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ON NEURAL NETWORK APPLICATION IN SOLID MECHANICS

Summary

A review of the machine learning methods employing the neural network algorithm is
presented. Most commonly used neural networks, such as the feedforward neural network
including deep learning, the convolutional neural network, the recurrent neural network and the
physics-informed neural network, are discussed. A special emphasis is placed on their
applications in engineering fields, particularly in solid mechanics. Network architectures
comprising layers and neurons as well as different learning processes are highlighted. The
feedforward neural network and the recurrent neural network are described in more details. To
reduce the undesired vanishing gradient effect within the recurrent neural network architecture,
the long short-term memory network is presented. Numerical efficiency and accuracy of both
the feedforward and the long short-term memory recurrent network are demonstrated by
numerical examples, where the neural network solutions are compared to the results obtained
using the standard finite element approaches.

Key words: machine learning, neural networks, feedforward neural network, recurrent
neural network, solid mechanics

1. Introduction

1.1 Artificial intelligence and machine learning

Artificial intelligence (Al) is based on algorithms by means of which machines perform
cognitive tasks like a human brain. An Al approach includes three main steps: storing
knowledge, applying knowledge to support problem-solving and acquiring new knowledge
through experience, as described in more details in [1]. This approach deals with numerous
algorithms to interpret and attain knowledge from given data. In recent years, special attention
has been directed to the application of Al methods to solve various engineering problems. The
machine learning has evolved as a subfield of Al.

The machine learning (ML) has attracted great attention with the progressive
development of computing technology which enables one to address a variety of complex
problems by means of collecting and processing a large amount of data. However, these
complex problems cannot be solved using conventional procedures, or their solving results in
high computational costs. The ML applications are based on statistical algorithms to improve
their performance by training [2, 3]. Using enough data and appropriate algorithms, by means
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of ML it is possible to determine all known physical laws as well as those that are currently
unknown. In this manner, the ML algorithms may be considered as a data driven approach.

Successful applications of ML techniques can be found in various fields, such as
neuroscience [4], clinical medicine [5], biotechnology including the design of new drugs [6],
robotics applications [7], autonomous driving [8, 9], face recognition [10, 11], speech
recognition [12, 13] as well as other fields, such as climate change, earthquake detection,
economics, different games, various data handling, etc. Furthermore, a great challenge is the
ML application to solve problems in engineering and physical disciplines, such as mechanics
[14, 15], materials science [16, 17, 18, 19], topology optimization [16, 20] and other
engineering fields.

The machine learning comprises different models which learn from given input data.
Depending on the type and amount of available data, an ML model may be supervised, semi-
supervised or unsupervised [3]. The ML is supervised if the training data consists of sets of
input and associated output values. The goal of the ML algorithm is to derive a function which
predicts the output values from a given set of input data. If the available data are only input
values, the ML is unsupervised. The ML is semi-supervised if a large amount of input data but
only a limited amount of corresponding output data is given. The supervised learning is mostly
used, especially in engineering and physical sciences, because it is much more efficient and
powerful in comparison to other ML approaches. A great challenge in the ML technique is how
to efficiently reduce the training error. The underfitting and overfitting are distinguished. When
the model is not able to obtain a sufficiently low error, the underfitting happens. The overfitting
occurs when the difference between the training error and the test error is too large [21].
Depending on the type of the data set collected and the problem posed, a countless number of
ML algorithms is available. Neural networks are most commonly used.

1.2 Neural networks

Neural networks (NNs) approximately simulate the operation of human brain by means
of artificial neurons, which are also called processing units [1]. The neurons are assembled into
network architectures which are mostly created in form of layers. There are input, output, and
hidden layers. From the source neurons of the input layer, the signal flows over the hidden
layers to the layer of output neurons, reproducing an overall response of the network. The layers
are called hidden because the training data do not show the output for each of these layers. The
function of the hidden layers is to intervene between the external input and the output of the
network. Each neuron receives input signals from other neurons of a preceding layer during the
learning process. The neuron outputs are computed by appropriate activation functions which
are also called transfer functions. There are network parameters such as the connection weight
between neurons and the bias which should be adjusted in training procedures to reproduce the
training data as accurately as possible [1, 22, 23]. Depending on the network architecture, there
are many kinds of neural network algorithms. The most fundamental type of NNs is the
feedforward neural network.

