to binary gluon compounds, even
though their classification with respect to quantum numbers J € is identical. To
see this, let me first discuss the SU3 . gauge invariant binary gauge boson operator

B[#1V1]7[H2V2](3317x2) =
F[Hll/l](xl;A)U(x17A;-7J27B)F[M,W](.’EQ;B) (14)
A B,--- = 1,---,8.
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Adjoint representation indices referring to the color gauge group are denoted by
A, B in Eq. (14). Summation over repeated such indices is implied. F[,,](x; 4)
denote the color octet of field strengths. The quantity U (z, A; y, B) in Eq. (14)
denotes the octet string operator, i.e. the path ordered exponential over a straight
line path C from y to z.

xT

U(x,A;y,B) :Pexp</ dz“iVM(z,D)}'D>

(Fp)ag = ifabn-

vlc AB (15)

In Eq. (15), fapp denotes the structure constants of SU3 . and F p the generators
of its adjoint representation. V, (z, D) denote the octet of field potentials. Prop-
erties pertaining to the octet string operators, field strengths and their potentials
are collected in Appendix A.3.

The extensive discussion of Stokes relations in Appendix A.3 serves here
to present as clear an argument as possible, why the octet string operator
U(x, Ayy, B)|., taken over a straight line path C attached to two field strength
operators F[,, ,,1(2r; Ax); k = 1,2 at the ends of the string — as displayed in
Egs. (14) and (15) — form a configuration similar to an Hy molecule, representing an
energetically favored gluonic meson, i.e. a hadronic resonance susceptible of identi-
fication specifically in central production. The band structure of the Ho molecule

would then translate into the possible quantum numbers of the associated binary
gluonic mesons, so defined, in appropriately adapted analogy. From a purely theo-

retical point of view, it has to be stressed, that this remains at the present stage a
hypothesis, subject to further tests, extending the existing analyses in Refs. [4] and
[5] as well as related and/or alternative points of view, to be substancified below.

To illustrate the molecular aspect, I reproduce in Fig. 2 the gauge boson action
density in a lattice calculcation of a nucleon [10].

The bilinear operator in Eq. (14) satisfies Bose symmetry

Bluin],luevs) (21, 22) =By, (] (22, 21) —

oy ~ (16)
¢ B[#ll/l],[,twl/z] (‘Tl ) mQ)C = B[,ulVl]a[llle] (mla l’g).
In Eq. (16), C denotes the charge conjugation operator.
We shall consider matrix elements of the form
<®‘ B[ulul],[uguz] (:1717 IQ) |gb(JPC);p7 {Spl’ﬂ}> -
e Xt (z,p, JPY; ) with
|0) : ground state , X =1 (21 +22) , 2z = (21 — 22) a7
17
JPC . total spin, parity, C-parity ; p : c.m. four momentum
. : spinor representation for [piv1], [pnava]
: spin state.
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T primary Regge trajectories T é J(
i N
- — 8} 1 |
T gb f a7 -
i3 sf i
i L ul
2 =
t
mag -
3 20 12k
I 0 -
T A - Fig. 2. Primary
1~ o gluonic binary (gb)
4T oy Regge trajectories
] | in comparison with
i _-l, the o — (qq) trajec-
i i tory.
In Eq. (17) JP¢, p and . = {spin} refer to properties of the gluonic meson in

question (gb) , whereas . « [pu1v1], [p2v2] and z refer to variables initrinsic to
the operator By, v, [pusvse] (T1, T2)
The four-momentum p is introduced, as if gb(J); p, {spin} would corre-

spond to a stable particle. This is at best approximately justified in the zero width
approximation, which we shall not a priori assume to be valid.

Nevertheless gb-s will manifest themselves as poles in complex momentum
planes, corresponding to analytic continuation of strong interaction scattering am-
plitudes. The latter refer to stable particles, like pions, kaons and baryons, in the
limit where both electromagnetic and weak interactions are neglected.

Hence, ignoring the above complication for the time beeing, the mass of
gb(JFY) is defined through p

mE = pupt s By = T m? -
m =m (gb(JFY)).

As a consequence of Eq. (16), we have for the binary gluonic mesons C = +

throughout
gb(JFC) — gb(JFT). (19)

The relativistic spin . , processed as outlined in Appendix A.1, combines the same
way as in the nonrelativistic case to a total spin S
S1o = SE + 5;2

20
(552072<—>P:+);(51—2:14_>p:_). (20)
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The total spin states Si2 in Eq. (20) are subject to transversity conditions, to
which we will turn below. But independtly thereof the spectrum of gb(JF*+) at
this stage splits into three

gh(J+t+)y . ShL =2 . IIt
gb(JPT) — gb(JTT) , S =0 o IF (21)
Nogh(Jmt) , Sp =1 o« I,

The three spectral types shall be denoted as in Eq. (21): [T+ | I and I~ , where
the superfix stands for parity.

To clarify the spin structure, we discuss the spectral classes [ + first. To this
end we label the amplitudes ¢_(z, p, JFY;.) in Eq. (17)

t(z,p,J0F;.) — ftvi;sf:z(zgp,Ji*; )

tL;IIJr(ZapvJJFJr;')

/
t 7 22
tosx (2,0, J5F5) = t (2,0, J7F50) (22)
\ t;;I*(Z7p7J7+;')
dsﬁ = .= [pava], [pave].
The two spectral classes I+ exhibit the relativistic factorization patterns
> (K*)
t .+ (z, ,J:‘:+;' _ pavil[peve]
Byl ( D ) ( thi(Z,p,Ji-i_;.)
K - (23)
( [pivi]lpava] = Gpip29vive = GuivaGpuav,
(K7) [p1vi)[pave] — Epinavive:

In Eq. (23), K* denote the two Lorentz invariant tensors with parity +, respec-
tively, and g, the Lorentz metric tensor.

The tensors K * form projection operations on the octet string operators
B[M1V1];[M2U2] (xl ) 132)7

introduced in Eq. (14) and described in Appendix A.4. The projections yield

(K+) [pivi] [p2ve2] B

Bl i) (1s22) = |+ (K7) (40 (pawa) B (24)
+ B

pivi], [z va]

where the quantities B (¥) are derived in Appendix A.4. They are of the form given
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in Eq. (160) reproduced below

B(+)(1'1,£L'2) -
= 15 Flap)(z1; A)U (21, Asz2, B)FL*Pl(25; B)

B(i)(xlv‘rQ) -
= — & Flap) (z1; A)U(x1, A; 22, B)FlF) (25 B) (25)
= — L Flap)(z1: A)U (21, A; 22, B)F1°8) (25 B)

Flap (223 B) = $20ps P00 (225 B)
and (z2; B) « (215 A).

Returning to the (spin-) reduced amplitudes ¢ ;+ (z, p, J=T; .) introduced in Eq.
(23) we obtain using the notation of Eq. (17)

(O] B® (21, 22) |gbrs (JET); p, {spin}) o

= eiipX?Ii (Zap7 Ji+; ) )
with B (£) given in Eq. (25) . In Eq. (26), the suffix I * of the states gb; + indicates,
that these are restricted to the spectral types denoted I+ in eq. (21). In the local
limit of 2z — 0, i.e. shrinking the extension of the adjoint string to zero length,
we recognize in B (F) two local operators shaping the dynamics of QCD. We ignore
here for clarity all short-distance singularities, in this limit.

BW — L F ) (X;A)Flr(X;A)

z — 0 () 1 "'[ v]
B — —EFW[HD](AX;A)F’'u (X,A)
3B(+)|0 = LP(X) LE)V(X) = g%s(X) (27)
_3 B(_)’0 = L£LO)(X) LX) = 8n%chy(X)
LO(X) = 1F,,(X;A)FI(X;A)
LO(X) = LR (X;A)FIrvI(X;A).

In Eq. (27), s denotes the action density pertaining to gauge bosons and g the
(strong) coupling constant, while chy represents the density of the second Chern
character.

We return to the wave functions ¢+ (z, p, J=1; .) defined in Egs. (23) and
(26) pertaining to the gb spectral types I+ in eq. (26). As a consequence of Eq.
(16), they satisfy the Bose symmetry relation

?Ii(zvpa‘]i+;'):Zli(_zapa‘]i+;')' (28)

We meet a problem of interpretation of the bilinear wave functions ¢;+ and the
symmetry in eq. (28) , known (also) from the study of ¢g and 3 ¢ composite systems
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[11]. This is recognized, decomposing the Lorentz four vector z into parallel and
transverse components relative to the c.m. momentum p

z=zp,+np/m?*; n=zp — z,p=0. (29)

In the c.m. system, the scalar product 7 in Eq. (29) becomes relative time, which
is not a genuine degree of freedom of the dynamical system in question.

cm.: p — Pem. (M, 6)

(30)
N — mzg = Mipe .

Let me illustrate what is addressed here, considering the decay o® — 2. First,
we shall assume pions to be absolutely stable. Then the decay

QO N 27'['0

is forbidden by Bose symmetry. Next, we take into account, that 7%s decay
(mainly) into two photons, over the width of 7°. The latter is according to the
PDG [12]

Tpo = (84 +£06)1077s « T',0=(7.84=+0.53)eV. (31)

To be specific, we consider the reaction
efem — 0% — 4y (32)

and ask the question, whether it can proceed, when the two pairs of photons, v1 vy2
and 374 say, form each a 79, with invariant masses m 15 and m 3,4 differing by a
well defined fraction of T" ;o

JeTro > miz — mag| > f-T 1o

33
with f. =1, f- =01 say. (33)

The answer relevant here is, that there is a multitude of equivalent irreducible wave
functions out of the family defined in Eqgs. (23) and (26),

%vfi(z7pa']i+;') :?Ii(zp7p7n7‘]i+;')a (34)

distinguished by the parameter n as defined in Egs. (29) and (30). Thus we choose
the representative with n = 0

tre(2p,p, JET; ) =tr(2p,p,n=0,JFF; ). (35)

The above procedure illustrates the difference between decay amplitudes of reso-
nances into two photons and their selection rules, derived in Refs. [6] and [7], and
the wave functions of binary gluonic mesons.

The irreducible wave functions ¢ ;+ can readily be discussed in the rest system
of the momentum p, where

cm.: (p=20,2p) = 2zp = (0

’ 36
tre(zp,p, JEY; ) =t (2, J5F; ). (36)
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The procedure outlined above implies that the octet string bilinear operators
B[MIVI],[IJ«2V2](J:1)$2)7 (37)

defined in Eq. (14), are to be evaluated for spacelike relative positions z = 1 — o
only.
Now Eq. (28) takes the form
tji(g,J:tJr;.):t[i(—g,J:t+;.>. (38)

The consequence for the angular momentum composition of the spectral types I+
is indeed identical to the situation of decay into two photons [6, 7]

tre (2, JFF; ) =t (2, JFT; M)

tre (2, JEY M) = R, (r)Y(€) ; J = even

T:|5| 5 5:Z/T (39)
I+ . JPC = O++72++,4++
I= : JPC =0t 27F 4=+ ...

In Eq. (39), Y} denote the orbital spherical harmonics with angular momentum
J, while {RI] + } stand for a family of radial wave functions. Neither nature nor
extension of this family, nor its ordering in mass can be deduced from the spectral
type. For the sake of absolute clarity let me emphasize that the family of wave
functions (of all types pertinent to binary gluonic mesons) can be empty, since no
first principle proof to the contrary exists.

