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1. Introduction

For the last thirty years, colour magnetism has been a major tool in under-
standing hadron spectroscopy. It is still believed by many that the exchange of
coloured gluons provide the easiest way of explaining the mass differences between
hadronic states made up of the same (valence) quarks [1]. When all spatial degrees
of freedom are integrated out, we have an interaction Hamiltonian over colour spin
space which is the usual

HCM = −
∑

i,j

Cijλi · λjσi.σj . (1)
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Here the coefficients Cij are, among other things, dependent on the quark masses
and properties of the spatial wave functions of the quarks and the antiquark in the
system. The solution of the eigenvalue problem of the Hamiltonian above is there-
fore of interest, not only in spectroscopy, but in all reactions where an antiquark
or a quark interact with a system of other quarks.

For this reason we think it is appropriate to present a full analysis of the colour-
magnetic interaction with complete flavour symmetry breaking for the (qqq) and
(qqq) systems. It is a well defined problem of undeniable interest, and we shall see
that flavour symmetry breaking gives effects that are far more subtle than in the
(trivial) diquark (qq) system.

The diagonalizing of HCM in the cases where baryons are made of three va-
lence quarks and mesons of (qq) pairs, all coupled to a colour singlet, has been a
standard subject of textbooks for a long time. For hadrons with more complicated
structure, where one adds extra (qq) pair(s) to the simplest structures, new states
(“multiquark states”) are created, some of which carrying quantum numbers that
cannot be explained with baryons made of three valence quarks and mesons made
of (qq) pairs. These are exotic states.

After the recent reports of possible observations of exotic baryons [2], the in-
terest in multiquark states has increased very much [3 – 13]. An extensive list of
references can be found in Ref. [12].

The search for such states had been strongly encouraged by Diakonov, using
predictions from the chiral soliton model [13].

Studies of baryons with more than three quarks go back more than a quarter
of a century. At that time, one made models where “coloured ions” were bound
together by colour-electric flux tubes [14] . The mass defects due to the colour-
magnetism were mostly made in the flavour symmetric limit. A group-theoretical
mass formula was applied, the mass defect being then expressed in terms of the
quadratic Casimir operators for the SU(2)-spin, the SU(3)-colour and the SU(6)-
colourspin group [15, 16]. In the cases where colour-spin, colour and spin for quarks
and antiquarks can be simultaneously quantized together with the same operators
for the whole system, the results are quite easily generalized to flavour symmetry
breaking. In other cases not.

As can be immediately noticed by elementary group theory computations, some
multiquark states are mixtures of states of colour SU(3)c, spin SU(2)s and colour
spin SU(6)cs representations, and that implies some care in their treatment. Such
a situation appears as soon as a set of quarks and antiquarks is considered, and
these are among the cases of s-wave clusters that we address in this paper.

From the decomposition of SU(3) representations

3 × 3 × 3 = 1 + 8 + 8 + 10 (2)

and

3 × 3 × 3 = 3 + 6 + 3 + 15 , (3)
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one deduces that the possible s-wave triplets of quarks belong to one of the following
colour representations c = 1, 8, 10, while clusters made of 2q and 1q stand in c = 3, 6
or 15, the total spin being for each cluster s = 1/2 and s = 3/2, respectively.

Let us add that quark triplets in colour octet (qqq)8s as well as (qqq)6s configu-
rations have been considered a long time ago in some detail, mostly in the flavour
symmetry limit, as part of exotic baryons. Such ”pentaquarks”, earlier called ”meso-
baryonium” [16], were constituted by two clusters of the type: (qqq)8 − (qq)8 or

(qqq)6 − (qq)6, each cluster standing in an s-wave, and separated from the other

by an orbital angular momentum barrier. The configuration (qqq)3
1/2

− (qq)30, again

with a relative L = 1, has also been recently used [4] to make pentaquark states of
spin 1/2+: a detailed analysis of this approach, based from a study of HCM with
flavour symmetry breaking, has been made in Ref. [11].

We present our results over a set of base states. We first couple two quarks q1
and q2 into a definite colour and spin system, then add a third quark/antiquark
and consider the resulting clusters with definite colour and spin. Note that different
orderings of quarks in a cluster with specified colour c and spin s generally lead to
different Hamiltonian matrices. For example, choosing u and d as quarks q1 and q2 in
the (udc) system will provide a Hamiltonian matrix different from the one obtained
by choosing the quarks d and c for the same positions 1 and 2. The eigenvalues will
of course be the same, as well as the physical content of the eigenvectors.

