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The possibility of applying the quasiparticle Tamm-Dancoff approximation
(QTDA) to describe the nuclear double beta decay is explored. Several serious
inconveniences found in the quasiparticle random phase approximation (QRPA),
such as: i) the extreme sensitivity of the 2νββ decay amplitudes M2ν on the resid-
ual interaction in the particle-particle channel, ii) the ambiguity in treating the
intermediate states and iii) the need for performing a second charge-conserving
QRPA to describe the ββ-decays to the excited final states, are not present in the
QTDA. Also, the QTDA allows for explicit evaluation of energy distributions of
the double-charge-exchange transition strengths and of their sum rules, and can be
straightforwardly applied to single- and double-closed shell nuclei. As an example,
the 48Ca−→48Ti decay is discussed within the 1fp-shell in the particle-hole limit of
the QTDA. The general [(1, 1)-Padé-approximant-like] behavior of the 2νββ-decay
amplitude in the plain QRPA as well as within its different variations is briefly
reviewed.
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1. Introduction

It is a great pleasure and a great honor for me to contribute to this commemo-
rative issue in memory of Dubravko Tadić, who was one of my closest friends and
the best coworker I ever had. I miss him badly, as many people do! We cooperated
closely since 1966. First, we studied the single beta (β)-decay [1, 2, 3, 4], and in
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recent years we were basically involved in the double beta (ββ)-decay [5, 6, 7, 8],
and the nonmesonic weak decay of hypernuclei [9, 10, 11, 12, 13]. These topics
are nice examples of interrelation between particle and nuclear physics. In fact,
Dubravko Tadić took part in many important developments of the theory of weak
interactions, as well as in the advancement of particle and nuclear physics as a
whole. With the entanglement between birds and fishes in the Escher’s engraving,
shown in Fig. 1, I want to symbolize the close cooperation I had with Dubravko.
To tell the truth, I have done my first work in theoretical physics, entitled: On
the Induced Terms and Partial Conservation of the Axial Vector Current in Beta
Decay [1], under Dubravko’s guidance, and the line of research in our last common
work, entitled: Nuclear Structure in Nonmesonic Weak Decay of Hypernuclei [13],
has also been suggested by Dubravko. Therefore it is not difficult to figure out who
was the bird and who was the fish in our teamwork.

Fig. 1. Escher’s engraving where the entanglement between birds and fishes pictures
my joint work with Dubravko.∗

Among several topics on weak interactions that I have tackled with Dubravko, I
will limit the present discussion to a few features of the ββ-decay, from which we can
learn about the neutrino physics, provided we know how to deal with the nuclear
structure. This is a second-order weak process whose electromagnetic analogies are
the atomic Raman scattering and the nuclear γγ-decay [14].

In nature there are about 50 nuclear systems where the single β-decay is en-
ergetically forbidden, and the ββ-decay turns out to be the only possible mode of
disintegration. It is the nuclear pairing force which causes such an ”anomaly”, by
making the mass of the odd-odd isobar, (N − 1, Z + 1), to be greater than the
masses of its even-even neighbors, (N,Z) and (N,−2, Z + 2).

The modes by which the ββ-decay can take place are connected with the neu-

140 FIZIKA B 14 (2005) 2, 139–164
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trino (ν)-antineutrino (ν̃) distinction. If ν and ν̃ are defined by the transitions:

n −→ p + e− + ν̃ (1)

ν + n −→ p + e−,

the two-neutrino double beta (2νββ) decay (N,Z)
ββ−

−→ (N − 2, Z + 2) can occur
by two successive β decays:

(N,Z)
β−

→ (N − 1, Z + 1) + e− + ν̃

β−

→ (N − 2, Z + 2) + 2e− + 2ν̃, (2)

passing through the intermediate virtual states of the (N − 1, Z + 1) nucleus.

However, neutrino is the only fermion that lacks a conserved additive quantum
number to differentiate between ν and ν̃. Thus, it is possible for the neutrino to
be a Majorana particle (ν̃ = ν), i.e., equal to its own antiparticle1, à la π0. In this
case the neutrinoless ββ (0νββ) decay is also allowed:

(N,Z)
β−

→ (N − 1, Z + 1) + e− + ν̃ ≡ (N − 1, Z + 1) + e− + ν,

β−

→ (N − 2, Z + 2) + 2e−. (3)

In absence of helicity suppression (as would be natural before the parity violation
has been observed) this 0ν mode is favoured over the 2ν mode by a phase-space
factor of 107 − 109: T0ν ∼ (1013 − 1015) yr, while T2ν ∼ (1020 − 1024) yr.

By the early 1950’s several searches for the ββ decay were performed, inferring

that T2ν+0ν
>∼ 1017 yr. This pointed towards ν̃ /=ν, and prompted the introduction

of the lepton number L to distinguish ν from ν̃: L = +1 was attributed to e−

and ν and L = −1 to e+ and ν̃. The assumption on conserving the additive lepton
number allows the 2νββ decay but forbids the 0νββ one, for which ∆L = 2.

But in 1957, with the discovery of parity non-conservation in weak interactions,
the question of the Majorana/Dirac character for the neutrino was raised again.
That is, the neutrino was found to be left-handed (LH) and the antineutrino right-
handed (RH), and in place of (2) one now has:

n −→ p + e− + νRH, (4)

νLH + n −→ p + e−.

Consequently the second process in (3) is forbidden because the right-handed neu-
trino, emitted in the first step, has the wrong helicity to be reabsorbed in the second
step. For massless neutrinos, as was believed they were, there is no mixture of νLH

1A Dirac particle can be viewed as a combination of two Majorana particles with equal masses
and opposite CP properties, in which case their contributions to the 0νββ decay cancel.
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in νRH, and the 0νββ-decay cannot go through, regardless of Dirac or Majorana
nature of the neutrino. This event discouraged experimental work for a long time.

However, with the development of modern gauge theories, the state of affairs
began to change, and over the past decade the interest in the ββ-decay sprang up
again. There are many reasons for that. The most important one is the fact that
the 0νββ-decay plays a decisive role in shaping the ultimate theory in any new
physics beyond the standard SU(2)L × U(1) gauge model of electroweak interac-
tions. Moreover, no solid theoretical principle prevents neutrinos from having mass,
while the most attractive extensions of the standard model require neutrinos to be
massive. Nor does theory predict the scale of neutrino masses any better than it
can fix the masses of quarks and charged leptons.

Yet, once the neutrino becomes massive, the helicity is not a good quantum
number any more. Then, if the neutrino is in addition a Majorana particle with an
effective mass 〈mν〉, the mixture of νLH in νRH is proportional to 〈mν〉/Eν , and
0νββ-decay is allowed2. This fact inspired experimental searches in many nuclei,
not only for the 0νββ-decay but also for the 2ν-decay, since these two modes of
disintegration are related through the nuclear structure effects. In fact, their half-
lives cast in the form:

T−1
2ν = G2νM2

2ν , T−1
0ν = G0νM2

0ν〈mν〉2, (5)

where G′s are geometrical phase space factors, and M′s are nuclear matrix elements
(NME’s). M2ν and M0ν present many similar features to the extent that one can
say that we shall not understand the 0νββ-decay unless we understand the 2νββ-
decay.