Quantum numbers of binary gluonic mesons continued
The ITY spectral type

We turn to the remaining spectral type denoted IT" in Eq. (21) . The prop-
erties of this spectral series, represented by the quantities B /[m il [pzva] defined
in Eq. (24) are derived in Appendix A.5. As shown there the wave functions of the
gb spectral type I1 T are uniquely associated with the classical energy momentum
bilinear pertaining to gauge bosons. We retain here the characteristic composition
of the wave function associated bilinears B’ in Eqgs. (218) and (219) in the summary
remarks of Appendix A.5:

1(9#1#291/11/291/1#29#11/2 )
2

_gﬂl Vo Qlll;Lz + gV1V2 QHINZ

B v v = + +
AR FE i BT
- (=)
+K[M1V1][N2V2]B (40)
with :g“luzB[mm],[uqu] =Ry, v,
Som = Ry g R = 0t

R=g"'"*R, ,, = 12BH),
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The bilinears B’ are thus given by

B’ _ 1 Guip20vivy = Guip2 Qpivs )
[pavn], [p2va] 2 _gM1V2QV1u2+gV1V29#1#2

B' — {IIT} «— 94",

(41)

The three spectral types are given in Eq. (42) below, completing the types I+ in
Eq. (39)

t[i(z,.]:t+;.) —>t1i(2,Ji+;M)

tr+(Z,JEY ;M) =RI.(r)Y(€) ; J = even

r=1z| , €=2Z/r
It JPC — 0++’2++’4++
I= . JPC ==+ 27+ 4-F ...

tir+ (2, J5F50) — t11+(5,JII+§M7§i)
tll+(57 JII+;MaEi) =
= R{”(T,Ei)D}{/[iz(e", EL)

I+ - JPC':2++,3++’4++’5++',,,

In Eq. (42), the chromoelectric field strengths E ;. are retained in the arguments of
the wave functions.

The functions DY, (€, E 1), with o = £2, denote the eigenfunctions of a
(symmetric) top, with the full orientation involving three Euler angles provided by
the correlation between the two chromoelectric field strengths E + of the adjoint
string, discussed in Appendix A.5.

Let us end here the theoretical discussion of binary gluonic modes associated
with the octet gauge boson string. Theoretical expectations of spectral characteris-
tics of states representing the spectral types I = and IT 1 shall be addressed in the
next section.

4. Spectral patterns of gb - facts and fancy

a) Lattice QCD calculations

The most promising and widely accepted framework to derive spectral patterns
of hadrons, including gluonic mesons, is the lattice gauge theory and therein the re-
striction to gauge boson degrees of freedom only. I shall quote several papers instead
of a review [13—14]. I shall discuss the above papers one by one. In Ref. [13], a care-
ful and dedicated study is devoted to the determination of the mass of gb (0++),
the lowest lying gluonic meson in pure Yang-Mills theory based on SU3 ., and also
gb(2+1), with the results

m (gb(0++)) = 1627 £ 83 MeV — m?2 = 2.65 + 0.27 GeV >

43
m (gb(2tT)) = 2354 £ 95 MeV — m? = 5.54 + 0.6 GeV?Z. (43)

90 FIZIKA B 14 (2005) 2, 79-138



MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

The main result refers to gb (0+) and is in very good agreement with all lattice
gauge theory calculations, concerning the same state.

I compare the above results with the assignment made here in Fig. 3
m? (gb(0T+)) = 1.04GeV?

m? (gh(2++)) = 3.13GeV?2. (44)

Direct Measurement of Y-type Flux-Tube Formation in Lattice QCD

5 ‘ e ——

Fig. 3. Gauge boson action density for a nucleon in lattice simulation of QCD.

While it is difficult to associate an error with the tentative pattern represented in
Fig. 3 and Eq. (44), to which I will return below, the essentially smaller mass square
scale, by factors of ~ 2.5 and ~ 1.8 for gb(0%+) and gb (271 ), respectively, is
indeed a basic controversy, seemingly disproving the mass square range considered
in eq. (44) .

In Ref. [14], an attempt is made to align gb resonances on the Pomeron trajec-
tory, as done here in Fig. 3, but with very different assignments: the slope of the
Pomeron trajectory is assumed to be

[14] : a’p = 'y, ~ 022 £ 0.4GeV 2

here : a’y, = $a’ = 05211 + 1.3% GeV 2.

(45)

Again a factor of two opens up, with respect to the value of a’ ;, between Ref. [14]

and our present discussion, where indeed the relation o/, = % a’, also discussed

g 2
below, can be in doubt.

As a consequence of the calculations in Ref. [14], the deduced mass square value
for gb (2%1), which is supposed to lye on the Pomeron trajectory, becomes

[14] : m? (gh(2t1)) = 4.4 + 1.2GeV?
here : m? (gb(2+1)) = 3.13GeV? (46)
(m? (gb(3¥F)) = 4.17GeV?) .

Comparing the mass square values of Ref. [14] in Eq. (46) with the one of Ref. [13]
in Eq. (43), we see (marginal) agreement.
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In Ref. [15], lattice calculations are presented to determine the masses of hybrid
mesons, composed of at least one gluon bound with a (nonstrange) ¢g pair, and
exhibiting ¢q exotic quantum numbers, such as

JPC =0-=,0t, 1=+ 2+ ...
The lightest hybrid states with nonstrange quarks is found with characteristics
[15] : JPC = 17T 5 mpy = 1.9 £ 0.2GeV

2

47
— m3,, = 3.6 £0.6GeV?. (47

Also in lattice calculations of hybrid meson masses, agreement between different
groups is very satisfactory. The above is not directly related to the discussion of
binary gluonic mesons, but the result in Eq. (47) is apparently contradicted by the
experimental finding of (at least) two exotic mesons with JX¢ = 1~F quantum
numbers in p wave decay to nm and 1’7 [17]. These resonances carry the name
71 (1400) and 74 (1600 ), where the mass in MeV is the argument.

The two resonances in question were attributed the following characteristics [17]
(beyond JPC¢ = 1-1)

71 (1400) : m = 1370 4+ 16 © 30 MeV
I'= 385 + 40 T {5  MeV
71(1600) : m = 1597 + 10 T15 MeV

[ = 340 + 40 T35 MeV.

(48)

In the first paper in Ref. [17], the authors remark that the exotic quantum numbers
violate SU3 j; symmetry, in the decay 71 (1400) — mns, assigning pure flavor
octet quantum numbers to 7, unless it is not a hybrid meson but rather composed of
two quarks and two antiquarks. There is a ~ 20 ° singlet octet mixing between 1 and
n', which, given the mass of 71 (1400 ), i.e. below decay threshald for 77’ (modulo
the width ) becomes essential, even though we would then expect a reduction of the
width by a factor of ~ 5.

Alternatively, it can not be excluded that 7 (1400) is in a quark flavor config-
uration corresponding to ¢qqq, and thus is not a hybrid meson in the first place.
This discussion, even if at the side of the issue of gluonic mesons, gives a taste of
the interpretation difficulties, facing the recognition of gb-s.

But even if we assume that precisely 7 (1600 ) is a genuine hybrid meson, and
further that the result given in Ref. [15] can be made to agree with a mass value
of 1600 MeV, it is difficult to conceive that gb (0¥ ) would have a mass in excess
of 1600 MeV as indicated in the value given in Ref. [13]. To be fair to all lattice
calculations, let me stress that the mass values of gluonic mesons refer to the
(unrealistic) case of no quark flavors (or all quark flavors very heavy), and that a
considerable shift in mass of, e.g., gb(07") can be the result of the light quark
flavors, unaccounted for in Ref. [13] and all comparable calculations.

In Ref. [16], the calculations focus on the question of low-mass scalar mesons,
not gh-s. This issue is a prerequisite for the successful identification of gb (0++),
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lowest in mass and thus was examined as to the structure of the scalar ¢g nonet,
lowest in mass, in Ref. [4], where this nonet was assumed to be identifiable.

In Ref. [16] the local, composite field called o was investigated on the lattice

J(x):%(ﬂc(:c)uc(:c)+ac(:c)dc(x)). (49)

where the suffix ¢ denotes triplet color.

Irrespective of the pattern of the full nonet it is valid to consider the two point
function of two o fields, on the lattice, and to deduce the mass of the lowest scalar
resonance, coupling to the o field.

The authors of Ref. [16] declare their calculation preliminary, so it is not yet pos-
sible to evaluate the error of their mass determination. Nevertheless, they indicate
the following result

[16] : mr < My < M, ~ 776 MeV

M :0(qq) — fo(980); my, ~ 980MeV. (50)

We continue the discussion of the scalar gg nonet, beyond lattice calculations
only, in the next subsection.

b) 77 — and related ps-ps scattering and scalars

In this contex, let me start with quoting a recent paper devoted to 7 7 elastic
scattering in the framework of chiral perturbation theory, and the Roy equation for
full control of analyticity, unitarity and crossing relations [18].

In Ref. [18], in a dedicated chapter ”Poles on the second sheet”, op. cit., the fol-
lowing pole parameters are quoted for the s wave I = 0, 7r partial wave amplitude
18] : /s = (430 &30 —i(295 + 20)) MeV —
s = (0.098 £0.037 — i(0.254 + 0.032)) GeV? (51)
Stnr = 4m2 = 0.078 GeV 2.

The result in Eq. (51) is indeed of highest interest.

Within the quoted errors, the resonance parameters are compatible with a
threshold resonance, when considered in the complex s plane. For the properties of
Jost functions in this and in general cases, I refer to Res Jost’s original work [19].

The deeper question related to the existence ( or nonexistence ) of the threshold
resonance, as derived in Ref. [18] is, whether there exists a symmetry, which would

enforce the stability of the resonance position, in particular in the chiral limit, i.e.
of

sp=RNs ~ stne — 0. (52)

The role of the threshold resonance is then apparently that of a dilaton zero mode,
arising from spontaneous breaking of dilatation invariance. It is the trace anomaly,
which prevents the dilatation symmetry to be broken exclusively spontaneously.
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The relations with respect to the (Lorentz) invariant amplitude are
+1
1

To(s) =3 71dZT(872) i fo(s) = 87r\/§TO(S)
fols) = t(a) 5 ta) = (S(a) = 1) /(2i) -
1(a) = 15= VT = swe/5 To(s)

ge(s) =4m|fo(s)|? for sreal > sy, -

In Eq. (53) q denotes the c.m. momentum.

Assuming indeed a threshold resonance with sg = Rs|y = Sthr and Ssp =
— 7R, the function S (¢) is of the form

S(q) =

SpR+ivyr — s

IR S (), (54)

The most interesting situation arises if first we assume that S tends to 1 at thresh-
old Si1(g —0) =1

— fo~a—i/q (58)

The behaviour displayed in Eq. (55) is obviously at variance with the restrictions
imposed by (approximate) chiral symmetry, but this is not the interesting part,
due to a threshold resonance. Rather it is the intrinsic interdependence of the
remaining contribution S; (g ~ 0) near threshold with the threshold phase of
90° of the threshold resonance, which is most striking. The latter must be moved
either backward or forward by another 90° at threshold in order to achieve a finite
scattering length. It is this interdependence, which is unlikely not to move the
threshold resonance even very far from its initial threshold position.

A measure for the width of the deduced threshold resonance is the ratio

YR/SR ~ 25 < I =590 £ 40MeV, (56)

as obtained in Ref. [18]. While we do not pursue the above discussion further
here, it is necessary to retain that the value of the mass derived in Ref. [18],
mpr = 430 £ 30MeV, especially when the width is just ignored, leads to an
increased uncertainty concerning the very possibility of recognizing the mass and
mixing pattern of scalar mesons, in the sense of spectroscopy.

Alternative discussions of scalar resonances

Besides the new derivation of the I = 0 s-wave 77 scattering amplitude in
Ref. [18], the phase shifts in this channel are by now fairly well established from
threshold to a c.m. energy of ~ 1400 MeV [20], but only as far as resolution of
phase ambiguities is concerned.

The I = 0 s-wave amplitude from the second reference in [20] is reproduced
below. It becomes clear from the errrors both in the phase shift (Fig. 4a) as well
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as in the inelasticity (Fig. 4b) that the details are, despite a remarkable effort
in analysis, rather uncertain in the range of c.m. energies 600 MeV < /s <
1600 MeV.

400 . — '_iég%iﬁ [ T ++ o _
- i W e
gzm g : I[ ; 1 ] . K +++H' t Hﬁ+:+ i _ '
ﬂmo . ?iiiinﬁ.ﬁ"- ] E ? L .ﬁu#. I‘t*wmtﬁ{%ﬂl_ /W
e 3 o ’
m,, (MeV) g | } |
s {| WMH |
| } L T . 1)
=10 IJ% HT%-“_ h H i % % .1H o5 " R
il 110 o 0t I + )
T T
06 : : o W ++++ H+++
00 800 1000 1200 1400 160D '015' = '1f0' = '115' 50

MeV
m,, (MeV) pair mass m [GeV]

Fig. 4 (left). a) phase shifts § and b) inelasticities n) for “down-flat” solution (circles).
Squares denote data from Ref. [21].