However, is not quite without importance how one numbers the quarks: the
reduction of the Hamiltonian obtained by imposing some (approximate) flavour
symmetry, such as isospin symmetry, is explicit if u and d are chosen as quarks 1
and 2. In the isospin symmetry case, we have noted that our calculations are in
agreement, as could be expected, with earlier results in the three flavour sector [17].
For quarks with identical flavour, the effect of the Pauli exclusion principle is most
easily incorporated by considering them as q1 and q2.

When we sometimes refer to SU(3) flavour representations, it evidently does not
mean that we consider u, d and s quarks only, the number 3 comes just because we
study three-particle systems, so that the (maximal) number of different flavours in
a cluster is 3.

The eigenvectors of HCM are usually not falling into one specific representation
of SU(3)f , they are naturally (also called magically) mixed combinations of different
SU(3)f representations.

2. The (qqq)8
s triquark

This type of triquark had shown up in one of the two favorite configurations -
the second one implying the (qqq)6s cluster - proposed in Ref. [16] for narrow exotic
baryons made of two clusters protected one from the other by a relative angular
momentum barrier.

Let us denote by q1, q2 and q3 the three quarks under study, all in a relative
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s-wave.

i) We consider first the case of total spin s = 1/2, that is |q1q2q3〉81/2
. Reminding

of the following decompositions of SU(3) representations:

3 × 3 = 3 + 6 ; 3 × 3 = 1 + 8 ; 6 × 3 = 8 + 10,

on which the Hamiltonian HCM acts is four dimensional, and a natural basis is
provided with the four states:

χ1 = |(q1q2)61〉 ⊗ |(q3)31/2〉 , (4)

χ2 = |(q1q2)31〉 ⊗ |(q3)31/2〉 ,

χ3 = |(q1q2)60〉 ⊗ |(q3)31/2〉 ,

χ4 = |(q1q2)30〉 ⊗ |(q3)31/2〉 ,

the notation here being

χ1 = |(q1q2)c
s〉 ⊗ |(q3)31/2〉 , (5)

where c is the colour and s the spin of the doublet of the two quarks q1 and q2.

The states χ1 and χ4 have the pair of two quarks (q1q2) which are coupled
symmetrically in colour-spin and are therefore belonging to the (6 × 6)S = 21-
dimensional representation of SU(6)cs, the states χ2 and χ3 are antisymmetric in
colour-spin of the two quarks (q1q2) and fall in the (6 × 6)A = 15-dimensional
representation. Note that if the two quarks q1 and q2 are identical in flavour, the
states χ1 and χ4 vanish due to the Pauli principle.

A way to explicitly compute the 4× 4 matrix representing HCM relative to the
(qqq)8

1/2
triplet is to study separately the colour part and the spin part namely:

HC = −
∑

i,j

Cij
−→
λ i · −→λ j , HS = −

∑

i,j

Cij
−→σ i · −→σ j , (6)

and then to perform a kind of “tensor product” of the two so-obtained 2×2 matrices.

Let us consider the colour-action part. Then, when acting by HC on the χi’s,
it will be convenient to express |(q1q2)c(q3)

3〉8 where c = 6 or 3 in terms of
|(q1q3)c(q2)

3〉8 and |(q2q3)c(q1)
3〉8 (we omit the lower spin index in this compu-

tation). By direct calculation, one obtains the colour crossing

Vc ≡
( |(q1q2)6(q3)3〉8

|(q1q2)3(q3)3〉8
)

=





− 1

2

√

3

2

−
√

3

2
− 1

2





( |(q2q3)6(q1)3〉8
|(q2q3)3(q1)3〉8

)

=





− 1

2

√

3

2
√

3

2

1

2





( |(q1q3)6(q2)3〉8
|(q1q3)3(q2)3〉8

)

, (7)
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from where we can also derive the (inverse) expressions of |(q1q3)c(q2)
3〉8 and

|(q2q3)c(q1)
3〉8 in terms of |(q1q2)c(q3)

3〉8. It is then straightforward to derive the
HC matrix.