I will limit the discussion here to the 2ν mode, but the whole presentation that
follows can be straightforwardly applied to the 0ν mode. With Dubravko we devel-
oped a full formulation of the 0νββ-decay, based on the Fourier-Bessel expansion of
the weak Hamiltonian, expressly adapted for nuclear structure calculations [7, 8].
We have also worked together on the “charged majoron models” [5, 6], so called
because the majoron carries the unbroken U(1) charge of the lepton number. These
models are probably the only ones that have a chance of producing the neutrinoless
ββ-decay that includes the emission of a massless majoron at a rate which could
be observed in the present generation of experiments.

At present, we have at our disposal beautiful data on several 2νββ-decays,
namely in the following nuclei: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te,
136Xe, 150Nd, 238U and 244Pu. The 2νββ-decay turned out to be one of the slowest
processes observed so far in nature and offers a unique opportunity for testing the

nuclear physics techniques for half-lives
>∼ 1020 yr. Disappointingly, as yet, after

many years of heroic efforts of many physicists, no evidence of the nonstandard
ββ-decay has appeared. A survey of experimental results is given in the review
article by Ejiri [15].

2For simplicity, we assume that weak interactions with right-handed currents do not play an
essential role in the neutrinoless decay.
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All we know is that the massive neutrinos can seesaw. In fact, the major ad-
vances in neutrino massiveness have been based so far on the compelling evidence
that favors the neutrino oscillations. They first came from atmospheric neutrino
flux measurements at SuperKamiokande (SK) [16], and the solar neutrino short-
ages at SAGE, Gallex, GNO [17], Kamiokande and SK [18]. However, only recently,
the solar SNO experiment [19], jointly with the reactor KamLAND (KL) experi-
ment [20], and the first long baseline accelerator K2K experiment [21], firmly fixed
the neutrino oscillations.

That is, we now know the neutrino mix, and we have initial values for their
mixing matrix elements. We know the number of light active neutrino species and
the differences between the squares of their masses. But we still don’t know two
crucial features of the neutrino physics, which are: a) the absolute mass scale, and
b) whether the neutrino is a Majorana or a Dirac particle. Only the 0νββ-decay
can provide this information, and this fact has motivated the undertaking of very
attractive next generation experiments for many different isotopes, including 48Ca,
76Ge, 100Mo, 116Cd, 130Te, 136Xe, 150Nd, and 160Gd [22, 23].

The interest in neutrinos goes beyond the study of their intrinsic properties, and
extends to a variety of topics in astro-nuclear physics, such as the understanding
of the energy production in our sun, the synthesis of heavy elements during the
r-process, the influence of neutrinos on the dynamics of a core-collapse supernova
explosion and the cooling of a proto-neutronstar. The neutrino physics even appears
in cosmological questions such as the role of neutrinos in the matter-antimatter
asymmetry in the universe.

The outline of this paper is as follows: In Sec. 2 we list a few general features of
the NME’s, which are necessary for understanding what follows. We discuss in Sec. 3
the general behavior of the ββ-decay amplitude within the charge-exchange QRPA,
and we record the matching refinements as well. We develop in Sec. 4 a simple
nuclear model for the ββ-decay, based on the well-known quasiparticle Tamm-

Dancoff approximation (QTDA). In Sec. 5 we do the analysis of the 48Ca
ββ−

−→ 48Ti
2ν-decay in the particle-hole limit of this model. A few final comments and remarks
are pointed out in Sec. 6.

2. 2νββ matrix element

Independently of the nuclear model used, and when only allowed transitions are
considered, the 2νββ matrix element for the |0+

f 〉 final state reads

M2ν(f) =
∑

λ=0,1

(−)λ
∑

α


 〈0+

f ||O
β−

λ ||λ+
α 〉〈λ+

α ||Oβ−

λ ||0+〉
Dλ+

α ,f


 ≡ MF

2ν(f) + MGT
2ν (f)

(6)
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where the summation goes over all intermediate virtual states |λ+
α 〉,

Oβ−

λ = (2λ + 1)−1/2
∑

pn

〈p||Oλ||n〉
(
c†pcn̄

)
λ

, with

{
O0 = 1 for F
O1 = σ for GT

(7)

are the Fermi (F) and Gamow-Teller (GT) operators for β−-decay, and c† (c) are the
particle creation (annihilation) operators. The corresponding β+-decay operators

are Oβ+

λ =
(
Oβ−

λ

)†

, and

Dλ+
α ,f = Eλ+

α
−

E0 + E0
+

f

2
= Eλ+

α
− E0 −

E0
+

f
− E0

2
, (8)

is the energy denominator. E0 and E0
+

f
are, respectively, the energy of the initial

state |0+〉 and of the final states |0+
f 〉.

Contributions from the first-forbidden operators, which appear in the multipole
expansion of the weak Hamiltonian, as well as those from the weak-magnetism term
and other second order corrections on the allowed 2νββ-decay are not relevant for
the present work and will not been tackled here. In recent years, we have examined
all of them rather thoroughly [24, 8].

In nuclear physics, the isospin symmetry is conserved to a great extent, while
the Wigner SU(4) symmetry is not. Because of this, the amplitude MF

2ν is often
neglected in the literature. Nevertheless, one should keep in mind that, while the
mean field strongly breaks the isospin symmetry, the residual force restores it almost
fully. Therefore, although in many cases the final value of MF

2ν is small, it is
recommendable to keep track of this NME during calculation so as to test the
consistence of the nuclear model, as well as to fix its coupling constants.

The energy distributions of the transition strengths |〈λ+
α ||Oβ±

λ ||0+〉|2 link the
single β±-decays to the single charge-exchange reactions, such as (p, n), (n, p),
etc. [15, 25, 26, 27, 28, 29]. The total β± strengths

Sβ±

λ = (2λ + 1)−1
∑

α

|〈λ+
α ||Oβ±

λ ||0+〉|2, (9)

can be expressed in the form

Sβ±

λ = 〈0+|Oβ∓

λ · Oβ±

λ |0+〉 ≡ (−)λ(2λ + 1)−1〈0+|[Oβ∓

λ Oβ±

λ ]0|0+〉, (10)

when |λ+
α 〉 is a complete set of excited states that can be reached by acting with

Oβ∓

λ on the initial state |0+〉. It follows at once that

Sβ
λ ≡ Sβ−

λ − Sβ+

λ = (−)λ(2λ + 1)−1〈0+|[Oβ+

λ ,Oβ−

λ ]0|0+〉 = N − Z, (11)
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which is the well-known single-charge-exchange sum rule, also called Ikeda sum rule
(ISR) [25], for both the F and the GT transitions.