Fig. 5.a) 7% 7% . b) K K 5, c)nn, d) red dragon in full.

The red dragon and ”¢” in 77w; [ = 0 s wave

The discussion of the partial wave amplitude, corresponding to the projection
on I = 0 and on the s wave, denoted ¢ (¢ ) in Eq. (53)

t(q) = (5(q) = 1) /(21), (57)

has been the subject of many recent papers, to which we turn now. But we first
show the result of combining elastic and quasi elastic pseudoscalar meson scattering,
corresponding to the same quantum numbers, performed in Ref. [4]. For a detailed
discussion I refer back to Ref. [4].

The absolute values |¢(q)|”? (with only relative normalization) for 7w —
7w, KK , nm are shown in Fig. 5 together with the full shape of the red dragon,
amputating the negative interference due to f( (980) and fo (1500).

Several comments are necessary here:

i) “data”.
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The compilation of Figs. ba - ¢ makes it appear as if actual data are displayed.
This is by no means the case, rather between the real data from the reactions

TO7ON(A)
N — K;K;N(A)
N (A)

and the displayed absolute values there is a series of analysis steps. The latter
make it difficult to assess the overall errors.

ii) the second interference minimum due to fo (1500).

The pattern showing two interfering narrow states: fo(980) and fo (1500)
by todays notation, has been inferred from the peripheral 7 A reactions listed
above. The latter resonance has clearly been observed in pp annihilation at
rest by the Crystal Barrel collaboration at the Lear facility of CERN [22],
adding a new element with high statistics and precision of analysis.

iii) the red dragon proper.

The unfolding of the interference due to f(980) and fo (1500) reveals a
broad structure, the red dragon proper, as sketched in Fig. 5d. The c.m. en-
ergy over which this structure is extended comprises the range 400 MeV <
Vs < 1600 MeV. Within all Breit-Wigner like strong interaction resonances,
there does not exist a comparably wide one. This establishes the singular
feature of the mm s wave scattering amplitude in this range, and also consid-
erably below 400 MeV, i.e. down to the two pion threshold, as well as above
1600 MeV.

The combined experimental and theoretical evaluation of data, which led to
the clear picture represented by the red dragon in Fig. 5 is not subject to the
remaining large inherent errors of details of the respective scattering ampli-
tudes. This contrasts with all attempts, [4], [18] and those discussed below,
where further interpretation of details of the red dragon are undertaken.

o(~ 500) and/or k(~ 750) scalar mesons

The claims of the existence of an isospin singlet, nonstrange scalar state o in a
mass region clearly below fo(980) are numerous besides Ref. [18]. Another light
scalar state, x with isospin 1/2, well below K (1430) has also received much
attention. These claims have been recently repeated on various grounds. We cite
two reviews compiled within the PDG [12]: on scalar mesons [23] and on non ¢g
candidates [24] .

A new window has opened up in the study of the decay of charmed [25, 26] and
b-flavored mesons [27, 28] .

What is emerging from ¢- and b-flavored meson decays is the clear fact, that in
three pseudoscalar meson (7 and K ) decays, two out of the three pseudoscalars
are produced amply in their relative s wave. This is quite in line with analogous
decays from pp and hence the analysis in terms of two body amplitudes, the third
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pseudoscalar beeing treated as ‘kinematical spectator, modulo constraints from
Bose statistics’, was performed in all reactions in a similar way.

A few decays are listed below for definiteness

D+
D+ Tttt ; [25], [26]
- Ktnx*t (58)
proo— AT e
PP — Tty : [29]

The present results from the study of the above decays do favour the derived
existence of a 'o’ isoscalar state, called fo (600) by the PDG [12] as well as indi-
cations of an isospin 1/2 state called 'x’, with masses ~ 500 MeV for o and ~ 750
MeV for x respectively. The determination of the widths is rather uncertain, but
follows the widths of peaks in the projected Dalitz plot distributions of the order
of 200—-400 MeV.

It is fair to say that, as welcome as these new channels are, the present stage of
analysis has not led to a clear picture of scalar meson states.

c) Central production experiments

The first experiment searching for gluonic mesons in central production was
performed at the ISR at CERN [30], at /s = 63 GeV. I reproduce here the
invariant mass distribution of 7+ 7~ pairs as observed in Ref. [30]. Even though
Fig. 6 represents the (absolute) square of an amplitude and Fig. 5 the square of
another amplitude, the similarity and shape of the red dragon is clearly visible.
This similarity does not need any further analysis.
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The more recent experiment WA 102 and its predecessor WA76 are using a fixed
target configuration and thus the c.m. energies studied are lower, /s < 29 GeV
[31].

Despite dedicated studies [32], no clear understanding of central production
and spectroscopic information encoded in ps-ps scattering amplitudes (section b)
of this chapter ) nor any convincing evidence for the mass region from lattice QCD
calculations ( section a) of this chapter ) for the gluonic binary gb( 0™ ) is emerging.
Rather a choice of apparent possibilities is offered, where in order not to offend any
individuals, I follow the PDG [12]

fo : 600,980, 1370, 1500, 1710 --- MeV . (59)

The present controversial situation does - in my opinion - reflect human short-
comings more than intrinsic difficulty to understand the strong interaction dynam-
ics underlying gluonic binaries as well as ¢ @ scalar mesons.

5. Conclusion

In view of the previous sentence and in summary of the present outline, I think
that a dedicated experiment of central production, at the highest achievable c.m.
energies as well as with an optimally adapted detector is scientifically worth while.

Appendix A.1
Spinor wave functions, spin states and transformation rules

We present the spin 1/2 chiral building blocks below, as they determine the
general spin transformation rules defined in Eq. (13).

SoZ(a) = { S0 (a) x - x S (a)} . . (60)

symm
The irreducible blocks S of Y (a) in Eq. (60) correspond to spin 1/2

complex four-vector

a = (adp,a1,0a2,0a3) = a :
(ao, a2, 03) H not a Lorentz vector

=\ B
1 o ao 71&3 —a 7ia1
Sl(a)i <a2—ia1 ao—|—ia3 )

a? =al 4+ @?> =DetS]{ = 1.

The quadratic constraint restricts S+ as defined in Eq. 61 to be unimodular (i.e. to
have Det = 1). Rotations ( by half angles in bosonic terms ) correspond to a , real.
This is parametrizing the sphere (over the real numbers): S3 = SU2. Lorentz
boosts ( by hyperbolic half angles in bosonic terms) correspond to ag real, @ pure
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imaginary. This is parametrizing the double hyperboloid (over the real numbers ) :
(Rao)? — (Sa@)? = 1.

The matrices X, X ; k= 1,2,3 are the Pauli matrices, as arising in the right
chiral representation of the full v — matrix algebra.

(UW)OF — Pri[v,., 7] Pr ; Pr=3(1+7s5r)
Y5R = %70%7273
i, g fory=0,v=%kFk=123 (62)
( ),6’ . 5 fory = m,v = n;
Ouv o« = mnr ~r o

The right-chiral quantities (¢, ) a’g in Eq. (62) satisfy the duality relation

(J“U)aﬁﬁofy ; Jf‘,j: —i%EWQTJQTR. (63)
Half angles (6), rotational and hyperbolic - a) to the right
An infinitesimal Lorentz transformation is covered by the spin 1/2 half angles
wh | defined below, multiplying the (right chiral) base transformations o £

nv
whY = %Q#V

0 €1 €9 €3
—€&1 0 @3 *@2
—E9 —63 0 @1
—E3 @2 —91 0

= wm(6,8).

S
=
S
I

R

Projecting w onto ¢ **, we obtain

(wR)aB - waﬁ

waﬁ:%w’“’(oﬂy)aﬁ:i<{é—ig}%i)aﬂ (65)

- d=dff =0 -ic
St in Eq. (61) then represents the exponential of (w),” (multiplied with )

S (a) =exp (fw) Bzexp<%d)’§) 5. (66)

[0

Leaving out the (right chiral) spinor indices eq. (66) becomes

S(a) = cos(BL) —isin(S%). (67)
Thus we introduce the orthogonal complex invariant of &
Z(w) = 22(w) = @2 = {62 - 52} —i {2@)5}
— S(a) =cos(z)%g —i[sin(z)/z] &% (68)
a=a(w) ; ag=-cos(z) ; a=|[sin(z)/z]d
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The square-root ambiguity of z (w) = ++/Z (w) does not affect the functional
relation a = a (w), as becomes clear from Eq. (68).

From right chiral to left chiral spinors

The right-chiral base representations of SL2C i are by construction not parity

invariant, nor are the matrices S(a) = A over the real numbers. Se we shall
transform the defining equations (60—62) to the left-chiral side
B
So2(a) = {8, (a) x - x S, (a)} 0 — o
~—Y ~ ~
- Sfé(b) _ {Sﬁél (b) X oeee X SVZ;VN (b)}symm ,

complex four-vector
not a Lorentz vector

~ ~ ~ =2\
Sva(b) = S2(b) = (bOZO + }bZ)
5 (70)
~ bo — ib —by — ib
S2(b) = 0 1 3 2 — 101
b2 —lbl b0+1b3
b2 = b2 + b2 = Det 5% = 1.
The transformation from 4 to B corresponds to the substitution
A= (A1) =B, (71)

The substitution in Eq. (71) makes use of the four base representations of SL2C,
best represented in the associated quadrangle
A (Aan)™!
1= cec. = ce. (72)
A (A)7
In the quadrangle in Eq. (72) the up-down operation means complex conjugation
of each matrix element, forming the involutory chains

A—A— A
and
T—l 1.—1 T—l
(AT) 7 = (A7) — (A7)

whereas the left-right operation associates the symplectic dual, forming the equally
involutary chains .
A= (ATY D L4

and

A— (AT A
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Thus both up-down and left-right transformations along the quadrangle in Eq. (72)
are commutative as well as involutory.

Yet the left-right transformation associates equivalent representations, contrary
to the up-down one, which associates inequivalent representations, of which we have
chosen the two residing in the upper-left and lower-right corners of the triangle in
Eq. (72).

The symplectic equivalence is realized in the right-chiral basis by

- 1
(A1) = s = im = (o) (] o) @
The base Pauli matrices go into each other under the substitution in Eq. (71)

£, =3 = ( > <z*>
ﬁ(io,) o, %) . (")

A (a) = BA)
b
(7

Hence we have
(75)
=a ; VYV components.

Thus the quadrangle in Eq.
form of SL2C'r x SL2Cp,

2) leads to the right- and left-chiral reality restricted

{spin} — s, #s=N+1; D g :DSJS,(A,p)

1é] ’
R : ta(Ap;s) = Sa(a) tpg(p;s) D,y (76)
L : f3(Apis) = 8%5(b) #(pis) D,y

While we proceed in steps, let me quote Res Jost [33], illustrating the L-R chiral
aspects. The decomposition in Eq. (60) expands (doubles) into

R ¢ Sa%(a) = {85 (a) x - x 8,05 (a)} 00

<l Q71 TN (77)
L i §%(b) = {S L(b) x e x § 6N(b)}symm’
and then reduces to the R-L spin 1/2 building blocks
-\ B
R : S(a) = Si(a)=A(a) = (aOZO + %JE)
-\
54 3 = >3 78
L : S%(b) = S3(b)=B(b) = <b020+§b2)5 (78)
Y,=3%,
The reality condition corresponds to a diagonal in the quadrangle in Eq. (72)
Aa) — B(b)
N\ N\ )
A = (BN (79)
l 4
a = b
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The so constrained pair
(A(a),B(a)) = spin(1,3; R) ~ SL2C (80)
defines the (self covered) group spin (1, 3; ®): R indicates that the spin group is
over the real numbers, whereas 1, 3 denote the signature of the derived metric, i.e.
1 time and 3 space (real) dimensions.
Half angles (6), rotational and hyperbolic - b) to the left
The left-chiral representation of spin (1, 3; £) complements the right-chiral
one defined in Eq. (62)
(Uﬂ”)ﬁs = Prilvu,vw]Pr; Pr=2%(1-17s5g)
Y5R = %’707172’73
fory =0,v=%Fk =123 (81)

<i§3k )” .
5y orpy =m,v =n,;
(ouv) i = € mnr Ly § m,n,r = 1,2,3.