1.2.1 Feedforward neural network

In the feedforward neural network (FFNN) the signal flows forward from the input layer
to the output layer through hidden layers via connections between neurons. The weighted
connections are established between neurons in the neighbouring layers, where each neuron is
connected to all neurons in the next layer. The neurons are not connected to each other in the
same layer [16, 23, 24]. The learning process is iterative, and the network parameters are
computed through the update process, where the error in the form of the loss function is
minimized by using backpropagation based on the gradient descent algorithm [22, 23]. Various
optimization algorithms are available to reduce the error, but the ADAM and Levenberg—
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Marquardt algorithms are mostly used [25, 26]. For this training process, a database is required,
consisting of input and target output quantities. The database created from experimental
investigations is used if available, but the data obtained by computational analyses may also be
an option. The FFNN is widely applied in mechanics and materials science to replace
conventional constitutive laws, especially for materials with complex heterogeneous
microstructure. Furthermore, the FFNN approach can replace the standard homogenization
procedure in a representative volume element (RVE) to compute macro state variables within
the multiscale numerical algorithms [16]. The modelling of deformation responses of
hyperelastic materials by means of the FFNN is presented in [27]. In [28], the FFNN is used to
predict the fracture behaviour of particulate composite materials under impact loading. The
material fracture modelling based on the phase field approach was efficiently performed by
using the FFNN in [29].

To achieve better success in solving complex nonlinear problems, neural networks with
multiple hidden layers are required. The training of a neural network with more than three
hidden layers is called deep learning (DL) [21, 30]. In DL, the learning is related to a big training
database and a large number of computations which require high performance computing and
more complex computer architecture, which is permanent in progress. The computers with high
GPU (graphics processing unit) capacity are desirable. A special purpose processor for deep
learning was also developed [23]. The DL algorithms are highly successful in various fields,
such as image recognition, speech recognition, language translation, and biotechnology and
medicine sciences, in which case they are related to predicting activities of drug molecules and
discovery of new drugs. A historical survey of relevant studies dealing with the DL is presented
in [31].

In recent years the DL has been applied in various fields of engineering sciences. The DL
is used in the homogenization procedure of a heterogeneous representative volume element
within the material modelling based on multiscale algorithms [32]. The study of fracture
prediction on the material nanolevel by means of the DL approaches is presented in [33] Deep
neural networks are used for damage identification in structural health monitoring in [34]. A
great challenge is the application of DL algorithms to the discovery, design, and development
of new materials [35, 36, 37]. An efficient DL model is used for the consideration of fracture
propagation and failure prediction in brittle materials [38]. The deep learning neural networks
are also applied in the finite element technology. The finite element interpolation functions may
be generated, and the optimization of nodal positions may be achieved through the training
process, which is equivalent to the rh-adaptivity in a standard finite element method (FEM).
Higher accuracy and efficiency in comparison to the conventional FEM are achieved, especially
in capturing the stress concentration in the case of a coarse mesh [39, 40]. A historical overview
of the development of DL algorithms, particularly their applications to the design and behaviour
of composite materials is presented in [41]. Although the deep learning has made great advances
in accuracy and reliability in recent years, further research is needed to improve its application
in complex material systems.

1.2.2 Convolutional neural network

A special type of deep neural networks is the convolutional neural network (CNN), which
is usually used in computer vision and applied in fields such as image classification, video
recognition, medical image analysis, and self-driving cars among others. Beside the fully
connected hidden layers as in the DL networks, the CNN architecture consists of additional
hidden layers, such as the convolutional and pooling layers. The input data from the input layer
feeds the convolutional layers. In contrast to the DL networks, where neurons from two adjacent
layers are connected to each other, in a CNN, only small and localized regions of neurons are
connected to a neuron in the next layer. In the convolution layers, the mathematical convolution
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operations are included instead of the conventional matrix multiplication used in the fully
connected layers. The convolution operation uses kernel functions and can be regarded as a
feature identification operation. The network weights are shared, which contributes to the
increase in network efficiency. After the convolutional layers, the data are transferred to the
pooling layers, where they are compressed and converted into a single vector by means of a
flattering procedure. Then, the data are further transferred to a feedforward network based on
the fully connected layers [16, 21, 42, 43].