Similarly, the ββ-decays are closely related to the double-charge-exchange reac-
tions, and to the spectral distribution of their strengths,

Sββ±

λ (f) = (2λ + 1)−1|
∑

α

〈0+
f ||O

β±

λ ||λ+
α 〉〈λ+

α ||Oβ±

λ |0+〉|2, (12)

over the final states |0+
f 〉. The total strengths are defined as:

Sββ±

λ =
∑

f

Sββ±

λ (f) = (2λ + 1)−1
∑

f

|〈0+
f |O

β±

λ · Oβ±

λ |0+〉|2 (13)

and can be rewritten in the form

Sββ±

λ = (2λ + 1)−1〈0+|Oβ∓

λ · Oβ∓

λ Oβ±

λ · Oβ±

λ |0+〉, (14)

The double-charge-exchange sum rules (DSR) are:

Sββ
λ = Sββ−

λ − Sββ+

λ = (2λ + 1)−1〈0+|[Oβ+

λ · Oβ+

λ ,Oβ−

λ · Oβ−

λ ]|0+〉, (15)

which when evaluated give [30, 31]:

Sββ
F ≡ Sββ

0 = 2(N − Z)(N − Z − 1), (16)

and

Sββ
GT ≡ Sββ

1 = 2(N − Z)
(
N − Z − 1 + 2Sβ+

1

)
− 2

3
C, (17)

where C is a relatively small quantity and is given by [31, (5)].

3. Charge-exchange quasiparticle random phase
approximation and beyond

The ββ decays occur in medium-mass nuclei that are often far from closed shells,
and, as a consequence, most of the recent attempts to evaluate M2ν and M0ν rely
on the neutron-proton QRPA, because this model is much simpler computation-
ally than the shell model (SM). Note that the kind of correlations that these two
methods include are not the same. The QRPA deals with a large fraction of nu-
cleons in a large single-particle space, but within a modest configuration space.
The shell model, by contrast, deals with a small fraction of nucleons in a limited
single-particle space, but allows them to correlate in arbitrary ways within a large
configuration space.
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The charge-exchange QRPA has been first formulated, and applied to the al-
lowed β-decay and to the collective GT resonance, by Halbleib and Sorensen in
1967 [32]. However, intensive implementations of QRPA to ββ-decay began only
about 20 years later when Vogel and Zirnbauer [33] discovered that the ground
state correlations (GSC) play an essential role in suppressing the 2νββ rates. Soon
afterwards, Civitarese, Faessler and Tomoda [34] arrived to the same conclusion.
Almost simultaneously, Tomoda and Faessler [35], and Engel, Vogel and Zirnbauer
[36] revealed a similar though smaller effect on the 0νββ decay.

When applied to the ββ-decay, the following two steps are performed within
the standard QRPA:

1) Two charge-exchange QRPA equations are solved for the intermediate 1+

states; one for the initial nucleus (N,Z) and one for the final nucleus (N −
2, Z + 2). The first one,(

A B
B A

)(
X
Y

)
= ωα

(
X
−Y

)
, (18)

is evaluated in the BCS vacuum

|0+〉 =
∏

p

(up + vpc
†
pc

†
p̄)

∏

n

(un + vnc†nc†n̄)|〉, (19)

where |〉 stands for the particle vacuum. Equation (18) describes simulta-
neously four nuclei: (N − 1, Z − 1), (N + 1, Z − 1), (N − 1, Z + 1) and

(N + 1, Z + 1). The matrix elements of the operators Oβ±

1 are:

〈1+
α ||Oβ−

1 ||0+〉 =
∑

pn

[
Λ0

+(pn)Xpn;1
+
α

+ Λ0
−(pn)Ypn;1

+
α

]
,

〈1+
α ||Oβ+

1 ||0+〉 =
∑

pn

[
Λ0
−(pn)Xpn;1

+
α

+ Λ0
+(pn)Ypn;1

+
α

]
, (20)

where
Λ0

+(pn) = upvn〈p||O1||n〉,

Λ0
−(pn) = vpun〈p||O1||n〉, (21)

are the unperturbed strengths. The ISR reads

Sβ
GT =

1

3

∑

α

[
|〈1+

α ||Oβ−

1 ||0+〉|2 − |〈1+
α ||Oβ+

1 ||0+〉|2
]

= N − Z. (22)

In the same way, the second QRPA does not deal with the (N − 1, Z + 1)
nucleus only, but entangles as well the isotopes (N −1, Z +3), (N −3, Z +1)
and (N − 3, Z + 3). The corresponding ISR is

S
β

GT =
1

3

∑

α

[
|〈1+

α ||Oβ−

1 ||0+〉|2 − |〈1+

α ||Oβ+

1 ||0+〉|2
]

= N − Z = N − Z − 4,

(23)
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krmpotić: a novel nuclear model for double beta decay

where the barred kets (|0+〉, |1+

α 〉) indicate that the quasiparticles are defined
with respect to the final nucleus.

2) Equation (6) is substituted by one of the following two ansatzes

• Method M1 (proposed by Vogel and Zirnbauer [33, 36]):

M2ν =
1

2

∑

α

[
〈1+

α ||Oβ+

1 ||0+〉〈1+
α ||Oβ−

1 ||0+〉
ω1

+
α

+
〈1+

α ||Oβ+

1 ||0+〉〈1+

α ||Oβ−

1 ||0+〉
ω

1
+

α

]
,

(24)

• Method M2 (introduced by Civitarese, Faessler and Tomoda [34, 35]):

M2ν = 2
∑

αα′

〈1+

α′ ||Oβ+

1 ||0+〉〈1+

α′ |1+
α 〉〈1+

α ||Oβ−

1 ||0+〉
ω1

+
α

+ ω
1
+

α′

, (25)

where the overlap in (21) is evaluated as:

〈1+

α′ |1+
α 〉 =

∑

pn

[
Xpn;1

+
α
X

pn;1
+

α′
− Ypn;1

+
α
Y

pn;1
+

α′

]
. (26)

Note that the last two equations for M2ν , (24) and (25), cannot be derived
mathematically, and that they are just recipes which make the applications of the
QRPA to the ββ-decay possible. Moreover, in many applications of the method
M1, the energy denominator (ω1

+
α

+ ω
1
+

α′
)/2 in (21) is simply taken to be equal to

ω1
+
α
. The GSC in 〈1+

α ||Oβ−

1 ||0+〉 and 〈1+

α′ ||Oβ+

1 ||0+〉 are also different, matching,

respectively, transitions (N,Z)
β+

→ (N + 1, Z − 1) and (N − 2, Z + 2)
β−

→ (N −
3, Z + 3).

When compared to the SM, the QRPA presents the following drawbacks:

I) There is ambiguity in treating the intermediate states, and further develop-
ments must be made to match the excited states of the odd-odd nuclei based
on different ground states of the initial and final even-even nuclei, as in Eqs.
(24) and (25).

II) The QRPA ββ-decay amplitudes are extremely sensitive to the PN interaction
in the particle-particle (pp) channel, or more precisely to the ratio between
the S = 1 and S = 0 forces [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].3 Even
worse, the model collapses as a whole in the physical region of t or gpp.