In principle we should have distinguished the left-chiral matrices 5 u characterizing
the left chiral SL2C basis in Eq. (81), but we have chosen (without loss of generality)

to identify iu = ¥, as specified in Eq. (78).
The left chiral variant of Eq. (63) becomes

B R . R _ + 1 oTR
(Uﬂy)a = Ouy 3 Ouy = —15€uwer 0 (82)
5 L . L _ ,:1 orL
— (ouw) s T Ouv 3 Ohy = tig€mero .

Eq. (65) when reflected to the left takes on the form

o o
~% _ 1, pv Yoo (_:j s = li iy (83)
wle=gwh (ou)’; =1 +igy 5 ;
—o=dl=6+i7; s=0R =06 -is.

S (a) = exp (%w)aﬂ = exp (%u’)i

— 515(17) = exp (%G)ﬂ% = exp (lji)w )

Equation (67) extends to
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Equation (68) completes to

Realization of (half) angles through an antisymmetric pair of vectors

The complex three vectors defining the half angles w#" in Eq. (64)

ot =0 -ig ; df =0 +if. (87)
can be realized as antisymmetric combinations of two real Lorentz vectors x# , y".

This is however a restricted realization.
Here Lorentz vector does not distinguish between vector and axial vector. In fact
we shall think of z as a genuine Lorentz four vector and of y as an axial vector.

w/“’([xv y]) = 5/Lya-rl’gy'u

S5 ok
wor = (A Y) 5 Wmn = €mnr (l‘oyr—xryo)
E=—IANG ; O©=27—y%% : 6£=0 (88)
— GF =207 —yO'F +i1(Z A7)
L 07 0 -

The invariants Z (w), Z (@) in Eqgs. (68) and (86) are purely real

Z(w) = (37)° = (2y)® - 22y = (1)" = 2(@). (89)

—

In Eq. (89), we used the timelike Lorentz scalar product 22 = (29)? — 72

The realization given in Eqgs. (88) and (89) is useful when x# is proportional to
a four-velocity, i.e. 2% > A > 0, 22 = A? and y describes a spin direction, chosen
in such a way that zy = 0, and y2 = — 1.

Appendix A.2
Note on the complex Lorentz group and associated
operations

We recall the reality constrained covering of the Lorentz group spin (1, 3; R)
defined in Eq. (80)

(A(a),B(a)) = spin(1,3;R) ~ SL2C. (90)

FIZIKA B 14 (2005) 2, 79-138 103



Please,
check Eq. (93).

MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

I list the operations on amplitudes or fields, which demand an extension of spin
representations to covering of the complex Lorentz group. This latter extension is

denoted by £, defined in Eq. (91) below

spin(1,3; %) S spin(1,3,C) =~ SL2C x SL2C

(A(a),B(a)) < (A(a),B(b)) ; a,b unrestricted.

(91)

In the list below, we number and specify the operation in the first and second

columns, the operand in the third, inducing the parallel operation Rt

operation operand A
1 crossing scattering amplitudes | / (92)
2 | extension to complex momenta | scattering amplitudes | 1/
3| extension to Euclidean space local fields v

Operations 1 - 3 in Eq. (92) are not independent of each other. A profound con-
sequence is the symmetry under the antiunitary CPT transformation [33] for local
field theories.

Appendix A.3
Field strengths, potentials and adjoint string operators

Potentials and field strengths have been introduced in Egs. (14) and (15). We shall
specify their local gauge transformation properties below. For simplicity, we shall
only discuss the octet or adjoint representation of SU3..

The Lie algebra generators of the octet representation (Fp) 5 = ifapp in
Eq. (15) lead to the finite (local) transformations

Qap(z) = exp(%wp(x)]:D)AB
[(Fa,Fp] =ifapcFc.
The SU3 . angles wp () shall not be confused with the Euler half angles w* in

Eq. (67), while the group analogy is obvious. w p () shall be chosen varying over
space time x , restricted by differentiability requirements.

(93)

Let X (z, A) be a classical field transforming under the local octet transfor-
mations €2
Xﬂ(xv A) = QAB(‘T)X(:E7B)

inshort : X% (z) = Q(2)X(2) - X% =QX. (94)

The extension of the local adjoint transformations in Eq. (94) to other represen-
tations of SU3. is straightforward. ) are real, orthogonal 8 x 8 matrices with
determinant 1.

Here we treat gauge potentials and field strengths as classical fields ( test fields
in the sence of distributions). The potentials V,, (z, D) are defined through the

104 FIZIKA B 14 (2005) 2, 79-138



MINKOWSKI: CENTRAL HADRON PRODUCTION IN CROSSING OF DEDICATED HADRONIC BEAMS

(octet) covariant derivatives acting on X

(Du)ap =0uda+ Wu)apg: 0up=0/0xt
Wu)ap =1Vu(z, D) (Fp)ap =Vulz, D) fpas (95)
inshort: W, =iV,pFp; D, =0, + W,.

In Eq. (95), the quantities V), (2, D) and (W, ) 45 (2) are real.

Parallel transport

We turn to the parallel transport operators, defined in Eq. (15) repeated below

€T

vic

Uz, A;y, B) =P exp (/

o ( _/y ¢ AB (96)

(TD)AB =ifapn; WM(ZvD) = iVM(ZvD)
WuaB(2) =Wu(2,D)(Fp) sp

in short :U (z;y) = P exp ( —/

dz"1Vv, (=, D).7:D>
AB

dz" W, (z, D)fD>

x

dz“WM>.

yic

For classical field configurations, U (z; y) |, is the operation of parallel transport
of a tangent (octet) vector, e.g. X (y) {— X (y, B)}, at the point y along the
curve C to x .

X(y,B) <= Xy(z,4) = Ul(z, A3y, B)X(y.B)
() = Xlz) = Ulzy)X(y) (o7)
y S

U(z;y) =U(z;y)le -

If X (z) is itself an octet field defined at all z, then X (z)]| < has to be
xCy
distinguished from the given value X (z).

U(x;y)|c defined in Egs. (96) and (97) follows from the parallel transport
differential equation, using a parameter representation of the curve C

z=2z(1)
C:{1>7>0| 2(0) =y

z(1) == (98)
v(T)=24(1) = (d/d7) z(1).
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Let us follow the 7 development of the family of parallel transports from y along C
to the point z (7), as the latter moves from y to

U(r) = Ul=(7)s9)e
Wi (r) = Wo(z(7)) —
(d/d7)U(7) = —vh (T)W, (7)U(7)
U0)=9 « U(y.Aiy,B)=6dan.

(99)

The parallel transport equation (99) is subjected to the initial conditions defined
in its last line. It can be integrated by successive iterations

v =5, [Can [Cane [ ar,
Xw(T)w(T2) - w(7Ty)
w(T) =wap(7) =—v*(7)Wpy,ap(2(7))

 U(L) =Ul(zsy)le (100)

Pexp(/
y

The path ordering in Eq. (96) reflects the path ordered sequence 7 > 71 > 72 - --
in the multiple integrals in Eq. (100), thus established.

dz“W,L(z,D)]:D> ,

c AB

Parallel transport and gauge transformations

We go back to Eqs. (94) and (95), implying the action of a local gauge trans-
formation on the connection W, (z, D) Fp

Dy=08,+W, ; D}=0,+Wi

X%(2) = Q(z)X(2) - DX =QD,X. (101)

The local gauge transformation € thus induces the transformation law for the

connection 0 ) L
Wu =00, +aQW,Q . (102)

The parallel transport of tangent vectors X (y) along the curve C with connection
Wf} should be equivalent to the same operation on tangent vectors X (y) with W

modulo the transformation induced on the tangent vectors. Using the relations in
Eq. (97), this implies

Xz)=Q(z)X(z) < X% y)=9(y)X(y) —
X%y) 5 XP(2) = U%(ziy)X%(y)
c (103)
X(y) — Xy(x) = Ul(z;y)X(y)
C
Y — x.
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Thus we expect the relations
Xi(z) =Q(2)X(z) < X (y)=Q(y)X(y) —
Qz)U(z;5y) X (y) = U (2;9)Q(y) X (y)VX (y) — (104)
U (z;y) = Q(x)U(z;9)27 " (y).

We want to verify the relation inferred in Eq. (104). To this end we form the two,
a priori different, matrix valued functions of 7 along C

Ur(r) =U%(7) < Ua(r)=Q(2:)U(7)Q ! (y)

zr = 2(71). (105)
From Eq. (99) we infer
87U1(T):7v“(T)Wf}(T)U1(T)
(0:Q(2,)) Q71 (2,)— (106)
0, Us(7) = 2(7).
R v PRI L
The expression in the first line of the bracket in Eq. (106) transforms into
(0,9(2:)) Q71 (27) = 0" (1) Q(22) 02,0 (21). (107)
Thus the differential equation for Us (7 in Eq. (106) takes the form
— _ohk(r Q(zr) ZMQ_l(ZT) .
0, Uz (1) = ( )[JFQ(ZT)WM(T)Q_l(ZT)]UQ( )
= —vr(7) | W () ] Us(r) (108)

W2(z) = Q(2)0.,07 () + Q(2)W, (2)Q7 (2).

Comparing Egs. (106) and (108), we see that U; and U fulfill the same differ-
ential equation, as a consequence of the gauge tranformation law of the connection
W . They also have the same initial value

Ul(O) ZUQ(O) :ﬂ—> Ul(T) ZUQ(T)

L U(eiy) = Q) U (2:9) Q7 (y) qed . (109)

On the nonabelian Stokes relation

For our purpose here, to describe the degrees of freedom of binary gluonic
mesons, the set of parallel transport matrices (matrix valued bilocal field oper-
ators ) as displayed in Eq. (100)

U(zAs;yB)le = (U(2;9)le¢)ap

—Pexp<—/ dz“WH(z,D)]:D> (110)
ylic AB

U (z;y) = Qx)U(x;9)07 " (y),
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along straight line paths C restricting general ones, as defined in Eq. (98), are
sufficient.

—a(r) =y +r(z—y) }
(1) == z2(0) =y (111)

v(t)=2(r)=z2=2 —y.

L:{lszo

z
z —

Parallel transport beeing generated by the connection 1-form

(WO =dzrW, (2, D)Fp )AB -

112
oo (] o

W(1)> . P=pW),
c

Y

the matrix valued 1-forms naturally acquire the line ordering, appropriate for one
dimensional integrals.

Yet connection 1-forms and their path P () ordered integrals do not exhaust
the range of r-forms and their r-dimensional P (") ordered integrals, associated with
nonabelian degrees of freedom.

Next in line are the curvature 2-form and its surface P (?) ordered integral. We
follow the covariant derivative path with the octet field X () introduced in Egs.
(93)~(95)

D,X(z)=(0,+W,)X(x)

(DD, —D,D,) X (z) = W X (z). (113)

In Eq. (113), W{,, denotes the (antisymmetric Yang-Mills) curvature tensor, i.e.
the field strengths
Wiw) = 0 Wy — 0, W, + Wy, W, ]
Wiw () = Wi (z, D) Fp =
(8NWV(JU,D)—8VWH($,D))FD] (114)
+W,(z, AW, (x, B) [Fa, FB]
W,u(z,D) =iV, (2,D) ; [Fa,FB])=1ifapcFc.

In Eq. (114), we have included the relations in Egs. (93) and (96).
The form of the curvature tensor Wy, in Eq. (114) becomes

Wiwi(z, D) = ¢ F,)(z, D) =
- [ 8. W, (z,D) — 3,W, (z,D) }
L +iW,(z, AYW, (2, B) fapp
F[;w](an):
B [ 9,V (z,D) —aﬂvy(x,D)]
o —VV(JJ,A)VH(.%‘,B)fABD ’

(115)
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We recast the quantities W, ] in Eqs. (114) and (115) into their Lie algebra valued
form

Wiwias) (2) = (Wi (2, D)Fp) 4p
= (Flu)(z,D)Lp) (116)
(Lp)ag =+ (Fp)ap = faps 3 [Lr,Ls) = frsrLr.
We also cast Eq. (112) into the L p form

(W(l) =dz'W,(z,D)Fp )AB —
W,(z,D)Fp =iW,(z,D)Lp = -V, (2,D)Lp — (117)
W;L[AB](J:) = *V#($, D) (LD)AB :

Comparing the connection and curvature representations in Eqgs. (116) and (117),
we learn that the local quantities W, [ap] (2) and Wy ,,1148] (2 ), as well as the
components —V, (z, D) and F[,,)(z, D) are real. This is usus in the mathe-
matical literature.