However, the CNN applications are not limited to images. The CNN may also be used in
materials science to analyse properties of composite materials with various material distribution
[44] as well as microstructural material properties in microstructure images within multiscale
modelling [16]. The prediction of material properties of heterogeneous materials by means of
the CNN is discussed in [45, 46, 47].

1.2.3 Recurrent neural network

Another class of deep learning models is the recurrent neural network (RNN). In contrast
to the CNN described above, which was originally developed to process images and video data,
the RNN is designed for processing sequential data, such as speech, text, or other time-series
data. While in the traditional deep neural networks the signal flows only forward from input to
output which are independent of each other, the learning process is performed over several time
steps in the RNN [21, 48, 49]. The output from hidden neurons is not only fed forward to output
neurons in the current time step but it is temporarily stored in an internal memory and fed back
into the hidden neurons along with the input at the next time step. It means that the neurons in
the hidden layer receive both the input at the current time step and the output of the hidden layer
generated by the input at the previous time step. An RNN has only a single hidden layer, but it
is considered to be a deep network because it can be expressed as a composition of multiple
layers when unfolded in time. Accordingly, any RNN can be considered as deep as the sequence
is long [48]. However, there are also deep neural networks consisting of multiple recurrent
hidden layers, where the learning process is more complex, as described in [21, 50].

An important characteristic of the RNNSs is that they share the same parameters within
each layer of the network during the sequential processing. Furthermore, they employ the
backpropagation through time (BPTT) algorithm in the learning process. The procedure of the
BPTT is like that of the standard backpropagation. The difference is that the BPTT adds up
errors which propagate through the entire length of the sequence because the same parameters
are used, whereas the standard backpropagation does not share the parameters. Consequently,
the RNNs suffer from two problems known as the vanishing gradients and the exploding
gradients. To solve these problems, more sophisticated versions of the RNN architecture such
as the long short-term memory (LSTM) network [51] and the gated recurrent unit (GRU) [52]
were proposed. The LSTM reduces the effect of the vanishing gradient by removing the
repeated multiplication by the same weight during the backpropagation process. The GRU is
based on a concept similar to the LSTM, but it is less complex. The GRU is preferable in the
case of small data sets, but the LSTM is generally the most popular.

The RNN methods have been efficiently applied to the history dependent problems in
mechanics such as plasticity as well as damage and fracture. The plasticity constitutive laws of
microstructural RVEs of heterogeneous materials were found by using the GRU architecture in
[53]. The RNN based on a GRU unit is used as a surrogate model of micro-scale simulations in
the context of computational multiscale procedure in [54]. A smart constitutive law (SCL) for
the homogenization of inelastic microstructure of RVEs was formulated by means of the LSTM
in [55], where the loading histories applied to RVEs were expressed by strain sequences. The
SCL was implemented into a finite element (FE) solver to model deformation responses of
various engineering problems on the macro level. The same SCL was applied to all finite
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element integrations points, which is an advantage in comparison to the standard multiscale
procedure, where the FE simulation of the microstructure is required for each integration point
at each load increment, as discussed in [55]. A new type of recurrent neural network based on
the self-consistent concept was proposed for the modelling of elastoplastic solids in [56]. An
RNN model using a modified LSTM approach was applied as a surrogate for the micro model
within the multiscale FE procedure as shown in [57]. The RNN architecture was efficiently
used to predict the fracture evolution in brittle materials in [58]. The brittle fracture was also
modelled by using the LSTM networks as shown in [59].

1.2.4 Physics-informed neural network

As evident from the above considerations, the training of neural networks requires a big
database, which is not always available for complex scientific problems, and therefore the
governing physical laws are mostly ignored. Furthermore, data collection is often very costly
and time consuming. Employing the known physical laws in the training process can
significantly reduce the size of the required training data as well as increase numerical
efficiency. This is particularly so in the case of the modelling of engineering systems governed
by their physics. Therefore, a new network architecture called the physics-informed neural
network (PINN) is proposed, where the physics constraints are imposed. The PINN may be
considered as a special class of the FFNN, where the physical conditions are enforced by a loss
function [60, 61].