A similar technique will allow to construct the 2 × 2 HS matrix, and we finally
give the complete expression for the colour magnetic Hamiltonian HCM acting on
the 4-dimensional vector −→χ = (χ1, χ2, χ3, χ4)

HCM =

−

















4

3
C12+

10

3
(C13+C23) 2

√
3 (C13−C23)

5√
3

(C13−C23) 3 (C13+C23)

2
√

3 (C13−C23) − 8

3
C12−2

3
(C13+C23) 3 (C13+C23) − 1√

3
(C13−C23)

5√
3

(C13 − C23) 3 (C13 + C23) −4C12 0

3 (C13 + C23) − 1√
3

(C13 − C23) 0 8C12

















.

(8)

In the flavour-symmetry limit, C12 = C23 = C31 = C, and HCM reduces to

HCM = −C ·













8 0 0 6

0 −4 6 0

0 6 −4 0

6 0 0 8













, (9)

and the space state decomposes into two invariant subspaces. One is spanned by χ1

and χ4, its SU(3) flavour content is a singlet and an octet with eigenvalues –14C
and –2C for HCM. The other, spanned by χ2 and χ3, contains a flavour octet and
a decuplet where the eigenvalues of HCM are –2C and +10C respectively.

Let us note that the determination of the associated SU(3) flavour representa-
tions is naturally obtained from the corresponding colour-spin SU(6)cs ones. In-
deed, in SU(6)

6 × 6 = 21 + 15 , (10)

with the SU(3)c × SU(2)s decompositions:

6 = (3, 1/2) ; 21 = (6, 1) + (3, 0) ; 15 = (6, 0) + (3, 3)

(in which the SU(3) part is denoted by its dimension and the SU(2) part by its s-
label), and we remark that the couples (q1q2) in χ1 and χ4 belong to the symmetric
21 representation of SU(6)cs, while in χ2 and χ3 they stand in the antisymmetric
15 one. Moreover,

21 × 6 = 56 + 70 and 15 × 6 = 20 + 70 . (11)

Then the corresponding SU(3) multiplets are selected by insuring the complete
antisymmetry of SU(6)cs × SU(3)f . As noted before, if two quarks are identical in
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flavour, it is convenient to label them as particles 1 and 2 so that the states χ1 and
χ4 are forbidden by the Pauli principle.

In this case, and in all other cases where we have a system of only quarks (or
only antiquarks), the eigenstates in the flavour symmetric limit (only!) correspond
to sharp values of the total colour-spin. Examining the SU(3)c ×SU(2)s decompo-
sitions:

56 = (8, 1/2) + (10, 3/2) ,

70 = (8, 1/2 + 3/2) + (10 + 1, 1/2) ,

20 = (8, 1/2) + (1, 3/2) ,

we note that the eigenvectors, which are mixtures of our base states, are identical to
the 56 and 70 representations as well as of the 70 and 20 representations of SU(6)cs,
any of these SU(6) representations containing an SU(3) colour octet and an SU(2)
spin doublet. When the flavour symmetry is broken this is no longer the case, and
HCM and the total colour-spin can no longer be simultaneously quantized.

Finally, it is interesting to remark that, if the three particles are identical, then
only the combination (χ2 - χ3) is allowed by the Pauli principle, as can be seen
hereafter. Indeed, the flavour sector for the three quarks must then be the sym-
metric 10 dimensional representation of SU(3)f , implying corresponding states to
belong to the completely antisymmetric 20 dimensional representation of SU(6)cs.
As explicited just above, such a configuration involves for the doublet (q1q2) the
15 of SU(6)cs and the product 15× 6 (see Eq. (11) ). But a direct Clebsch-Gordan
computation can show that the combination (χ2 - χ3) belongs exactly to the 20 of
SU(6)cs, while (χ2 + χ3) belongs to the 70 one. An indirect check of this result can
be obtained from the HCM matrix, which immediately reduces to a 2 × 2 matrix,
χ1 and χ4 being forbidden as already remarked

HCM = −
[

−4C 6C

6C −4C

]

. (12)

Diagonalizing HCM is immediate and provides the two eigenvalues 10C and
−2C corresponding to the eigenvectors (χ2 - χ3) and (χ2 + χ3), respectively. Now,
referring to our old computation of Ref. [16] where, in the symmetry-limit case, ex-
pectation values of HCM have been computed for the three-quark cluster Θf (c,s),
we recognize the H eigenvalue 10C for Θ10(8, 2) with Θ10 transforming under the
20 of SU(6)cs and −2C for Θ8(8, 2) with Θ8 transforming under the 70 of SU(6)cs

(appearing twice).

ii) The case |q1q2q3〉83/2
is simpler to study since there is no “spin mixing”, and

only the colour part of HCM is not trivial, that is

HCM = −
[

4

3
C12 − 5

3
(C13 + C23) −

√
3 (C13 − C23)

−
√

3 (C13 − C23) − 8

3
C12 + 1

3
(C13 + C23)

]

, (13)
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acting on the two-dimensional space spanned by χ1 and χ2.