Local gauge transformations as defined for the connection in Eqgs. (102) and
(108) are naturally extended to the curvature

w w
{ #1AB] }(xw{ : }(w)
Wiuw)[AB) Wi

Wi (z) = Q(2)0,Q " (2) + Q(z)W, (2)Q7 ()

W[gfw](x) = Q)W (z)Q7 ().

(118)

Lie cohomology and de Rham cohomology

With connection and curvature we associate the Lie algebra valued one and two
forms, as defined in egs. (112) - (117)

WO =dzrw,
@B g (v, [AB])
W = id.fll' A dI’ W[My]
W@ =aw® 4+ wlh o wl) = pw),

In Eq. (119), the symbol o denotes normal matrix multiplication to be distin-
guished from the Lie product denoted below by ©.

(119)

It is the antisymmetric nature of the wedge product dx* A dx? which renders
the o product equivalent to a Lie algebra product ®
WO oWl = Iwl o wl, (120)
We shall verify Eq. (120) by components
WO oW (z, [AB]) = dz# A da? W, aay W, (aB] —

= Lqzr A dev Wyraan Wy ap) —
: ~WyraayWyas (121)

:%dm”/\dx”[W#@Wu}[AB]

W, @W, = W, , W, =W, oW, —W, o W,.
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Eq. (119) yields the first relation in the adaptive Lie cohomology chain, generated
by the the sequence of operations D — D’=+£D

w®@ = pw@® L w® = p'w® =9

D W® —dw® £ IO oW (122)
D" WO =aw®@ L wl ow® =,

The termination of the adaptive D — D’ sequence follows from the antisymmetry
of the wedge product and the Jacobi identity of cyclic double commutators

we - {4 (WWo)2)y + W @ daw®
S W e (Wwho)?
(W(l)o)n:W(l)o((W(l)o)nfl),

(123)

Expressing the ® product in Eq. (123) in o products, it follows
a2 (Wo)?)
WE = Wl o (dWw®) — (dw®) o W . (124)
+W(1) o ((W(]‘)O)Q) — ((W(l)o)z) o W(l)

The contribution cubic in W) vanishes on the ground of the associative product
o, while the first three cancel due to the identity

d(Wmo)?2) = (dWw®) ow® — Wl o (aw®) . (125)

Loops of parallel transports, local holonomy groups

In the inverse of the differential Lie cohomology chain the parallel transport

matrices N
Uz, y; ) =PeXp<—/

y

defined in Egs. (96)—(97) can be combined to form a closed curve starting and
ending at y,

dz“WH>, (126)
C

U(y,y;CL) /=" )5 = Uy, y;CL). (127)

The quantities U (z, y; £, ), called adjoint strings here, are rarely used in lattice
discretized Yang-Mills theory. The associated fundamental strings, projected on
the fundamental representation of the local gauge group (the triplet strings for
SU3. ), are the dynamical link variables therein [34]. The quantities U (y, y; CL),
defined in Eq. (127) we shall call closed adjoint (octet) strings. Their counterparts,
projected on the fundamental (triplet) representation, assigned to a minimal closed
lattice loop, a plaquette, are used to generate the lattice action.

Closed loop matrices or operators are widely studied in their own right. For the
fundamental representation they are called Wilson loops ( W (C) )
within Yang-Mills theories [35].
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We continue to focus on open and closed adjoint strings here. Nevertheless,
it is tacitly assumed that the configurations obey the regularity requirements of
extensions of these strings to all representations of the gauge group. This framework
is called the universal bundle in the mathematical literature.

The gauge transformation properties of open and closed (adjoint) strings in Egs.
(126) and (127) follow from Egs. (108) and (109)

U2 (z,y; %) = Qa)U(a,y; )27 (y) —
U (y,y;CL) = Q(y)U(y,y;CLIA (y).

The closed curve CL is still punctuated at its beginning and ending. Yet the gauge
transformation acts locally at this point. However, the simply connected closed loop
can be repeatedly transcurred, leading to the multiple positive as well as negative
powers, all transforming the same way under gauge transformations

U™ (y,y;CL) = U(y,y;Cﬁ(”)) , n=0,=%1,- -
U (y,y;CL™) =Q(y)U(y,y;cL™M)Q " (y).

The closed curve CL£ ™ shall represent the n-fold transcurred simple curve CL,
whereby negative powers mean to reverse the orientation, say from clockwise to
anticlockwise. Gauge invariant quantities are thus all (adjoint) traces

Wy (CL) = tr[U™ (y,y;CL)] = 2o A" (Uly,y;:CL)) . (130)

In Eq. (130), A runs over all eigenvalues of the (real orthogonal) matrix
U(y,y;CL) . The quantities W,y (CL) in Eq. (130) do depend on the shape
of the simply laced curve CL, but they are the same for all points along CL, when
adopted as alternative starting and ending points. They represent the adjoint char-
acters of the (self covering) Lie group, dependent only on the angles of the Cartan
subalgebra. Thus they depend, for a simple gauge group with rank r (r = 2 for
SU3.) on the r Cartan subalgebra angles, characterising any of the representatives
U(y’,y"; CL) with y' anywhere on the curve CL. The characteristic coefficients
are determined from the roots of the Lie algebra and, through its universal exten-
sion to all representations, from its r fundamental weights. For SU3 ., these are the
weights of the 3 and 3 fundamental representations.

For SU3. let the two Cartan algebra angles be ¢ «+ I3 and ¢ « Y /(2V/3),
using standard weight normalization, where I3 and Y denote isospin and hyper-
charge respectively.

The 3 and 3 Cartan matrices shall be u and % respectively, u = u (¢, ). The
two fundamental characters thus become

x=x(u) = x(¢,v) and X

(128)

(129)

X=pexp (Yri) 5 k3 =—kK1— ko (131)
K1=50+ 50 , k2= —36+ 551,

Then for a reducible direct product representation Dcq; pr,n of M copies of u and
N copies of @, the character is multiplicative

Xred; M,N = XJWXN = Yrcd;N,M‘ (132)
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From D.cq; m,n, the characters of all irreducible representations of the gauge group
can be derived. We only give the lowest characters for the 3, 3, 6, 6, 10, 10 and
adjoint (8) representations of SU3. — SU3_, with the association

3 = Dird;l,O cc 3 Dird;O,l

6 = Dia2,0 cc 6 Dia;o0,2

10 = Dia;s,0 cc 10 = Did;o0,3

8 = Digqg;1,1 real

Xzir,do = X cc Xf{dl = X (133)
ird 2 = ird =2 _

X2,0 X X ¢ Xo,2 = X X
A 3 2 ‘ -3 _ 2

Xér,do — ( X +21|X| ) cc X%)T,d:} — ( X +21|X| )

xih = IxIP -1 real

(x,x) = (x,x) (6,¢).

In our case, the quantities U (y, y; CL) in Eq. (127) are in the adjoint represen-
tation, i.e. in Diyq.1,1. Hence all equivalent representatives U™ (y’, y'; CL) with
y’ anywhere on CL are characterized by the two Cartan subalgebra angles

Un(y' y"5CL) — (n¢,ny) {CL}. (134)
The invariant quantities W, (CL) in Eq. (130) are thus given by

W(n)(CE) = |Xn {CE} |2 -1

Xn {CL} =X (n¢,ny) {CL} (135)
n = 0, +1--- 5 W(O)(Cﬁ) = 8.

Because the fundamental SU3 . matrices u ( and @ ) are three dimensional, with
determinant 1, only two out of the infinite n sequence of fundamental characters
Xn {CL}: (n = 1,2 mod 3) are independent of each other. The fundamental
characters of any element u of the 3 representation of SU3 obey the elementary
generating identity, expressing in terms of fundamental characters the fundamental
polynomial Ps (p; u) = Det (§— pu),

P3(p;u) = Det (- pu) =1 —pip+pap® — p?
E(psu) =exp (= 3,2, #"Xn/n)
E(p;u) — Ps(p;u) =0 Vi

pr=pr(u);k=1,2 < x,=tru” = xn(u)
Iy =pr(u=29)

pP1 = X1, p2=%(X%—X2)
an:Yn7X0:3 ; En:Xn(u:ﬂD:?’ Vn

= =
ZEn =2 ; I = Z.

(136)
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The first of the reducing identities is
Ps(p=wusu)=0—=x3=xo0—P1X1+P2X2 ;

—x3=x0—- X1+ 3(xIx2-x3).
ird

(137)

Substituting x ¥ (X, X) the values for u = 9§, we obtain the dimension of the
associated 1rredu01ble representation (Eq. (133))

dim(Dird.MN)_XZ]\ZdN(H ) ; = =3. (138)
All this notwithstanding, the adjoint matrices U (y, y; CL) represent the holon-
omy group at the point y mapping through CL parallel transport all adjoint tangent
space into itself.

[I]

The entire range of adjoint matrices forms the group SU3 / Z3. The mapping
U — U
€ Dia;1,0 € Dira;1,1 (139)
(uzg,uzi,uze) — U
is covering the adjoint representation Di.q.1,1 three times. In Eq. (139), z5, s =
0,1,2 denote the elements forming the center Z3 of SU3 .

But there is no loss of information in considering only U (y, y; CL), assuming
the analytic extension of the underlying Lie group to be implementable in the clas-
sical field configurations, which resolves the above threefold covering through the
analytic extension inherent to the Lie algebra leading from SU3 /Z35 — SL3C —
SU3 .. This is in accordance with the universal fibre bundle structure.

At the end of this Appendix we shall go back to U (y, y; CL), as defined in
Eq. (127) and state the nonabeliean Stokes relation [36] :

U(y,y;CL A=), =
= (U(y,x;LUAG

. (P2Q P (/SIW(Q))>GH CICG L})>HB7 (140)

(U (z; PRICL =08)) o, — U (z:CL=08)

(rren ([ ).

In Eq. (140), Uy (2; P§*|CL = 9S) — U(Q) (x; CL = 0 85) denotes the Stokes
surface integral proper, punctuated at an internal point = and oriented in a coil-like
wiring fashion, denoted by Ps?.

The P§? ordering for four coils and two wiring layers is shown in Fig. 7 below.
The ordering P35’ for the segmnents at fixed distance from the base point = converges
to a flagpole path, shown in the lower-right corner of Fig. 7. This path, denoted
i, starts and ends at the base point x and turns around the plaquette at the point
2z on the surface S . Its contribution inside the ordering Pj’ is

f=U(z,z; -5) P exp (—/ W(2))U(2,x;i>). (141)
Sa
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Fig. 7. The surface coil-wiring ordering surface integration. Both number of coils
and number of wirings, here 4 and 2, are to be increased, refining the surface
covering.

The superscript 2 characterizing the surface ordering PS5’ is chosen to associate
a local gauge transformation with the surface S. This follows from the similarity
transformation induced on the flagpole path f as defined in Eq. (141).

To make this explicit, we rename the parallel transport matrix U (z, z; L)
associated with the fixed base point x and the point z varying over the entire surface

S

U(z,x; L) — wg(z) —

)= (wa(2))" PS'Zexp(/ w<2>)wx<z> (142)
S
wel(z) = wz(z)\c.

The last line in Eq. (142) shall make it explicit that the parallel transport matrices
w, (2) are not local functions of the surface point z. They rather depend on the
path, one each from x to z.

The family of similarity transformations {w, (z)} induced on the local field
strength differential W) = W) () reflects the nested structure of the weav-
ing pattern defining P5! as a whole! . Looking at the structure of the similarity
transformations forming the nonlocal structure f in Eq. (142) the question arises,
whether there exists a local gauge transformation Q- adapted to S - which would

INachtmann [36] compares the repetitious return of the weaving pattern to the base point
with the way a spider weaves its fan-type anchoring part of the net.
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~

render the gauge transformed set {wg (z) } trivial

wf =B()ws ()| =4, vzes (143)

) — Riemann normal gauge .