Like in the FFNN, the weights and bias in the PINN are computed by minimizing a loss
function which is given by the residual of governing equations, usually written as partial
differential equations (PDEs) and corresponding boundary conditions, respectively. The PDEs
are embedded into the loss function using automatic differentiation [62]. This strategy was
successfully applied to solving the Burger’s equation and the Navier-Stokes equation in the
modelling of various phenomena in fluid mechanics in [63]. Two different problems are solved
in this study: the differential equation with fixed parameters (data driven solution of PDE) and
the parameter identification of differential equations (data-driven discovery of PDE), which
may be considered as an inverse process. The application of the PINN in solid mechanics is
presented in [64], where the linear elasticity as well as the nonlinear von Mises elastoplasticity
are studied. The elastic-viscoplastic deformation in solids in relation to the strain-rate and
temperature is modelled in [65]. An advanced PINN technique for modelling two-dimensional
and three-dimensional problems in solid mechanics is developed in [66]. Therein, a modified
loss function is proposed and both linear and geometrically nonlinear problems are solved.
Various types of materials such as the linear elasticity, the large deformation hyperelasticity
and the von Mises plasticity are considered in [67], where the meshfree approach in
combination with the PINN is applied instead of the classical finite element spatial
discretization.

A novel computation technique based on the PINN and applied to heat transfer modelling
as well as to solving the inverse problem dealing with computing of the unknown parameters
in the PDE is presented in [68]. The heat transfer modelling by means of the PINN is also
considered in [69], where the solving of forced and mixed heat transfer problems with unknown
thermal boundary conditions as well as of the two-phase problems with a moving interface is
demonstrated.

Beside the PINN approach dealing with PDE, the PINN computational strategy is
proposed, where the loss function is defined by the energy functional, and the loss is minimized
according to the principle of minimum potential energy [70]. Also, the tension, deflection and
buckling of an elastic thin square plate are considered. A new PINN algorithm is applied for
the phase-field modelling of fracture in [71], where the loss function employs the energy
functional consisting of the elastic strain energy and the fracture energy.
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Many other computation strategies which may be considered as data driven approaches,
where artificial intelligence methods are used, may be found in various fields such as design
optimization [72], management [73], and production systems [74], among others.

In the following two sections, the feedforward neural network and the recurrent neural
network are considered in more detail. Their applications are demonstrated by two simple
examples dealing with elastic and elastoplastic problems in solid mechanics. Finally,
concluding remarks and possible future work directions are presented in Section 4.

2. Feedforward neural network

2.1 Feedforward neural network formulation

As mentioned in the previous section, the feedforward neural network (FFNN) represents
the fundamental network architecture which consists of network layers. There are one input,
one output and multiple hidden layers. Each layer contains multiple neurons. The signal flows
from each input neuron to each neuron of the first hidden layer and it flows further forward to
the neurons of the final output layer through connections between the neurons of other hidden
layers. Hence, each neuron receives the input signal from all neurons of the preceding layer,
which is their output. The output is computed by means of the activation function in terms of
the input value. Each connection between the neurons is characterized by its weight parameter.
The bias is another parameter which is associated to the neurons. A multi-layered feedforward
neural network with the same number of neurons in each hidden layers is shown in Fig. 1. It is
to note that the layers may contain different number of neurons in general.

Input - - - - - - - _ _ Hidden layers ~______ __ Output

ver ZO .. . & 703
Q400 - o0
100 o0

l:l ! | l:N

Fig. 1 Feedforward neural network with multiple layers

The input value to the activation function of the j-th neuron in the /-th layer is computed
by the following relation:

nl*l
I -1 -1 | 71
u —Zwﬁ o, +b;, (1)
i=1

where Mjﬂ_l is the connection weight between the i-th neuron in the (/—1)-th layer and j-th

neuron in the /-th layer. The value o, is the output of the i-th neuron in the (/—1) -th layer. bj
is the bias of the j-th neuron in the /-th layer. The indices i and j represent neurons in the previous
and current layer, respectively, and » is the number of neurons in layers, i = 1...n, j = 1...n,
while N is the number of layers, / =1...N. It should be noted that i is an index that is summed

over according to the Einstein summation convention. In the architectural graph in Fig. 1, the
neurons are illustrated by nodes (small circles) which are connected to each other by straight
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lines. There are three source nodes, N-2 hidden layers of four neurons each and three output
neurons. In that case, the input of the j-th neuron of the N-th output layer may be written as

ujv :W_j.f_lofv_l +b_f.v, i=1.4. (2)

The output of the j-th neuron in the N-th layer is expressed by an activation function /() as
o) =f()). 3)

There are various activation functions, but the nonlinear sigmoid function and the
hyperbolic tangent (tanh) expressed by

! and f(x)= ej — e: , 4)

1+e™ e +e

f(x)=

respectively, are usually employed in computational mechanics. In addition, the following
linear functions may also find application, such as the rectified linear unit (ReLU) written as

()= {x (>0) )

0(x<0)
and the identity function f(x)=x. Besides, there are several activation functions which may

be employed in neural networks, as described in [22]. The functions ReLU (x), sigmoid (x) and
tanh (x) are presented in Fig. 2.