3For a δ force, this ratio is t = vpp

t
/vpp

s . Usually is introduced in an ad hoc parameter, denoted
by gpp.
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III) The QRPA is only capable to account for the ββ-decay into the ground state
|0+

1 〉 of the final nucleus, while to deal with final excited states it is neces-
sary to recur to another nuclear model. Usually, one solves an extra charge-
conserving QRPA equation of motion for the 2+-excitations on the final BCS
vacuum, and one assumes the final states |2+

1 〉 and |0+
2 〉 to be the one-phonon

quadrupole vibration, and a member of the two-phonon quadrupole vibra-
tional triplet, respectively [45, 46, 47, 48, 49].

IV) In the QRPA, we cannot evaluate the energy distributions of the double
charge-exchange transition strengths, given by Eq. (12).

There have been many tries to avoid the collapse in the QRPA, so its sensitivity
to the phenomenological parameters would become more realistic. A first step in
this direction has been done in Ref. [37], shortly after the finding of Vogel and
Zirnbauer [33], by working out a two-vacua QRPA (TVQRPA) specially tailored
for the ββ-decay. We called it so because one solves the QRPA equation of motion
on the quasiparticle vacuum

|0̃+〉 =
∏

p

(up + v̄pc
†
pc

†
p̄)

∏

n

(ūn + vnc†nc†n̄)|〉, (27)

which involves the vacua of both the initial (u, v) and final (ū, v̄) nuclei.

The forward (Ã) and the backward (B̃) going matrix elements are given by

Ã(pn, p′n′;J) = (ǫ̃p + ǫ̃n)δpn,p′n′

+
√

ρpρnρp′ρn′ [(upvnup′vn′ + v̄pūnv̄p′ ūn′)F(pn, p′n′;J)

+ (upūnup′ ūn′ + v̄pvnv̄p′vn′)G(pn, p′n′;J)], (28)

and

B̃(pn, p′n′;J) =
√

ρpρnρp′ρn′ [(v̄pūnup′vn′ + upvnv̄p′ ūn′)F(pn, p′n′;J)

− (upūnv̄p′vn′ + v̄pvnup′ ūn′)G(pn, p′n′;J)] . (29)

The quasiparticle energies are:

ǫ̃p =
∆̃p

2upv̄pρp
, ǫ̃n =

∆̃n

2unv̄nρn
, (30)

with the pairing gaps given by

∆̃p = −1

2

∑

p′

√
2jp′ + 1

2jp + 1
up′ v̄p′ρp′G(pp, p′p′; 0),

∆̃n = −1

2

∑

n′

√
2jn′ + 1

2jn + 1
un′ v̄n′ρn′G(nn, n′n′; 0). (31)
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The factors ρp and ρn are defined as ρ−1
p = u2

p + v̄2
p, ρ−1

n = ū2
n + v2

n, while the
remaining notations have standard meanings [29, 39].

The M2ν amplitude reads

M2ν =
∑

α

〈1̃+
α ||Oβ+

1 ||0̃+〉〈1̃+
α ||Oβ−

1 ||0̃+〉
ω̃1

+
α

(32)

where

〈1̃+
α ||Oβ−

1 ||0̃+〉 =
∑

pn

[
Λ̃0

+(pn)X̃pn;1
+
α

+ Λ̃0
−(pn)Ỹpn;1

+
α

]
,

〈1̃+
α ||Oβ+

1 ||0̃+〉 =
∑

pn

[
Λ̃0
−(pn)X̃pn;1

+
α

+ Λ̃0
+(pn)Ỹpn;1

+
α

]
, (33)

are, respectively, the perturbed β− and β+ matrix elements, and

Λ̃0
+(pn) =

√
ρpρnupvn〈p||O1||n〉,

Λ̃0
−(pn) =

√
ρpρnv̄pūn〈p||O1||n〉, (34)

are the unperturbed ones. The ISR is now

S̃β
GT =

1

3

∑

α

[
|〈1̃+

α ||Oβ−

1 ||0̃+〉|2 − |〈1̃+
α ||Oβ+

1 ||0̃+〉|2
]
∼= N − Z − 2. (35)

Now and then the gap equations are solved for the intermediate nucleus in which
case the ISR gives exactly N − Z − 2 [52, 6, 8].

In Fig. 2 we exhibit the graphical representation of the matrix elements that
appear in (32). The TVQRPA involves only the virtual (N − 1, Z + 1)-states,

x+
p n p n

V

β−
n’

β− n
p’n’

p n+
β++

V

β
p’

p

Fig. 2. Graphical representation of the numerator in (6) within the QRPA. The

first and second terms match, respectively, to 〈1̃+
α ||Oβ+

1 ||0̃+〉 and 〈1̃+
α ||Oβ−

1 ||0̃+〉,
given by (33). The vertices β± stand for Λ̃0

±(pn), while the residual interaction
brings about the ground-state correlations in the vertex V .
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being the backward-going contributions for the β−-transitions, the forward-going
contributions for the β+-transitions, and vice versa.

Based on a numerical comparison, we have found that the behavior of 2ν transi-
tion amplitude in the TVQRPA, with regard to the pp coupling, is quite similar to
that previously noticed in the QRPA [29]. Since no uncertainties are present when
intermediate states are treated in the TVQRPA, this result can, in some ways, be
interpreted as a justification for the averaging procedure performed in Eqs. (24)
and (25).

It could also be worth noting that in the TVQRPA we can express the amplitude
M2ν in the form:

M2ν =
1

2

(
Λ̃0

+, Λ̃0
−

) (
Ã B̃

−B̃ −Ã

)−1 (
Λ̃0

+

−Λ̃0
−

)
, (36)

and can therefore calculate the transition probability without first solving the
QRPA equation.

We found the last equation to be especially useful for discussing the ββ-decay
rates within the single-mode-model (SMM) [39, 40, 43], which deals with only one
intermediate state for each Jπ and is the simplest version of the QRPA. Within the
SMM, one can express the moment M2ν à la Alaga [44],

M2ν = geff
2νM0

2ν , (37)

i.e., as the unperturbed BCS matrix element

M0
2ν = upvnūnv̄pρpρn

〈p||O1||n〉2
ω0

, (38)

multiplied by an effective charge:

geff
2ν =

(
ω0

ω1+

)2 [
1 +

G(pn, pn; 1+)

ω0

]
, (39)

where

ω0 = −1

4

[
G(pp, pp; 0+) + G(nn, nn; 0+)

]
, (40)

is the unperturbed pairing energy between protons and neutrons. geff
2ν comes from

the QRPA correlations, or more precisely from the interference between the forward
and backward going contributions, which add coherently in the pp channel and
totally out of phase in the ph channel.