3. The (qqq)cs clusters with colour c = 10 and c = 1.

These are examples in which the calculation of the colour-magnetic Hamiltonian
is very simple. For example, in order to form a colour decuplet, respectively a
colour singlet, of three quarks, any pair of quarks must be in a sextet, respectively
antitriplet, representation of SU(3)c. A direct computation gives for

∑

i,j λi · λj

the value

K6 = 4/3 (14)

for the sextet and

K
3

= −8/3 (15)

for the (anti)triplet.

When the total spin of the cluster is s = 1/2, then over the basis

π1 = |(q1q2)c′

1 〉 ⊗ |(q3)31/2〉c (16)

π2 = |(q1q2)c′

0 〉 ⊗ |(q3)31/2〉c ,

with c = 10 and c′ = 6 or c = 1 and c′ = 3, using the spin crossing matrix, one
finds

HCM = −Kc

[

C12 − 2(C13 + C23) −
√

3 (C13 − C23)

−
√

3 (C13 − C23) −3C12

]

, (17)

with K6 = 4/3 for the (qqq)10
1/2

cluster and K
3

= −8/3 for the usual baryons

(qqq)1
1/2

.

The Pauli principle forbids the state π2 (π1) if two quarks chosen as q1 and q2
have identical flavour and the cluster is a colour singlet (colour decuplet). If the
flavor is identical for all three quarks, then both π2 and π1 are forbidden.

If the total spin is s = 3/2, then there is only one state, i.e. πc
1, and HCM

reduces to :

HCM = −Kc(C12 + C23 + C13) . (18)

Three-quark clusters in colour decuplet belong to SU(3) flavour octets when
s = 1/2 and SU(3) flavour singlets when s = 3/2. Similarly, three-quark clusters
in colour singlet are naturally connected to flavour octets when s = 1/2 and to
flavour decuplets when s = 3/2.

In the flavour symmetry limit, one gets as HCM eigenvalues +4C (respectively
−4C) for (qqq)8

1/2
(respectively (qqq)8

3/2
) clusters, and −8C (respectively +8C) for

(qqq)1
1/2

(respectively (qqq)1
3/2

) clusters.
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4. The (qqq)3
s triquark

This type of triquark state, in the case s = 1/2, has recently been used [4] ,
together with a spin zero diquark state carrying colour 3̄, to make pentaquark states
of spin 1/2

+
when the triquark and diquark are separated by a L = 1 orbital angular

momentum. A detailed study of the flavour symmetry breaking has been already
performed in our paper [11]. Therefore, we will rapidly provide hereafter with the
colour-magnetic Hamiltonian matrix, spending however sometime discussing the
limiting cases. We consider first the case of total spin s = 1/2. The two quarks
q1 and q2 can be coupled to colour 3̄ or 6, to spin 0 or spin 1. Together with the
antiquark q̄3, spin and colour couplings are such that the cluster carries total colour
3 and spin 1/2. It follows that the space on which the Hamiltonian (Eq. (1)) acts
over is four dimensional and a natural basis is provided with the four states:

φ1 = |(q1q2)61〉 ⊗ |(q3)31/2〉 , (19)

φ2 = |(q1q2)31〉 ⊗ |(q3)31/2〉 ,

φ3 = |(q1q2)60〉 ⊗ |(q3)31/2〉 ,

φ4 = |(q1q2)30〉 ⊗ |(q3)31/2〉 .

For completeness, let us recall the following product decompositions of SU(3) rep-
resentations:

3 × 3 = 3 + 6 ; 3 × 3 = 3 + 6 ; 6 × 3 = 3 + 15 . (20)

The states φ1 and φ4 have two quarks which are coupled symmetrically in colour-
spin and are therefore belonging to the (6×6)S = 21-dimensional representation of
SU(6)cs, the states φ2 and φ3 are antisymmetric in colour-spin of the two quarks
and fall in the (6 × 6)A = 15-dimensional representation.

Note that if the two quarks are identical in flavour, the states φ1 and φ4 vanish
due to the Pauli principle.