Fig. 2 Activation functions: a) ReLU (x), b) sigmoid (x), ¢) tanh(x)

For the learning process started with the input layer, training data consisting of inputs and
target outputs are needed. The data may be collected from experimental or computational
analyses. A pair of the input and corresponding output data is called a training pattern [23]. The
collected data are generally divided into three different sets, i.e., training, validation, and testing
sets. The training set comprises approximately 70% or 80% data of the complete data, while
the validation and testing contain 15% or 10% data each. The data are selected at random from
the full data set. The amount of the data used for the learning depends on the complexity of the
problems which should be solved. The size of the training data is related to the neural network
architecture. Both the size of the data set and the complexity of the problem to be solved
influence the number of neurons and layers as well as the type of activation functions.

For simple problems, the networks with two or three hidden layers should be enough, but
deep neural networks employing multiple layers are required for solving complex problems.
Unfortunately, there are no uniform rules on how to select the network architecture. If too many
neurons are used, the undesired phenomena such as overfitting may appear, which can be
prevented by early stopping or by means of regularization procedures. The Bayesian
regularization is usually used [22]. The simplest choice is the size of the output layer, which is
the same as the number of the target data. On the other hand, the choice of the input layer may
be difficult, especially in the case when the potential number of input data is too large and some
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reducing techniques are required. To ensure efficiency and accuracy of the learning, it is
suggested to normalize the input data so that they fall into the unit range from -1 to 1 or O to 1.
In that case, undesired major differences between the computed values through the learning
process may be avoided. Furthermore, using the normalized data improves the learning process
because the weight parameters and biases do not have large values.

During the learning process, the network parameters such as weight and bias are
iteratively computed through the update procedure, where the error expressed by the loss
function is minimized. The back propagation based on the gradient descent algorithm is
employed. Using the calculated output data and the corresponding given target data, the loss
function as the mean squared error is computed by the following expression:

Ez%ii(soj_soj)z’ ©)

s=1 j=1

where ‘o ; 1s the output of the j-th neuron in the output layer for the s-th training pattern. The

value SO; denotes the given target data corresponding to the output of the j-th neuron in the
output layer for the s-th training pattern. » is the total number of neurons at the output layer and
n_ stands for the total number of the training pattern.

According to the gradient descent concept, the change of the connection weight between
the j-th neuron in the /-th layer and the i-th neuron in the (/—1)-th layer is expressed by

Tl )

The change of the bias is performed analogously:

av)=2E
o ob] (8)
b, =b,— BAb .

In the above relations, @ and f are the parameters which define the step size. In the training

algorithm, after the forward procedure and after computing the loss function, the
backpropagation follows, where the connection weights and the biases are updated from the
output layer to the input layer by using expressions (7) and (8). This gradient descent process
may be considered as an optimization approach in which the weights and biases converge to
their optimal values for which the minimal error expressed by (6) is reached. The
backpropagation algorithm starts after the forward computations are performed for all training
patterns. The sum of forward computations for all training patterns is called epoch [23].
Accordingly, the error expressed by Eq. (6) gradually decreases epoch by epoch. Various
optimization approaches are available, but the ADAM and Levenberg—Marquardt algorithms
are mostly employed [22, 25]. Before the updating process, the weights and biases should be
initialized, and the stopping criteria should be defined [22]. The initialization method depends
on the network architecture. One possibility is to randomly select the weight and bias values so
that they fall within the range of normalized input values. The stopping criteria may be to stop
the training when the error reaches its specified limit or when the performance on the validation
set increases by a set number of iterations [22].
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2.2 Application of FFNNs to computation of an elastic problem

In this section, a simple application of a feedforward neural network (FFNN) is presented
by solving an elastic boundary value problem. A porous square plate shown in Fig. 3 subjected
to the periodic boundary conditions expressed by the displacement along the sides is considered.
Due to the strain imposed, the homogenized stress is to be computed. The side length is /=200
mm, and the plate is discretized by 1,198 quadrilateral CPE4 finite elements [75]. The voids
are randomly distributed over the plate, which yields 30% of porosity. This example may also
represent a heterogeneous microstructure within the multiscale modelling of structural
deformation responses [76]. The finite element computations were performed using the finite
element program Abaqus [75].