Still more, as the QRPA energy ω1+ is in essence a linear function of G(1+)/ω0,
we can state that, because of the GSC, the effective QRPA charge geff

2ν is mainly a
bilinear function of G(1+)/ω0, or equivalently of t [40, 42], i.e.,

geff
2ν ∼ 1 − t/t0

1 − t/t1
, (41)
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That is, M2ν passes through zero at t = t0 where G(1+) = −ω0, and has a pole at
t = t0 where ω1+ = 0.

The fact that in many situations the SMM reproduces quite well the complete
QRPA calculations made us suspect that the behavior of M2ν with regard to t
could always follow a (1, 1)-Padé approximant of the form (41). Thus, we have
suggested that, independently of the nuclear Hamiltonian and/or the configuration
space employed in the QRPA calculation, the 2ν amplitude should unavoidably
behave as [40]

M2ν = M2ν(t = 0)
1 − t/t0
1 − t/t1

. (42)

At variance with the bare BCS value M0
2ν given by (38), the matrix element

M2ν(t = 0) also contains the ph-like correlations. We have tested the relation (42)
only for a zero-range force [40], but as far as I know there is no QRPA calculation
in the literature that could be in conflict with this result1.

One can also guess that the breakdown in the QRPA comes from the violation
of the particle-number symmetry, caused by the BCS approximation. Therefore
with the hope of getting out of this inconvenience, we have worked out a particle
number projected QRPA (PQRPA) for the charge-exchange excitations starting
from the time-dependent variational principle [41]. However, after performing nu-
merical calculations for the 2νββ-decay in 76Ge, we found that in this model the
M2ν amplitude continues to behave roughly as in the plain QRPA. Said in another
way, the number projection procedure is not able to avoid the collapse.

The variation of the QRPA that has received major attention lately is the so-
called renormalized QRPA (RQRPA) [50, 51, 53, 52, 54, 55, 56, 57]. The new
ingredient brought up by this model is the effect of the GSC in the QRPA equation
of motion itself. The important outcome of this is that the QRPA collapse does not
develop anymore in the physical region of the pp-strength parameter. Yet, this new
procedure to incorporate the GSC tones down only slightly the strong dependence
of the 2νββ transition amplitude on this parameter.

On the other hand, we soon found [51] that the price one has to pay in the
RQRPA to avoid the collapse was the non-conservation of the ISR, given by Eq.
(11). This violation is about 20−30% and we cannot get away from it. It comes from
the fact that the scattering part of the GT operator, when acting on the RQRPA
ground state, creates states that are not contained in the model space. These
terms have recently been considered in the framework of the “Fully Renormalized
QRPA” (FR-QRPA) [58], whereby the ISR was successfully restored. Yet, within
the FR-QRPA, the 2νββ amplitude behaves similarly as in the ordinary QRPA.
Namely, in this model M2ν passes through zero and develops a pole for values of
the pp-strength parameter which are only slightly higher than those in the QRPA
model.

Let us also remember that only the self-consistent QRPA (SCQRPA) theory

1When the renormalization coupling constant gpp is used [34] a similar expression to the Eq.
(39) is valid (with gpp’s for t’s).
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[59, 60, 61, 62] incorporates fully the GSC, leading simultaneously to a coupling
of the single-particle field to the QRPA excitations. We performed [61] a detailed
comparison of the properties of the QRPA, RQRPA and SCQRPA equations in the
O(5) model for the F excitations, inferring that: i) before the QRPA collapses all
three approaches reproduce well correct results, ii) near the transition point only
the SCQRPA values are close to the exact ones, and iii) beyond that point both the
SCQRPA and RQRPA yield values different from the exact ones, but the former
are somewhat better. One can suspect that in realistic cases this condition prevails
and, to some extent, even for the GT transitions. Such a possibility has not been
explored so far. It should also be mentioned that what some authors [63] refer to
as self-consistent QRPA is just the RQRPA with the introduction of some minor
changes, given by Eqs. (34), (40) and (45) in Ref. [52].4

We arrive therefore to the conclusion that not one of the amendments of the
QRPA, proposed so far to rescue this nuclear model, was able to change qualita-
tively the behavior of the amplitude M2ν , given by (39), unless we agree to tolerate
the violation of the ISR, which could be extremely dangerous as we have no control
on how it affects the definite value of M2ν . Moreover, neither the RQRPA nor the
SCQRPA are able to evade the other three unfavorable QRPA outcomes that we
have pointed out at the beginning of this section. Thus, within this QRPA sce-
nario, instead of introducing further improvements and variations into the QRPA
equation of motion, it would perhaps be a good idea “to shuffle the cards and deal
again”, i.e., to try to work out a different quenching mechanism for the NME’s. In
the next two sections we explore that possibility.

4. Quasiparticle Tamm-Dancoff approximation (QTDA)

Here we sketch a simple nuclear model for evaluating the ββ-decay rates, based
on the well-known QTDA [65, 66]. It will become clear immediately that the main
difference in comparison to the QRPA comes from how one describes the final
(N − 2, Z + 2) nucleus.

Same as in the QRPA, we conveniently express the total Hamiltonian as

H = Hp + Hn + Hpn + Hpp + Hnn ≡ H0 + Hres, (43)

where Hp and Hn are the effective proton and neutron single-quasiparticle Hamil-
tonians (with eigenvalues ǫp and ǫn), while Hpn, Hpp, and Hnn are the matching
effective two-quasiparticle interaction Hamiltonians among the valence quasiparti-
cles.

We assume both i) that the initial state is the BCS vacuum in the (N,Z) nucleus,
and ii) that the intermediate and final nuclear states involved in the ββ-decay are,
respectively, two- and four-quasiparticle excitations on this vacuum. That is:

• initial state: |0+〉 = |BCS〉,
4See also comments with regard to this in Ref. [64].
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• intermediate states:

|λ+
α 〉 =

∑

pn

Xpn;λ+
α
|pn;λ+〉, (44)

with

|pn;λ+〉 = [a†
pa

†
n]λ+ |BCS〉, (45)

• final states:

|0+
f 〉 =

∑

p1p2n1n2J

Yp1p2n1n2J;0
+

f
|p1p2, n1n2;J〉, (46)

with

|p1p2, n1n2;J〉 = N(p1p2)N(n1n2){[a†
p1

a†
p2

]J [a†
n1

a†
n2

]J}0|BCS〉, (47)

and

N(ab) = (1 + δab)
−1/2. (48)

Here a† (a) is the quasiparticle creation (annihilation) operator relative to
the BCS vacuo.

V

−

β−

β

n

n

p

1
p

2

1

2

Fig. 3. Graphical representation of
M2ν in the QTDA. The first and the
second vertex match with matrix ele-
ments (49) and (50), respectively, while
the third vertex represents the residual
interaction in the final state.