Indeed, the gauge transformation with the requirements in Eq. (143) exists and can
be found together with a coordinate transformation of local coordinates on S and
the original contour CL such that S becomes the inner part of a bounding circle.
The latter forms in the new coordinates the closed contour CL and the family of
curves from the base point x to z becomes the family of straight radial lines. The
point y punctuating the contour CL then can be mapped on the south pole of the
bounding circle (to be definite ).

The transformed variables are well known in the analogous situation, where
gauge transformations refer to coordinate transformations, i.e. the tangent space
(universal) spin bundle. The respective coordinates are called Riemann normal
coordinates. The gauge equivalent we shall call the Riemann normal gauge as in-
dicated in Eq. (143). The Riemann normal gauge is also known as radial gauge, at
least in the case of an Abelian gauge group.

It is precisely in the Riemann normal gauge where the P! — P§’ ordering
becomes ‘normal’: Transforming to the Riemann normal gauge R.n.g. (S ), we have

Rn.g. (S):

we(2)|le — w

8 0)
N
Il
=a

5 144
P3? — P§ (1449

~ N . -1
W (2) — W) = Q(2)WD (2) (Q(z)) .
Using the transformed quantities on the right-hand side of Eq. (144), we undo first
the flagpole sequence § in Eq. (142)

~

D= (wa () P97 exp (—/Smw@)) wa(z) — b7

L K (145)
hQ:nglzeXp (_/ W(Z)Q)_
Sz
Next, Eq. (140) becomes
U? (y,y;CL A= )ap =
= <P26 exp (—/ W(2)§>)
Sa AB
(146)

(U(2>(x; PeleL = 35))AB ~ UG (z:0L =05)

= (Pgaexp (—/ W(2)§>) .
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At this stage, although implicit in the original definition of the general PS? ordering,
it remains to indicate the (or a) simplified ordering in the Riemann normal gauge.
This is shown in Fig. 8. In the Riemann normal gauge the repeated intermediate
returns to the base point = are no more necessary 2.

An interesting shortcut is shown in an actual spiderweb in Fig. 9.

Fig. 8. The abridged ordering of plaquettes in the Riemann normal gauge. It follows
a double spiral pattern from the base point x and back.

Fig. 9. The abridged ordering in an ac tual spider web. It follows an abridged
double spiral pattern from the base point x and back. The figure is adapted from
a Lui Bernard photograph [38].

Several remarks conclude this discussion :

i) Back to the original gauge .

In Eq. (146) we have to transform back from Riemann normal gauge on the

2This also is the spiders path, in the second stage: the scaffolding spiral [37, 38] .
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surface S|, to the original gauge

Ul(y,y;CL A= )AB =

- ((2w) v waiee o 00w) .

AB

ii) Cut the edges of the contour CL.

In order to transform the map of the contour CL continuously into a circle,
the edges marked in the corresponding symbol in eqs. (127), (140), (146) and

(147) need to be cut
=" = Q. (148)

iii) The full collection of surfaces and Riemann normal gauges.

As indicated in point i), the meaning of Stokes relations summarized in Eqgs.
(146) and (147) is to consider all surfaces with boundary CL (y ), the latter
punctuated at the point y, the former with base point x, inheriting the point y,
and the associated Riemann normal gauges Q (z). The collection of surfaces
and associated Riemann normal gauges shall be denoted

{Se1i0(2)} (149)
iv) The Stokes relations proper.

Stokes relations in Eq. (146) in Riemann normal gauges take the form

Ut (y,y;CE(y) @) =

AB

- (P?w exp (—/ W<2>5w>> (150)
Sw\y AB
v {Sx‘y;Qz}.

The true form of Stokes relations returns to a general common gauge, com-
bining Eqgs. (147) and (150)

U (y,y;Cﬁ(y) Q )AB =
(ﬁm(y))fl

= x Ps'* exp (—/ W(2)§1‘> (151)
Saly
x Qg (y) AB
N { Salys ﬁw } .
The closed contour CL (y ) integral U (y, y; CL(y) O ) on the left-hand
side of Eq. (151) is dependent on the point y, where the contour begins and
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ends, but not on any surface and associated Riemann normal gauge forming
the collection { S Qo }

v) The surface integral proper in Riemann normal gauge .
The main ingredient in the Stokes relations in Eq. (151) is — selecting a surface
and a Riemann normal gauge out of the collection { S, ; Q, |t — the surface
integral proper as summarized in Eq. (150)

U (y,y;CE(y) Q )AB =

. _ (152)
= [ P5'* exp —/ 1ARALE .
Sw\y AB

The surface integral on the right hand side of Eq. (152) — in Riemann nor-
mal gauge — involves the ordering, denoted PQQ’”, of products of local surface
differentials W () 2= By this local property the surface ’integral’ is indeed

an integral.

In any gauge other than a Riemannian normal one, the corresponding dif-
ferentials are not local functions of the plaquette differentials, rather they
depend on the entire set of flagpole paths, described in Fig. 7 and Egs. (141)
and (142).

vi) The ordering of surface elements in Riemann normal gauge .

The path ordering PQQ’” of the — matrix valued — surface elements is very
special to Riemann normal gauges. It derives from two steps, starting in a
general (original) gauge. They are described in the text following Eq.(140)
and in Figs. 7 and 8.

An appropriate name for Pzﬂ‘” is ‘spider-web ordering’ illustrated in Fig. 8a,,

[38].

Appendix A.4
Spin projection operations on adjoint string operators

The adjoint string operators forming binary gluonic mesons are introduced in
Eq. (14), repeated below

B[NIVI]a[M2V2](x1ax2) =
F[MlVl](x1§ A)U(x17A§x2, B)F[MQUQ](xQ; B) (153)
A B, .- =1,---,8.
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The Lorentz invariant tensors K * are introduced in Eq. (23), repeated below

+
Z;;Ii(zvpinJr;.) = ( (K )["‘1’/1][!’«21/2] )

XZ]i(Z,p,Ji+; )

(154)
(K+) [pivi][mavae] — Guipa9vive = GuivaGuavy
(K_) [pivi]pave] — Cpipaviva -
We perform the associated projections
Kt B
[prvi][p2v2]
B[M1V1]7[uzvz] = +K[_LL1V1][M2D2]B(_) . (155)
!
+B[H1V1]7[M2V2]

The decomposition according to Eq. (155) is the same for the Riemann curvature
tensor, where B () relates to the curvature scalar, B’ to the Ricci and Weyl tensors
and B(~) = 0, unlike here.

So we form the metric (Ricci-) contraction

9" 2 By, (pave] = Buiv,
. ~( 39v,0, B
vivsa +glllll«2 Bl[u1 V1]7 [“21/2] (156)

1 . —
RD1VQZQD1V2+19D1V2R ) R*gV1V2RV1y2
— 1
Ovivy _RV1V2_ZgD1V2R'

It follows from Eq. (156)

_ 1 4
Ovive = 9" 2B ) ) T (157)

vV _ —_ +
gritz gV 23/[#11/1]7[#21’2] =0 — R=12BM,

The quantity B’ with the trace condition in Eq. (157) forms the irreducible rela-
tivistic spin two part Sih, = 2 as defined in Egs. (21) and (22) in the main text.
Here we concentrate on the projection on B ) .

From Eq. (157) we obtain

B(+)(ZL’1,$2) =

(158)
= %F[o{g](l'17 A)U(l’l, A;ZL’Q, B)F[Q’B]((ﬂg, B)
The projection on B () proceeds in a similar way
5#1#21/11/23[“11/1])[“2”2] = _24B(—)_|_
vV /
4 M1k QB[M1V1]7[M2V2] — (159)
5#1#2V1V2B/ 0.

(u1v1], [p2va] =
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The structure pf B (- follows similarly as for B (+) in Eq. (158). We thus give
both expressions together below
B ) ( r1,T2 )

= L Flap)(21; A)U (21, A; 24, B)F18] (z,; B)

B(i)(mluxZ)
— & Flap) (213 A)U (21, Ay xo, B)F1*F](25; B) (160)
= -5 Flap)(z1;A)U(z1, As 20, B)Fl*Pl (245, B)

ﬁ[aﬁ](ﬂw; B) = %506575}7[75](%2; B)
and (z2; B) « (z1; A4).

Appendix A.5
Spin projection operations on adjoint string operators -
extended

We continue the projection operations carried out in Appendix A.4 in order to
extend them to the remaining gb spectral series of type ITT. This is related to
the quantities B ’[ | defined in Eq. (24) and refined in Appendix A.4 (
Eq. (155)).

To that end we perform the full decomposition of the tensorial structure of the
octet string operators interoduced in Eq. (14) and rewritten in Eq. (153)

prvi], [ va

B[Ml vi],[pu2ve] (xl ) 1'2) - B[Ml vi],[pava]s (161)
which is analogous to that of the Riemann curvature tensor, without the metric
constraints of the latter.

The Ricci contraction introduced in Eq. (156) yields the follwoing structure

B[mm],[muz] = w[ulVl][Msz]+AB[H1V1]7[M2V2]
1(9;L1M2RV1V2_9V1M2RM1V2 )

AB[ﬂlljl],[y,Q ve | T _gﬂlquV1#2+gV1V2Ru1#2

_ 1+
6 K () (2 v) B (162)
with : gF M 2w v (pawe] = 0
g“l‘”B[myl] p2ve] = gHIMQAB[mVl]v[Nsz] =Ryyv,

R=g"""*R,,,, = 12B().

Before proceeding, let’s express the Ricci bilinear in terms of the base octet

string operators B, ],
Rl/1 Vo =

= —Fya(z1;A)U(21,As 22, B)F®, (22;B).

p2 vz ]

(163)
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In order to simplify notation, we shall suppress the position arguments and use
chromoelectric and -magnetic fields for the field strength tensor.

EAED GkAD
-R,,,, = GiAD _[FiAFRkD _ BiABkD Uap
+5ik§A§D

(164)
R =2 (EABD ~ EAED) Uap ; SAP = EA A BP

FiA — poiA , BiA — %aileklA.
In Eq. (164) we recognize the Maxwell energy momentum like (bilinear) expression,
where §4 P shall be called the bilinear Poynting vector.

Next we substitute the traceless part of the Ricci bilinear (Eq. (156)) in Eq.
(162)

— oMY = —RMY 4 %guuR — 19/(;”
1<E_"AEED_, ) _GKkAD
2 +BARBD
= _EiAFkD _ BiABkD Uap. (165)
_gz‘AD Yy (E’AE‘D >
2 Yk +BARBD

In Eq. (165) we recognize the bilinear with the structure of the classical (traceless)
Maxwell energy momentum tensor of nonabelian gauge field strengths.

Equation (162) becomes decomposed into positive parity irreducible parts

B[#ll’l],[ﬂzl/ﬂ = Wiy v ][p2ve] +AB[#1V1],[IL2V2]
1(9#1#291/11/2_9111#2@#11’2 >
2

AB[,ulul],[,uQVQ] = “GuivaQuips T Gviva Quips

1 +
+EK[mm][mm]R (166)
with : gl“'uzw[ﬂllfl][ﬂz’&] =0
gulﬂzB[Mm] Jpa2ve] = g'uHmAB[NlVl];[MzW] = R”1”2

R=g"'"2R,, ,, = 12B().

As a side remark to the (Lorentz-) tensorial reduction of the bilinear quantities
By ], usve]> 1t 18 necessary to include the spatio-temporal nonlocal parallel
transport matrices pertaining to a general connection and metric I'  #, and g, .
This is necessary to render B, ,],[usve] @ tTue nonlocal Lorentz-tensor. We do
not do this here. In globally flat Minkowski space coordinates, this parallel transport
is trivial.
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The sequence of projections on first Lorentz spin (.) and second on rotational
spin (.), needs two steps, rearranging the structure of — p# in Eq. (165)

_ BV QMY
ot =y =

o ( EAEP _ GkAD
2 +BABD
_E’iAE’kD _ B’z‘AB?kD
— 1 EAED X UAD~
o + 20k IR
_SZAD 3 +BABD
FARBD
+ 8 ECET
6 +BABD
(167)
The tensor structure of " in Eq. (167) follows the hydrodynamic nomenclature
Qe _gk
_Q/'“/ = ’195[1/ = _gl Tik
+0ikp
Qe:3p:%(EAED+§A§D)UAD (168)

Tk = 2P0k — (EiAEkD + éiAékD> Uap
>, mii =0,

with the identifications given in Eq. (168).
The chain of irreducible components of A B is shown in Eq. (169) below

step | name # comp. L.-spin R.-spin
1 AB. 10 mixed mixed
2 | B 1 1 1
2 0 9 DUT  mixed (169)
3 Oec 1 — 1
3 S 3 - D!
3 . 5 — D?