The complete expression for the colour magnetic Hamiltonian HCM acting on

the 4-dim vector
−→
φ = (φ1, φ2, φ3, φ4) reads

HCM =

−

















4

3
C12+

20

3
(C13+C23) 4

√
2 (C13−C23)

10√
3

(C13−C23) 2
√

6 (C13+C23)

4
√

2 (C13−C23) − 8

3
C12+

8

3
(C13+C23) 2

√
6 (C13+C23)

4√
3

(C13−C23)

10√
3

(C13 − C23) 2
√

6 (C13 + C23) −4C12 0

2
√

6 (C13 + C23)
4√
3

(C13 − C23) 0 8C12

















.

(21)
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It is easily seen from this matrix that, if we impose flavour symmetry for the
two quarks (C12 = C23), we get a matrix operating over two invariant subspaces
{φ1, φ4} and {φ2, φ3}, respectively. If, in addition we impose full flavour symmetry
for the interaction and assume that the qq and qq̄ interactions are the same (so
that Cij = C), then we have the matrix

HCM = −C ·















44

3
0 0 4

√
6

0 8

3
4
√

6 0

0 4
√

6 −4 0

4
√

6 0 0 8















(22)

and we fall back on the old results [14, 18] where the eigenvalues of the colourmag-
netic interaction are - 21.88C and - 0.98C for the case when the two quarks are
coupled symmetrically in colour-spin. For antisymmetric colour spin the eigenvalues
are −9.68C and +11.02C.

In no case are the eigenvectors corresponding to sharp values of the total colour-
spin. They are mixtures of the 6- and 120-dimensional representations as well as of
the 6- and 84-representations of the colour spin SU(6)cs algebra when considering
the (qqq)3

1/2
system. Indeed, performing the product of SU(6) representations:

21 × 6 = 6 + 120 and 15 × 6 = 6 + 84 , (23)

and examining the corresponding SU(3) × SU(2) decompositions:

6 = (3 ,
1

2
) 120 = (3+15 ,

1

2
+

3

2
)+(6 ,

1

2
) 84 = (15 ,

1

2
)+(3+6 ,

1

2
+

3

2
) , (24)

one easily sees that both the 6- and 120-SU(6) representations contain a triplet of
colour and doublet of spin, and that is also the case for the couple of representations
6 and 84.

Moreover, if we decouple the antiquark (going to the heavy-quark limit or con-
sidering relative spatial wave functions that have no s-wave overlap) putting C13 =
C23 = 0, the effective Hamiltonian HCM is diagonal, with elements which are the
well known colour-magnetic energies for colour sextet and triplet diquarks.

As has been remarked before, if the two quarks are identical in flavour, the
matrix is 2 × 2 and the states φ1 and φ4 disappear.

In the flavour symmetry limit, the states φ1 and φ4, which have the two quarks in
the symmetric colour spin representation 21, are associated with the flavour SU(3)
representation f = 3, while the states φ2 and φ3 stand in the f = 6 representation
as the two quarks are in the antisymmetric representation of colour spin.

Note that the flavour content (qqq) is 3×3 = 3+6 for φ1 and φ4 and 6×3 = 3+15
for φ2 and φ3.
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When the triquark (qqq) is combined with the (most strongly bound) diquark
(qq) which has c = 3, s = 0 and flavour f = 3, the total (qqqqq) states containing
φ1 and φ4 will be in the flavour representation (3 + 6) × 3 = 1 + 8 + 8 + 10, while
the states containing φ3 and φ4 will be in the (3 + 15) × 3 = 1 + 8 + 8 + 10 + 27
flavour representations.

The representations 10 in the first group, and 27 in the second group, manifestly
contain exotics.

As we have seen, φ1 and φ4 will mix as well as φ2 and φ3 if there is colour-
magnetic interaction (Cqq /=0) between the antiquark and the quarks. When flavour
symmetry is broken, all states will generally mix; this corresponds to mixing of
states in different flavour representations.

If we use isospin symmetric u and d quarks, then C13 = C23 and some states
with different flavour symmetry will not mix. This is the case for all models of the
exotic Θ+ which is assumed to be (ud uds), and it will only belong to the f = 10
representation.