One can read the matrix elements of Hpn between the intermediate states |pn;λ+〉
and the final states |p1p2, n1n2;J〉, respectively from [66, (4.9) and (4.5)], and those
of Hpp and Hnn between the same final states from [65, (2.11)]. We show explicit
QTDA results only for the one-body matrix elements that appear in (6), and which
are represented graphically in Fig. 3. They are:

〈λ+
α ||Oβ−

λ ||0+〉 =
∑

pn

Λ0
+(pn;λ)Xpn;λ+

α
, (49)

and

〈0+
f ||O

β−

λ ||λ+
α 〉 = −

∑

pn

Xpn;λ+
α

∑

p1p2n1n2J

Yp1p2n1n2J;0
+

f
N(p1p2)N(n1n2)P̄ (p1p2J)
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×P̄ (n1n2J)
√

2J + 1(−)n1+p2+J+λ

{
p1 n1 λ
p n J

}
Λ0

+(p1n1;λ)δp2pδn2n, (50)

where

P̄ (p1p2J) = 1 − (−)p1+p2+JP (p1 ↔ p2), (51)

is the well known permutation operator. The energies in the denominator (6) are

Eλ+
α

= E0 + ωλ+
α

+ λp − λn,

E0
+

f
= E0 + ω0

+

f
+ 2λp − 2λn, (52)

where ωλ+
α

and ω0
+

f
are the eigenvalues of the Hamiltonian (43) for intermediate

states |λ+
α 〉 and final states |0+

f 〉, respectively, and λp and λn are the chemical
potentials. Therefore

Dλ+
α ,f = ωλ+

α
−

ω0
+

f

2
. (53)

The QTDA has the correct particle-hole (shell model) limit, vp −→ 0, vn −→ 1.
Therefore, one can straightforwardly apply this model to the single- and double-
closed shell nuclei. In the next section we discuss an example.

5. 2νββ-decay 48
Ca → 48

Ti

There are two recent experimental results for the 2νββ-decay half-life to the 0+
1

state that nicely agree with each other. They are:

Ref. [67] : T2ν =
(
4.3+2.4

−1.1[stat] ± 1.4[syst]
)
× 1019 yr,

Ref. [68] : T2ν =
(
4.2+3.3

−1.3

)
× 1019 yr, (54)

which, from (5) and the kinematical factor [42],

G2ν = 42.3 × 10−19
[

yr(MeV)
2
]−1

, (55)

yield:

Ref. [67] : |M2ν | =
(
0.074+0.040

−0.020

)
[MeV]−1,

Ref. [68] : |M2ν | =
(
0.075+0.015

−0.019

)
[MeV]−1. (56)

One should keep in mind that the experimental values for |M2ν | in (56) depend,
through the value of G2ν , on the value used for the effective axial-vector coupling
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constant gA. In the present work we use gA = 1. Clearly, for the bare value gA =
1.26, the phenomenological NME’s decrease by the factor (1.26)2.

There is also a very interesting high-resolution charge-exchange reaction exper-
iment [69], where M2ν for the ground state in 48Ti was built from energy spectra
of the 48Ca (p, n)48Sc and 48Ti(d,2He)48Sc reactions, by converting the (p,n) and

(d,2He) cross sections into moments 〈0+
1 ||Oβ−

1 ||1+
α 〉 and 〈1+

α ||Oβ−

1 ||0+〉 which con-
tribute in (6). In performing the summation over α, five experimentally observed
states below 5 MeV have been considered, under the assumption that all matrix
elements are positive. In this way, Rakers et al. [69] get:

Ref. [69] : |M2ν |E≤5 MeV = (0.0740 ± 0.0150) [MeV]−1. (57)

One should note that the latter result does not depend on the value used for gA,
and that although (56) and (57) agree numerically, they are physically different.

Previously, jointly with Dubravko, we had already studied the ββ decay in 48Ca,
but only for the single particle state 1f7/2 [8]. Here we consider the complete pf
particle-hole space. Of course, this configuration space is still strongly limited when
compared to those of the SM within the pf single-particle space [70, 71, 72]. Thus,
obviously, SM yields a more realistic description of the ββ-decay [67, 68] and of the
related charge-exchange reactions [69] than the present model. Our only purpose
here is to explain the way the QTDA quenching-mechanism works.

Choosing suitable effective single-particle energies (SPE) is, as always, a delicate
issue in nuclear structure calculations. We will take them to be:

ǫjn
= ǫ0jn

+ µjn
,

ǫjp
= ǫ0jn

+ µjp
+ ∆C , (58)

where ǫ0jn
are experimental SPE for 40Ca, extracted from Fig. 2 in Ref. [73], namely:

ǫ0f7/2
= 0, ǫ0f5/2

= 6.5, ǫ0p3/2
= 2.1, and ǫ0p1/2

= 4.1, in units of MeV. The self-energies

µjn
and µjp

account for 8 neutrons in the f7/2 shell, and are defined in Ref. [52].

∆C is the Coulomb displacement energy in 48Ca. With SPE chosen in this way, the
energy of the isobaric analog state (IAS) is always equal to ∆C , as it should be.

We will use the δ-force

V = −4π(vsPs + vtPt)δ(r) MeV-fm3, (59)

both for evaluating the self-energies in (58) and for calculating the residual inter-
action. Besides, for the purpose of simplifying the discussion, we will assume the
coupling strengths vs and vt to be equal for identical and for different particles.

Let us first comment the unperturbed results, i.e., when vs = vt = 0. In this

case, all double F ββ-strength, Sββ
F ≡ Sββ−

F = 124, concentrates in the lowest lying

degenerate states |f2
7/2

, f2
7/2

;J = 0, 2, 4, 6〉, in parts of Sββ−

F (J) = 4(2J + 1). These

are the double IAS’s (DIAS’s) and are at energy 2∆C = 12.78 MeV, measured
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from the 48Ca ground-state, which was taken to be E0 = 0. Contrarily, we found in

these states only 12% of the total double GT intensity, Sββ
GT ≡ Sββ−

GT = 125.71, being
equal to: 2.20, 7.22, 2.64 and 3.18 for J = 0, 2, 4 and 6, respectively. The major part
of the double GT strength concentrates at levels |f2

7/2
, f7/2f5/2;J = 2, 4, 6〉 (55%)

and |f2
7/2

, f2
5/2

;J = 0, 2, 4〉 (33%), which, as seen from Fig. 4 lie, respectively, at

energies 2∆C+ǫ0f5/2
and 2∆C+2ǫ0f5/2

. For the lowest final 0+ state, the unperturbed

denominators (52) are all null, which makes both NME’s, MF
2ν and MGT

2ν , to
become ∞. The scene changes radically when the residual interaction is switched
on. First, as we show in Fig. 5, there is a great variety of physically sound values
for vs and vt that allow the model to account for the phenomenological NME’s (56)
and (57). In other words, same as the QRPA, the QTDA is capable of restoring
the Wigner SU(4) symmetry, quenching in this way the NME’s. This is precisely
the mechanism we have been searching for.
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Fig. 4 (left). Graphical representation of energy dependence of the double GT

strengths Sββ
GT , measured from the 48Ca ground state. The coupling constant values

in the perturbed calculations were vs = 35, vt = 65 for case (a), and vs = 40, vt = 60
for case (b).

Fig. 5 (right). Graphical representation of the ββ amplitudes MGT
2ν in the QTDA

as a function of coupling constants vs and vt.