It is the last term in Eq. (169) 7, as displayed in Eq. (168) which characterizes the
S, = 2 spectral series of binary gluonic mesons. The R-spin 2 tensor 7, is related
to the corresponding components of the Weyl bilinear w |, v, ][4, v, ] Introduced in

Eq. (162), which represents the traceless part of the bilinear Riemann like tensor
By ], [p2ve] » to which we turn next.

Weyl bilinear and circular polarization basis for gauge field strengths

We recall the right and left chiral spin matrices defined in Appendix A.1 (Eqs.
(62) and (63)) reproduced below, first for the right-circular part. Here the notion
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right (left) circular refers to a fixed spin axis and not to the individual momenta of
the two gauge bosons at the end of the octet string, in question. The spin axis is
common to both and an axial vector.

(0uv)o” < Prb [vu 7] Pr 5 Pr=3(1+7snr)
Y5R = %70717273
%, )ﬁ fory =0,v=4kFk=1,23 (170)

forp = =n;
(Uuu)aﬁ: <5m"7"27" e e %,n,r:1,2,3

(cr,w)ofa — O'fy ; UII}V = —i%&?WgTGQTR.
The right-circular spinor basis in Eq. (170) yields the projection on the gauge field
strengths
o

Lo, Ul (2 A) = 8,674 (2)

- N \NTA 5

Cra(z) = (B—iE) (z) — Cr4a (171)
r=1,23.

The right circular quantities ¢ in Eq. (171) are complex combinations of the
hermitian field strengths F'[#¥14 in the adjoint representation of SU3 ...

We note the right circular identity, following from Eq. (170)

1 v]A 1 (nrv]A
50’5VF['M ] :50"{}” (FR)

()14 (F[uu]A_ij:“[wJA) (172)
Flbuy = b pmar FI771A,

When the space-time component r in Criis explicitely denoted, the vector symbol
of C' shall be omitted for simplicity.

Now we recall the left chiral spinor matrices defined in Eqgs. (81) and (82) in
Appendix A.1

(o)’ s Poglvu, vl Prs Pr=5(1—7sR)

YsrR = T70717273

lzk i fOI'/LZO,U:k:LQ’?) (173)
> §

: foru = m,v = n;
Y (E ) )
(ouv) i = mnr m,n,r = 1,2,3

. _ 41 L
;O —+1§6WQTUQT .

(UMV)WS _>O-L nv

nv

Correspondingly to Eq. (170), the left-circular spinor basis in Eq. (173) yields
the projection on the left-circular gauge field strengths, completing the right-
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circular one in Eq. (171)

%a[: Flevl(z; A) = 2,G"4 (z)

5 5 N\NTA .

Gra(z) = (B—i—iE> (z) — Gra (174)
r=1,23.

Analogous to the right-circular identity in Eq. (172) is the left-circular one, dis-
played together in Eq. (175) below

bof, FUA = o, (P
(FR) [pv]A — % (F[#V]A _ iﬁ‘[ul/]A)

F\y) = 3€umar Flo71A (175)
v — [pv]A

ok, Flrvld = 1oL (FL)

(FL)[P«V]A:%(F[p,u]A+iF[p,u]A).

As long as we remain within the real Lorentz group, as discussed in Appendix
A.1, the three vector quantities C 4 and G4 are relative hermitian conjugates of

each other. They transform according to the D!:? and D? . representations of the
spin (1, 3;R) ~ SL2C group, as defined in egs. (80) and (81) in Appendix A.2.

G4 = (G4) ~

pL.o . oraA RTSCSA : po.i . gra LTSGSA (176)
Rps = Rys(A) , Lys = Lys(B)

R,s = L., within spin(1,3;%R).

The three by three matrices R,.; and L, are complex orthogonal with determinant
1, forming the group SO3C ~ SL2C / Z,, where Z4 denotes the center of SL2C'.

We are now ready to decompose the Weyl bilinear w,, v, ]{us 1] in Eq. (162),

into its irreducible parts.
PRE(C o C
( ( ))[NlVl][Msz]

W) = | + (PP (G o @

H1 V1] [ p2 V2 ( ( [NlVl][Msz] (177)
+B(—)(K—)[MV1][M2D2]

(K_)[“lVl][Hsz]:5M1M2V1V2~

In Eq. (177), the quantities B(~) and ( K ~) are defined in Eqs. (23)—(25). The
projections denoted P RF (C_" ® 6) and PLE (é ® é), operate on the doubly

right- and left-circular, direct product combinations indicated as respective ar-
guments in Eq. (177). Omitting the explicit dependence on the Lorentz indices
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[p1v1] [peva] for simplicity, they are of the form

PRR ((j ® @) ) (CTACSD _ %5rséA5D) Uap

pLL (é@é) EC) (GTAGSD_%WS@A@D)UAD' (178)
We thus introduce the abbreviations following Eq. (178)
PRR (C_" ® é’) — whR
pPLL (é ® é) — wa
whR — (OTACSD _ %WSC?AC*D) U ab (179)

The bilinears w % and wl defined in Eq. (179) transform according to the
complex representations D 2:9 and D02 of spin (1, 3;R) ~ SL2C, respectively.
These two representations are complex conjugate to each other.

As in the case of the Lorentz tensor po#¥ in Eqs. (165), (167) and (168), the
space time indices 7 s for the quantities w LY and w % in Eq. (179) are understood
to be symmetrized. ) )

This completes the decomposition of the Weyl bilinear. We compare the struc-
ture of the irreducible components w_ with that of A B, as shown in Eq. (169)
reproduced below

step | name # comp. L.-spin R.-spin
1 AB, 10 mixed  mixed
2 | B® 1 1 1
2 o0* 9 D11 mixed (180)
3 Oec 1 — 1
3 S 3 - D!
3 . 5 — D?
The corresponding structure of the Weyl bilinears is displayed in Eq. (181)
step | name # comp. L.-spin R.-spin
1 w, 11 mixed  mixed
2 | BO) 1 1 1 (181)
2 w RR 5 D 2,0 D 2
2 wLLL 5 D 0,2 D 2
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Comparing the counting in the two tables ( Egs. (180) and (181) ), we should keep in
mind that the colums labeled # comp. are based on counting independent hermitian
operators among the bilinears B _ .

In this respect we verify the correctness of the counting: the Riemann tensor
like bilinears have 6 x 7/2 = 21 hermitian components, which combine into 10
for the Ricci tensor-like quantities, further decomposed according to Eq. (180), and
11 for the Weyl tensor-like in Eq. (181).

For the Ricci tensor the decomposition into B () corresponding to the curvature
scalar and the traceless part, called o+ here, is straightforward.

For the Weyl tensor the splitting into 10 + 1 hermitian components, corre-
sponding to the pseudoscalar B (7) and the right- and left circular bilinears w 7

and w fL , with together 10 hermitian components is also quite clear.

What appears impossible, is to find a common contribution to the so defined
irreducibles : g+ with 9 hermitian components on one hand and w *% and w ¥ with
10 on the other. It follows from the discussion below, that this is indeed impossible.

In this connection, we have to remember that we are considering matrix elements

of the form defined in Eq. (17)

<®| B[ull’l]’[uzlfz](xlvx2) |gb(JPC);pa {szn}> -

i~ (182)
e_let;(vaa ']PC; ')a

where hermition bilinears induce compler amplitudes.

Next we focus on the continuity equation for the classical energy-momentum
tensor pertaining to the field strengths, extended to the nonlocal situation, condi-
tioned by the c.m. four momentum p. This follows the relations in Egs. (167) and

(168) . v v
-0t =907 (X52) — Oxu9l " (X;2)=0. (183)

Equation (183) is valid for classical field configurations and follows from the anal-
ogous classical treatment of the Stokes relation discussed in Appendix A.3. It is
not straightforward for quantized local gauge fields. In the latter case, the identi-
cal relation is not sufficiently established and deserves further study. Nevertheless,
we use it here for consistency. Thus it follows that the quantities g, and S de-
fined in Eq. (168) do not contribute to the amplitudes associated with the classical
energy-momentum tensor 94" (X ; z).

Thus we associate each bilinear irreducible to the (family of) wave functions,
following the notation introduced in Eq. (17) and repeated in Eq. (182). Hereby
the complete family of wave functions is accordingly projected

o = t.({e}y;z,p, P 0) — t({e})

w, o t({w}iz,p, JP9 ) — t({w})

wf%R s i‘i({wRR};z,p,JPC;.) — f({wRR}) (184)
wh o T (w2 p, JPC ) = T({wth )
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The bilinears B (£) are already fully characterized. They do not contribute to the
wave functions of the I1 7T | i.e. Sf'z = 2 spectral type, and thus we will not discuss
them any further here.

The tables in Egs. (180) and (181) are thus reduced and adapted to the wave
functions ¢ defined in Eq. (184)

step name # comp. L.-spin R.-spin

2 | t({e}) 9 ptt D2

3 | t({ee}) 0 - -

3 Z({§}) 0 - - (185)
3 t({r}) 5 — D?

2 | t({whr}) 5 D20 D2

2 | t({wlt}) 5 D%2 D2

The wave functions denoted £ ({o.}) and #( { §}) in Eq. (185) vanish, as a
consequence of the continuity equation in Eq. (183).

Thus the table in Eq. (185) reduces to

step name # comp. L.-spin R.-spin

2 | T({e}) 9 pil  Dp?

3 t({7}) 5 — D? (186)
2 | t({whr}) 5 D%0 D2

2 | t({wlt}) 5 D%2 D2

In the tables (Eqgs. (185) and (186)), the column labelled # comp. refers to
wave function components over the complex numbers.

The entries and properties displayed in Eq. (186) look more coherent than in
the tables in Eqgs. (180) and (181), but the puzzle of 5 versus 10 components for
t({o}) compared to t ({wR}) and t ({ w’" }) remains.

To understand this difference, we compare the structure of the bilinears as-
sociated with ¢ ({m}) (Eq. (168)) with the one pertaining to ¢ ({w®%}) and
t({wh}) ((178)). To this end we use the relations in Eqgs. (171) defining the
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quantities €4 and (174) for G4, respectively.
-0t =9y —

(187)

Zi mii =0 5 Zr (WRR>TT = Zr (TFLL)TT = 0.
In Eq. (187), the 21 complex components of the octet string bilinear wave functions
are reduced to 3 complex, traceless and symmetric 3 x 3 matrices, denoted 7,
7 BR and 7L, respectively. There is at this stage an essential ingredient missing.
The property distinguishing the above matrices is the spatial ‘Dreibein’ nature of
chromoelectric- , chromomagnetic and orientation axis vectors [39] .

In order to realize the ‘Dreibein’ property, we reduce the three quantities 7,
7BE and 7L in Eq. (87) to their common (chromo-) electric and magnetic com-
ponents. This leaves m unchanged

%5“ (E'AE‘D 4 §A§D>
ﬂ.rs — . . . . UAD
_ (ETA EsD + BTA BsD)

(WRR)TS — q"s — ipTS

(ﬂ.LL)TS = a"% +ibTs

o o (188)
%57”3 (_EAED —|—BABD)

a’ = = Lo Uap
_ <7ETAESD + BTABSD)

1 FABD BA D
- Lore (EABP + BAEP)
brs = o o Uap.
_ (E’I‘A BsD + BTAESD)
The adjoint representation indices A, D and the position difference z make it nec-
essary to symmetrize the above expressions with respect to the indices r,s taking
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into account the dependence on the relative (Lorentz-) coordinate z , not explicitely
shown in Eq. (188).

In order to retain the relevant degrees of freedom, we streamline the displayed
indices and kinematic variables to the electromagnetic case. But in no way is this
implying, that the nonabelian character of the underlying variables is sacrificed, to
the contrary.