We conclude with the total spin 3/2 case. Then the matrix representation of
HCM is acting over the space

π1 = |(q1q2)61〉 ⊗ |(q3)31/2〉 ,

π2 = |(q1q2)31〉 ⊗ |(q3)31/2〉 ,

(25)

and reads

HCM = −
[

4

3
C12 − 10

3
(C13 + C23) −2

√
3 (C13 − C23)

−2
√

3 (C13 − C23) − 8

3
C12 − 4

3
(C13 + C23)

]

. (26)

5. The (qqq)6
s triquark

This is the second type of triquark (the first one being the colour octet one) to
which we devoted a special attention [16] for constructing possibly narrow multi-
quark baryons made of two clusters. In contrast with the previous case where the
cluster carries colour 3, we have here a system where there is no combination of
(qq) that are invariant under SU(3)c transformations. Evidently all (qq) must be
in colour octets in order to couple with a colour triplet and provide a colour 6.
This triquark (and the ones in the following sections) is therefore protected from
dissociation into a quark and a colour singlet meson.
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The space over which HCM acts is two dimensional, and as basic states we
choose

ψ1 = |(q1q2)31〉 ⊗ |(q3)31/2〉 ,

ψ2 = |(q1q2)30〉 ⊗ |(q3)31/2〉 .

(27)

It is understood here that colour = 6 and spin is 1/2 for the (qqq) system.

It should be noted that we have again chosen a basis where states are not
eigenstates for the total colour-spin and that the state ψ2 is not present if the two
quarks have identical flavour. For the state ψ1, colour-spin is a mixture of 6 and
84 (with flavour 3 and 15, respectively), while for the state ψ2, the colour-spin is a
mixture of 6 and 120 (with flavour 3 and 6).

Over this basis the Hamiltonian reads

HCM = −
[

− 8

3
C12 − 4

3
(C13 + C23) −2

√
3 (C13 − C23)

−2
√

3 (C13 − C23) 8C12

]

. (28)

In the flavour-symmetric case the Hamiltonian is diagonal.

When this triquark (qqq) is combined with the (most strongly bound) diquark
(qq) which has c = 6, s = 1 and flavour f = 3, the total (qqqqq) states containing
ψ1 stand in the flavour representation (3+15)×3 = 1+8+10+27, while the states
containing ψ2 stand in the (3 + 6) × 3 = 1 + 8 + 8 + 10 flavour representations.

We add that if the spin of this cluster is 3/2, the only state is

ψ3 = |(q1q2)31〉 ⊗ |(q3)31/2〉 .

It is a pure state in the 84 of SU6cs, and the eigenvalue of HCM is − 8

3
C12+ 2

3
(C13+

C23).

6. The (qqq)15
s “triquark”

For this last colour configuration, basis states for a total spin 1/2 cluster can
be chosen as follows:

µ1 = |(q1q2)61〉 ⊗ |(q3)31/2〉 ,

µ2 = |(q1q2)60〉 ⊗ |(q3)31/2〉 ,

leading to the Hamiltonian

HCM = −
[

4

3
(C12 − C13 − C23) −

√
3 (C13 − C23)

−
√

3 (C13 − C23) −4C12

]

. (29)
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Finally, if the total spin is 3/2, then only one state survives, and the corre-
sponding eigenvalue of HCM reads 4

3
C12 + 2

3
(C13 + C23).

7. Conclusion

We have presented a detailed computation of the colour-magnetic Hamiltonian
for s-wave triquark clusters in the case of flavour symmetry breaking. Such a study
appears to us of some importance at this time when the possible existence of exotics
hadrons is considered again. Indeed, the two main properties of such possible states
being their low masses and their narrow widths, a precise evaluation by the theory
of their masses becomes essential. Let us emphasize once more that the expressions
which are provided can be used also for the simple isospin breaking as for triquark
cluster containing simultaneously light and heavy quarks.

As we have noted before [11], it is awkward to explain the low mass of todays
experimental exotic pentaquark signals with colour-magnetic interactions only. But
whatever the dynamics can be, the colour-magnetic interaction must play a role.

One may wonder to what extent the above results could be used to easily de-
termine the expression of HCM with flavour symmetry breaking for clusters with
more than three quarks. Let us answer in part to this question by considering the
case of colour singlet, s-wave (qqqq) states: then, using a simple argument, one
can deduce that a simple substitution in the matrix HCM of Eq.(21) provides the
desired result.
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GROZDOVI OBOJENIH S-VALNIH KVARKOVA S LOMLJENJEM OKUSNE
SIMETRIJE

Proučavamo svojstva obojenih tročestičnih s-valnih kvarkovskih grozdova s lomlje-
njem okusne simetrije. Kratko se spominje važnost tih grozdova za pentakvarkovske
modele.
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