Just for the sake of illustration, we use here two sets of coupling constants: (a)
vs = 35, vt = 65, and (b) vs = 40, vt = 60, which reproduce reasonably well the
energy levels of 48Sc shown in Fig. 6, and are close to values used in our previous

works [42, 52, 29, 8] within the PN ph channel (vph
s = 27 and vph

t = 64). Note
first that, as 〈f7/2, f5/2; 1

+|Hpn|f7/2, f7/2; 1
+〉 ∼ (vs + vt), the wave function for

the GTR is the same in both cases:

|GTR〉 = 0.972|f7/2, f5/2; 1
+〉 − 0.237|f7/2, f7/2; 1

+〉. (60)

The residual interaction acts differently on double F and on GT transition strengths.
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In the first case, all intensity remains concentrated at the energy 2∆C , indepen-
dently of the values of vs and vt, but now there is only one DIAS. Its wave function
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Fig. 6. Comparison between the experimental and theoretical energy levels of 48Sc
for the cases (a) vs = 35, vt = 65, and (b) vs = 40, vt = 60. We also display the
shell-model results from Ref. [71].

is a coherent superposition of the states |f2
7/2

, f2
7/2

;J = 0, 2, 4, 6〉, i.e.,

|DIAS〉 =
∑

J

√
2J + 1∑
J(2J + 1)

|f2
7/2, f

2
7/2;J〉. (61)

In the second case, the double GT resonance (DGTR), placed at an energy that
is only slightly lower than 2∆C + ǫ0f5/2

, carries a large part of the strength. That

is: Sββ−

GT (DGTR)= 72.87 in case (a) and = 72.61 in case (b). The DGTR wave
function is:

|DGTR〉 =
0.405
0.371

}
|f27/2, f

2
5/2; 0〉+

0.683
0.683

}
|f27/2, f

2
5/2; 2〉+

0.505
0.533

}
|f27/2, f

2
5/2; 4〉+ · · · .

(62)
The remaining double GT strength mainly comes from the states |f2

7/2
, f7/2f5/2;J =

2, 4, 6〉, and in both cases concentrates almost fully at the energy of ∼ 10−11 MeV.
The unperturbed and perturbed double GT strengths are confronted in Fig. 4. The
calculated wave function for the ground state in 48Ti is

|0+
1 〉 =

0.922
0.922

}
|f2

7/2, f
2
7/2; 0〉 −

0.250
0.226

}
|f2

7/2, f
2
7/2; 2〉 −

0.095
0.093

}
|f2

7/2, f
2
7/2; 4〉
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+
0.189
0.211

}
|f2

7/2, f
2
5/2; 0〉 +

0.119
0.138

}
|f2

7/2, p
2
3/2; 0〉 + · · · . (63)

It appears at the energy E0
+

1

= −4.41 MeV in case (a) and at −3.95 MeV in

case (b), which compares favorably with the measured value Qββ− = 4.27 MeV
[67, 68, 69].

TABLE 1. Decomposition of the total GT matrix elements. The denominators
D1

+
α ,1 are given in units of MeV, and the moments MGT

2ν in units of (MeV)−1.

α 〈1+
α ||Oβ−

1 ||0+〉 〈0+
f ||O

β−

1 ||1+
α 〉 〈1+

α ||Oβ−

1 ||0+〉 · 〈0+
f ||O

β−

1 ||1+
α 〉 D1

+
α ,1 MGT

2ν

case (a): vs = 35, vt = 65

1 2.240 0.088 0.198 3.40 0.058

2 −4.357 0.041 −0.176 11.32 −0.016

total 0.042

case (b): vs = 40, vt = 60

1 2.240 0.142 0.318 4.01 0.079

2 −4.357 0.002 0.010 11.91 0.001

total 0.080

The way in which MGT
2ν (0+

1 ) are constructed from individual transitions to the
intermediate states |1+

α 〉 is shown in Table 1. We see that the GTR contributes
either destructively - as in case (a), or its contribution is negligibly small - as in
case (b). The first result is consistent with the SM calculation [70]. The interference
effect is still more pronounced on the GT strength going to the ground state in 48Ti.

In fact, for all practical purposes, it turns out to be null in case (a): Sββ−

GT (0+
1 ) =

(0.198 − 0.176)2/3 = 0.000, and extremely small in case (b): Sββ−

GT (0+
1 ) = 0.036.

However, note that the quenching mainly comes from out of phase contributions
among the seniority-zero and seniority-four components in the wave function (63),

which is responsible for the relatively small values of the moments 〈0+
f ||O

β−

1 ||1+
α 〉

shown in Table 1.

TABLE 2. Results for GT, F and total 2νββ matrix elements in units of (MeV)−1.

case MGT
2ν MF

2ν M2ν

(a) 0.043 0.008 0.035

(b) 0.080 0.011 0.069

The calculated GT, F and total 2νββ matrix elements are shown in Table 2.
One sees that the F moments are quite significant and that they cannot be ne-
glected as is usually done. As a matter of fact, in several calculations, where sizable
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krmpotić: a novel nuclear model for double beta decay

contribution to the total M0ν moment was found to come from the virtual 0+

states, the F contribution to the M2ν moment had been omitted. This is mani-
festly inconsistent.5

Similarly, the model wave function for the excited state |0+
2 〉 in 48Ti is basically

composed of seniority-four basis states, i.e.,

|0+
2 〉 =

0.430
0.504

}
|f2

7/2, f
2
7/2; 2〉−

0.781
0.760

}
|f2

7/2, f
2
7/2; 4〉+

0.373
0.307

}
|f2

7/2, f
2
7/2; 6〉+· · · .

(64)
Unlike for the ground state, in case (a) appears an appreciable amount of the GT

strength, Sββ−

GT (0+
2 ) = 0.170, in the state |0+

2 〉. Nevertheless, we will not discuss here
the ββ-decay rate for the exited 0+ state because the model does not reproduce
satisfactorily its excitation energy; namely, we get 5.72 MeV, while the experimental

value is 3.00 MeV. Finally, we note that in case (b) Sββ−

GT (0+
2 ) = 0.038.

6. Concluding Remarks

The QTDA does not suffer from the inconveniences that have been listed in Sect.
3 in relation to the QRPA. More specifically, the similarities and the dissimilarities
between the two models are:

1) While the QTDA contains two “β−- like” vertices (see Fig. 3), in the QRPA
we always approximate one of them by a “β+- like” vertex (see Fig. 2).
This statement is valid for all variations of the standard QRPA, such as the
TVQRPA, PQRTA, RQRPA and SCQRPA.

2) The QTDA moments 〈λ+
α ||Oβ−

λ ||0+〉, given by (49), produce the F and GT
resonances [28], in the same manner as in the QRPA. Furthermore, as the
backward-going QRPA contributions have rather little impact on the “β−-
like” transition strength, given by the first equation in (20), both models
yield very similar results.