With this in mind, we introduce the abbreviated notation

(B4 B*) = (E.B)(¢ )~ (B ),
(ED7§D)—>(EH,§)(—C)—>(EH,§)7 (189)
Uap — . ;5 ¢=2z/2.

The trace parts proportional to §”* of the matrix 7 in Eq. (188) can be neglected.
This follows from Eq. (183) .

Thus Eq. (188) takes the form using the notation introduced in Eq. (189)

7" ~ ELE® + B}B*
T8 ~ ET ES _ ET BS +
a LB LB (r < s) (190)
—b™s ~ EnBs 4 BLE®
modulo trace parts.
Here we need the variable € = Z/r introduced in Eq. (39) in order to orient

chromoelectric and -magnetic fields, in a radial gauge, where the parallel transport
matrix Uap — 0 ap. The chromomagnetic fields then become related to the -
electric ones

3, =¢NE, ; B.=—-¢NE_
e ¢ (191)

Eq. (191) establishes the nonabelian ‘Dreibein’ form.

As the wave functions associated with the field strengths in Egs. (191) and
(191) are complex, we can choose the € associated helicity basis. Choosing the z
axis along €, Eq. (191) takes the component form

Ey = (Byx, Eys,0)

5, =(-Ey4+.E,4,0) ; BL=(E,_,-E,_,0)—

(£,B){ =(E,B),, —i(E,B),,

(£.B) =(E.B), +i(E.B),, (192)
(£,B)" =(E,B),_+i(E,B),_

(£,B)Y =(E,B),_ —i(E,B)
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The (complex) components (&, B)ﬁ(m in Eq. (192)3 define the sought helicity
basis, where Eq. (192) takes the form

BY = (-i)&ff ; BL =(i)€L. (193)
The spin component associated with the operation
§€ = iéA, (194)

which represents an infinitesimal rotation around the €— axis (i.e., its derivative
with respect to the rotation angle), takes the eigenvalues implied by the R, L
components in Eq. (193)

Se (8, BR) =+1 , §-(&L,BE) = +1
Se(EE,BLY) = -1, S, (&R, BE) = 1.

Hence the direct product components R,L R_ , Ry L_ , L, R_and L L_ de-
scribe four Sz12 spin states

(195)

A helicity components Sz12
(€5, BY) » (€8, BE) 0
(eb.BY) @ <sf,sL> 0 (196)
(€F.B%) @ (e£,BL) o
(0. BL) @ (¢7,BR)  —2

For clarity let us associate a pair of complex, transverse three vectors (¥, w)* with
the two sides of the octet string denoted by + and —

7 e (E,B) Y BN (E,B)
+ —
ev =20 , €W =0 (197)
szvw—ivy , wR:ww—i—iwy
UL:UI—‘rin , szww—iwy.

Using the components R, L as defined in Egs. (192) and (197), the (complex
orthogonal) scalar product takes the form

UV =ugvy + uyvy =5 (Rl +ufwl) . (198)

We adapt the tensor structure of the symmetric matrices 7, a,b in Eq. (190)
tothe RR, RL, LR and L L basis defined in Eq. (192)

P 7.‘.RFi’/ 7.‘.RL
~

w"s LR ﬂ_LL)—i—(THs); and ™ — a,b

™

(199)
modulo trace parts.

3The helicity basis components B shall not be confused with the SL2C matrix B defined in
Appendix A.1.
4The auxiliary vector @ introduced here shall not be confused with the Weyl bilinears wLRR

and w BF in Eqgs. (177) and (179) .
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It follows from Egs. (198) and (199) that the trace part remains valid in the
specific 7§ assignment chosen. However, symmetrization with respect to the indices
r s is not equivalent to symmetrization with respect to r's

RR LL

B T - T
(res)= <7rRL — 7B and nlf - gLR ) (200)
modulo trace parts and 7 — a,b.
Equation (200) implies for the symmetrized matrices 7, a, b

A (B A )

’/TLR %(WRR+7TLL)

™

(201)
modulo trace parts and 7w — a,b.

Now taking the traceless parts simply removes the R R and L L components

~— 0 n RL
TS d . b. 202
™ ( LR > and ™ — a (202)
Now we cast 7, a, b in Eq. (190) into the 75 basis
—n Bl ~ ghel 4 gRBL | —glR ~ gLeR 4 BLBER
aRL ~ EREL _BRBL | LR o gLgR _BLBR  (303)
—bRL ~ ERBE 4+ BREL | —bEE ~ EEBE 4 BEER.
We substitute the relations in Eq. (193) in Eq. (203)
Bf = (-i)ef ; BL = (i) &L —, (204)

with the result that all contributions from the spin 2 Weyl bilinear vanish, as a
consequence of the ‘Dreibein’ conditions

—a Rl ~2gRel | —glR oebeR
(205)
(aRL, al®) ~0 , (bRL BLR) ~ 0.
Comparing with the helicity structure in Eq. (196), we find
A helicity components Sz12
1_RL _ cRel
_?WLR _ EIEE : (206)
— §7T = g_,’_ g_ -2
a=b=0 0

Summary remarks on the construction of the I ™ spectral gb series

i) Decomposition of adjoint string bilinears and their associated wave functions

We reproduce here the structure of the adjoint string bilinears introduced in

Eq. (14)
B[P‘ll’l]’[,u21/2](x17x2) =
Frumi(z1; A)U(x1, Ay 29, B) Fluyu,(22; B) (207)
A, B,---=1,---,8.
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The bilinear quantities in Eq. (207) yield the gb wave functions in the three
spectral series I ™, I~ and II ™ introduced in Egs. (21)-(23), summarized
in Eq. (208) below

Z;(va7JP+;') H;L;Si(zap7<]i+;')

/ ti;IIJr(Zap,J'H';.)
fi;si(z,p,Ji-*—;.)a %171+(z7p,‘]++;.) (208)
> tNL;I*(ZaP7J7+;.)
58h == [pavi], [peve].

The decomposition of the adjoint string bilinears, introduced in Eq. (24), is
repeated below

(K5 (yrva) (pave) BY
By fuave) (715 22) = |+ (K7) (4,0 pava) BT
B0, v (209)
(KT) (pivi](pave] = Iwip29vive = GuivaGuov,
(K7) (urwillpava] = Enipavivs-

In Eq. (209) K* and the associated bilinears and their induced amplitudes
denoted B (4) project on the spectral types I T according to Eq. (208),
whereas B’[ pivi], [pava] refers to the projection on the IT T spectral type.
The unique projection of B’ on the traceless part of the Ricci bilinear, iden-

tical to the classical energy momentum tensor pertaining to gauge bosons, is
derived in this Appendix (A.5).

The general decomposition of B, 1], [usv.] in Eq. (207) is introduced in
Eq. (162) reproduced below

Bl luave] = Wi [pzve] T ABugvn], [uzve]
1<gu1M2RV1V2_gV1M2RH1V2 )
ABluymn], [pave] = N\ = Guiva Ry + Guiva Ryuypis
_1lgp+
6 K (il lpava) B (210)

with: ghHihzaw 0

9#1#2 B[

prvi][p2v2] =
pave] = g#1u2AB[u1V1],[u2V2] =Ruv,

R=g""R, ,, = 12B{).

NIVI] a[

In Eq. (210) we have denoted the still reducible parts in the following way

W] pave] - Weyl bilinear
R, :  Ricci bilinear . (211)
R :  Riemann scalar bilinear
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The decomposition in Eq. (210) into positive parity irreducible parts, leaving
the Weyl bilinear reducible, is introduced in Eq. (166) repeated below

Bl pavs] = Wipan ) (p2ve] T A Bl ], [uzva]
1(9#1#29u1v2gu1,u29,u1u2 )
2

AB[M1V1]»[M2V2] = TYpurvaQuips T Jvivs Quaps
1o+
+12K[M1V1][M2V2]R (212)
with : gP "2 W, 0 ) (e we] = 0
9" 2 Bl lueve] = 9" PP AB ] (e e] = Ruivs

R=g"1"2R,,,, = 12B).

In Eq. (212), the irreducible positive parity parts introduce the traceless part
of the Ricci bilinear, i.e. the classical traceless energy momentum bilinear
pertaining to gauge bosons. Thus the notations in Eq. (211) are extended, as
shown in Eq. (165)

Wipyvr][p2va] Weyl bilinear

R,y :  Ricci bilinear

R :  Riemann scalar bilinear (213)
—o"” = —RM 4+ 1g""R  energy momentum
= 19/:[” " bilinear.

The structure of the energy-momentum bilinear introduced in Eq. (165) (and
Egs. 212—213) with respect to chromoelectric and -magnetic field strengths
is reproduced in Eq. (214) below

79/—“/:7RF”’+%‘QHVR:Q9'LCLZV =
1(E'AEZD_’ ) _GkAD
2 +BARBD
— _E’iAE’kD_B’iAB’kD Uap . (214)
_giAD L1s FBAED
2 lk< +BARBD )

The Weyl bilinear is decomposed into irreducible parts according to Eq. (177)
repeated in Eq. (215) below

(PRR <é ® C_:) ) [p1v1][p2ve]

Wil = |+ (P (G o G)

[prvi][p2v2] [p1v1] [p2ve] (215)
+B (K7 il s

(Ki)[/tlyl][uzw] = E€puipaviva -

The irreducible parts o, P®® and PLL representing the spin 2 parts of
the energy momentum bilinear (o) and the Weyl bilinear (P %% PLL) are
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identified with the wave functions of the I1™ spectral series in Eq. (184)
repeated in Eq. (216) below

o o t.({oyiz,p,JPC;0) -
w, o t({w}r;z,p, JTC) —
whlt ot ({wflf) 2, p, JPC ) —

wtt ot ({wlt) iz, p, JPC ) —

(216)

The new result, worked out in this Appendix (A.5), shows that the wave
functions pertaining to P ®® and P’ | i.e. to the spin 2 irreducible parts of
the Weyl bilinear vanish.

In this sense we identify here the bilinear with its gb wave functions, keeping
in mind that the full spin 2 Weyl bilinear operator does not vanish identically.
This implies for the wave functions defined in Eq. (216)

t({wlfl) =t ({wt*}) = 0. (217)
Eq. (217) is the main result of this Appendix (A.5).

With the above identification, the full decomposition of the adjoint string
bilinear in Eq. (212) becomes

1(9#1#291/11/291/1#2@#11/2 )
2
_gulllz QV1M2 + gV1V2 Qulﬂz

B[ﬂlm]’[lbllz] = +K[J';“V1][M2V2]B(+)
— (=)
R v (2 ve) B (218)
with Zg”luzB[myl]y[luyz,] =R, .,
— oMY = —RMY 4 %g”"R — 195”

R=g"*"2R,,,, = 12B).

Comparing the form of the adjoint string components in Eq. (218) with Eq.
(209), we find

/ _ 1 Juip20vive = Guip2Qpuivs
[piva], [p2v2] = 2

79#1”29”1#2 +gl/11/29#1/t2 (219)

B « {IIt} «— 94"

ii) The parallel to Abelian gauge fields.

The relations of the nonabelian adjoint string variables, contained in Egs.
(218) and (218), with the three spectral types, denoted I+, I~ and I+
here, equally apply to the corresponding string variables pertaining to elec-
tromagnetic fields [6, 7]. This has not been explicitely done [5], since the
structure of the two isolated decay photons yields a considerable simplifica-
tion.
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TVORBA HADRONA UKRSTENIM HADRONSKIM SNOPOVIMA: FIZICKI
POTENCIJAL OSNOVNOG EKSPERIMENTALNOG ISTRAZIVANJA

Osnovni cilj ovog rada bio je dati kratak pregled gluonskih mezona, koji bi se trazili
u sredisnjim sudarima hadrona relativno male mase, a u kojima bi se mogli odabrati
pojasevi rapidnosti, i koji bi zahtijevali hadronske snopove dovoljne energije i inten-
ziteta. Poglavlja 14 posveéena su tom cilju. Razli¢ite racunalne vjestine, koje su
postigli mnogi tijekom posljednjih nekoliko desetljec¢a, uklju¢ujudi i autora, opisuju
se u pet dodataka posvecenih posebno gluonskim parovima u QCD-u i njihovoj
polaznoj Yang-Millsovoj osnovnoj strukturi.
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