Fig. 3 Discretized porous square plate

The elastic behaviour of the plate is described by Young’s modulus £ = 210000 MPa
and Poisson's ratio v = 0.3. To obtain the necessary data for training the neural network, the
heterogeneous plate is subjected to a series of plane strain loading conditions, which are used
to generate a database of strain and homogenized stress values. In the present study, there are
seven different loading conditions, each with 100 increments, representing different
combinations of the strain components ¢, &, 7,, applied to the plate. Three loading

conditions consist of just one strain component and the remaining four loading cases are the
combinations of multiple strain components. The strain components used in all loading
scenarios are up to the value of 2%. The strains are transformed into the boundary displacements
which are periodically imposed along the boundary nodes. Accordingly, the boundary nodes
displacement vector is expressed as

u =D'g, 9)

where ¢ denotes the strain vector and D is the coordinate matrix which may be expressed by
the submatrices D, containing the boundary nodes coordinates, and may be written for » nodes

as

D=[D,D,--D,]. (10)

Here, the matrix for boundary node i has the following form:

2x 0
D=L (11)
21 0 2yx

TRANSACTIONS OF FAMENA XLVII-2 (2023) 53



J. Sori¢, M. Stani¢, T. Lesicar On Neural Network Application in
Solid Mechanics

More information about periodic boundary conditions can be found in [76]. Once the boundary
value problem of the porous square plate is solved, the homogenized stress vector is calculated
using the equation

1
c=—|cdlV, 12
Vie (12)

where 6, is the stress vector in each element material point. According to the plane strain
assumption, the homogenized stress vector contains three normal components o, o,,0, and
one shear component 7, . For each of seven loading cases, the finite element calculation results

in a database of 700 training patterns (data points), each consisting of three strain components
(&, &,, 7., ) and four homogenized stress components (o, , 0, 0,, 7,,). The obtained data is

then used to train the neural network.

In the case of the described problem, a FFNN with one hidden layer and five neurons is
used. The input layer of the network has three neurons, which correspond to the three strain
components, while the output layer has four neurons, corresponding to the four homogenized
stress components. The choice of the single hidden layer is made based on the observation that
for the linear elastic mechanical problem, the single hidden layer is sufficient to achieve high
accuracy. The activation function is the previously mentioned identity function, which is a
common choice for problems involving linear responses. The neural network is made by using
TensorFlow and its Keras API (application programming interface). TensorFlow is an open-
source software library developed by Google for numerical computations and machine learning.
It is designed to enable efficient computation and large-scale distributed training of neural
networks. It includes a high-level API called Keras, which makes easy to build and train deep
neural networks. Keras provides a simple and intuitive interface for defining neural network
models, allowing users to focus on the high-level architecture of their models without worrying
too much about the low-level details of TensorFlow. More information about TensorFlow and
Keras can be found in [77, 78]. The schematic of the used FFNN is shown in Fig. 4.

NEX

Input Hidden Output
layer layer layer

Fig. 4 Schematic of the used FFNN

As described in the previous section, the collected data are normalized to range from
-1 to 1 to improve the convergence of the training process. The normalization is performed for
every strain and stress component individually, by using the following equation:
X=X,
X, =2 —2—

SC

-1, (13)
X — X,

max min
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where x . and x  are the lowest and the highest values of the components, respectively.

Furthermore, all data are randomly shuffled and divided in the training and the validation set.
80% of the data are used for the training, and the remaining 20% are set aside for the validation.
The use of a validation data set is important to prevent the well-known overfitting effect.