3) Similarly, moments 〈0+
1 ||Oβ−

λ ||λ+
α 〉, given by (50), are strongly reduced by

the residual interaction, as are the QRPA moments 〈λ+
α ||Oβ+

λ ||0+〉, given by
the second equation in (20), restoring in this way the isospin SU(2) and
Wigner SU(4) symmetries, broken initially by the mean field. We know that
in QRPA this symmetry-reestablishment takes place through the cancellation
effect between the forward and the backward going contributions. In fact, in
several works [29, 42, 43, 8] we have used the property of maximal restoration
of the SU(4) symmetry to fix the value of the pp parameter t. Instead, in the
QTDA the quenching comes from out of phase contributions among seniority-
zero and seniority-four configurations in the wave function of the final state
|0+

1 〉.
5A more careful study should go beyond the allowed approximation considered here and include

the higher-order contributions in the weak Hamiltonian as well [24, 8].
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4) In QTDA, unlike in QRPA, the intermediate states |λ+
α 〉 have a unique mean-

ing.

5) The QTDA never collapses, and therefore the amplitude M2ν does not have
a pole anymore, as happens in (42). So, one can expect that, as far as model
parameters are concerned, M2ν will behave more moderately in the QTDA
than in the QRPA.

6) In the QTDA, one obtains the transition amplitudes M2ν for the excited 0+
f

states without any additional effort. One can also easily evaluate the decays to
the excited final 2+

f states; it is sufficient to diagonalize the Hamiltonian (43)
in the |(p1p2)Jp, (n1n2)Jn; 2+〉 basis, and to calculate the matching transition

matrix element 〈2+
f ||O

β−

λ ||λ+
α 〉, as done in (50) for 〈0+

f ||O
β−

λ ||λ+
α 〉.

7) In the QTDA, the energy distributions of the double GT transition strengths
(12) can be evaluated directly and, the corresponding sum rule, given by (17),
could be occasionally violated to some extent. Contrarily, the Ikeda sum rule,
given by (11), is always fully conserved in this model.

The remarks quoted above suggest that perhaps the QTDA might be a more
”natural” and a more suitable nuclear structure framework for describing the ββ-
decay than the QRPA. In fact, one should mention again that the QRPA was
originally formulated for the single β±-decays [32], and only later adapted for the
ββ-decays via the M1 and M2 [33, 34, 35, 36] ansatz. The TVQRPA, which was
mathematically tailored specifically for the ββ-decay, is free of these averaging pro-
cedures and has the correct BCS limit given by (38). Nevertheless, the latest model
has received rather little attention in the literature. What’s more, quite recently
it has been claimed that the overlap (26) gives rise to an additional suppression
mechanism for the NME’s M2ν and M0ν [74, 75]. We fully disagree with such a
view.

We do not suggest that the QRPA should be substituted by the QTDA. We
merely state that the use of these two nuclear models in a joint manner should
very likely reduce the uncertainties in the evaluation of the NME’s, which is at
present one of the principal worries in the nuclear physics community, and which
has engendered a great deal of activity in recent years [76, 77, 78, 79]. One cannot
but highlight the Suhonen’s article [78] where he argues that within the QRPA it is
not possible to account simultaneously, i.e., with the same set of model parameters,
for the simple and double β-decays.

In summary, in this work we have demonstrated that the simple version of the
QTDA proposed here is able to account for the suppression of M2ν , which was the
major merit of the QRPA. Moreover, we feel that this model comprises all essential
nuclear structure ingredients that are needed for describing the ββ-decay processes.
Of course, whether this is totally or only partly true has still to be tested, and it
might be convenient to consider some additional refinements in the future. Their
incorporation, however, should not, in principle, involve serious difficulties. For
instance, the number projection procedure can be easily implemented whenever
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required [40]. Regarding this issue, we are convinced that, despite the present-day
lack of consensus among nuclear theorists on how to derive the NME’s in a direct
and controlled manner, they will be able to surmount this obstacle in the near
future without having to resort to extremely complicated theories. In fact, nuclear
physics is not merely complicated mathematics: it requires much art to discover the
most important degrees of freedom and to disentangle the underlying symmetries,
for the purpose of building very imaginative models, and to skilfully manipulate the
pertinent adjustable parameters. One should always keep in mind Milton’s witty
remark: The very essence of truth is plainness and brightness. Very likely, once
fixed the NME’s, it will be possible to answer some fundamental questions about
neutrinos.

I’m very sure Dubravko would agree with all that has been written above, and
this greatly encourages me to pursue the presented line of research, and it is a
further reason to dedicate this article to him.
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[30] P. Vogel, M. Ericson, and J. D. Vergados, Phys. Lett. B 212 (1988) 259.

[31] K. Muto, Phys. Lett. B 277 (1992) 13.

[32] J. A. Halbleib and R. A. Sorensen, Nucl. Phys. A 98 (1967) 524.

[33] P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett 57 (1986) 731.

[34] O. Civitarese, A. Faessler and T. Tomoda, Phys. Lett. B 194 (1987) 11.

[35] T. Tomoda and A. Faessler, Phys. Lett. B 199, 475 (1987).

[36] J. Engel, P. Vogel and M. R. Zirnbauer, Phys. Rev. C 37 (1988) 771.

[37] J. Hirsch and F. Krmpotić, Phys. Lett. B 246 (1990) 5.
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[41] F. Krmpotić, A. Mariano, T. T. S. Kuo and K. Nakayama, Phys. Lett. B 319 (1993)
393.
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krmpotić: a novel nuclear model for double beta decay

[68] V. B. Brudanin, N. I. Rukhadze, Ch. Briançon, V. G. Egorov, V. E. Kovalenko, A.
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NOV NUKLEARNI MODEL DVOSTRUKOG BETA RASPADA

Istražuje se mogućnost primjene kvazičestične Tamm-Dancoffove aproksimacije
(QTDA) za opis nuklearnog dvostrukog beta raspada. Vǐse ozbiljnih poteškoća,
koje susrećemo u kvazičestičnoj aproksimaciji nasumnih faza (QRPA), kao što su: i)
ekstremna osjetljivost amplituda 2νββ raspada M2ν na rezidualno med–udjelovanje
u kanalu čestica–čestica, ii) dvojbe u razmatranju med–ustanja i iii) potreba za izvo-
d–enjem dodatne QRPA za očuvanje naboja u opisu ββ-raspada na vǐsa konačna
stanja, ne javljaju se u QTDA. Takod–er, QTDA omogućuje izravno odred–ivanje
energijskih raspodjela prijelaznih jakosti dvonabojne izmjene i njihovih zbrojnih
pravila, i može se izravno primijeniti na jednostruko i dvostruko zatvorene jezgre.
Kao primjer, raspravlja se raspad 48Ca−→48Ti unutar 1fp ljuske u granici čestica–
šupljina QTDA. Razmatra se opće ponašanje [poput (1, 1)-Padé-aproksimacije] am-
plitude 2νββ-raspada u jednostavnoj QRPA i u njenim različitim inačicama.
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