The training of the neural network is performed for 100 epochs by using the mean squared
error as the loss function and the ADAM optimizer. One epoch corresponds to the period in
which the forward and backpropagation calculations are done for all training patterns. The
choice of using the mean squared error (MSE) as the loss function and ADAM as the optimizer
for the network training is motivated by its simplicity and effectiveness. The ADAM algorithm
is designed to overcome some of the limitations of the standard stochastic gradient descent
(SGD) algorithm by introducing a few key innovations. One of the main innovations of the
ADAM algorithm is the use of adaptive learning rates that are based on estimates of the first
and the second moments of the gradients. This means, the learning rate is adjusted automatically
based on the gradient history, allowing the algorithm to converge faster and more reliably.
Another key innovation of the ADAM algorithm is the use of the momentum. The momentum
is a technique that helps the algorithm to continue making progress even when the gradients are
small or noisy. More information about ADAM and detailed description of the weight and bias
parameters optimization can be found in [79]. In the past, the neural network weights were
typically initialized with small random values. Nowadays, the advanced deep learning libraries
like Keras provide a variety of network initialization techniques, which all involve initializing
weights with small random numbers in some way or another. The default initializer, used also
in this example, is Glorot uniform and more information about it can be found in [80].

The value changes of the resulting loss function during the epochs are shown in Fig. 5.
As evident, the loss values rapidly decrease during the first 40 epochs, and then they decrease
only slightly until the end of the training process. The validation loss value does not increase,
and it is not significantly greater than the loss value of the training data set, therefore, it shows
that the overfitting does not occur.

0.12 1 \ —— Training
! Validation

0.10 A
0.08 A

0.06 A

Loss value

0.04 A

0.02 4

0.00 1

T T T T T T

0 10 20 30 40 50 60 70
Epoch

Fig. 5 Loss value changes over epochs
Once the neural network is trained, it is tested on a load case with the strain components ¢, g,
up to 1.5% and 1%, respectively, and the shear strain y,, of up to 1.4%. The neural network's

prediction is compared to the Abaqus FEM results, and it is found to be accurate. The
comparison of the homogenized normal stress in the x direction obtained by using both the
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FFNN and Abaqus are shown in Fig. 6. All other homogenized stress components show the
same matching.

2500 A
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—e— FFNN prediction
2000 -
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©
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Fig. 6 FFNN stress-strain diagram

One of the most important advantages of using neural networks for calculation of the
homogenized stress is the required CPU time as shown in Table 2.1. The calculation of the
homogenized stress state using Abaqus takes 9.9 seconds, while the same can be obtained by
using neural networks in just 0.109 seconds. It should be pointed out that Abaqus performs far
more tasks than just the FEM calculation, but it is obvious that the coupling neural network
prediction with the Abaqus calculation process can lead to its acceleration. However, the use of
the neural network prediction is limited to the model and cases the neural network is trained on.
The use of neural networks in a general approach would require training on many different
models and loading cases.

Table 1 FFNN CPU time comparison

CPU time [s]
Abaqus FEM simulation 9.9
FFNN prediction 0.109

3. Recurrent neural network

3.1 Recurrent neural network architecture

As mentioned in the introductory section, the recurrent neural network (RNN) deals with
sequential data, where the learning process is performed over several time steps. The input data
are time dependent, and besides the data of the current time step, the data of the previous time
step are also considered. A standard RNN has only a single hidden layer, into which a working
memory is included. In the current time step the information flows not only forward, but it is
also temporarily stored in the working memory and then it flows into the hidden neurons along
with the input at the next time step. In this way, the neurons in the hidden layer receive both the
input at the current time step and the output of the hidden layer generated by the input at the
previous time step. The signal from the working memory propagates through time, and
therefore the RNN may be considered as deep neural network. The time-unrolled computational
graph presenting the architecture of an RNN is shown in Fig. 7. However, the RNN may also
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be graphically presented more compact as a rolled computational graph, where the sequential
data processing is presented in the form of loops [21].

Output layer Output layer Output layer
Ox-l Or O:-I
[Y i F Y

Hidden layer Hidden layer Hidden layer

T * > —»

o, H, H.y

Input layer Input layer Input layer
X, X X,

Fig. 7 Time-unrolled RNN computational graph

As evident from Fig. 7, there is a sequence of inputs represented by the layers X, ,,

X,,
..1» and each of them is mapped on the corresponding output (O, ,, O,, O,,,) through the
hidden layers H, ,,H,, H

vertical arrows. Each of these connections is parametrized by the weights in the same way as
for the feedforward procedure described in the previous section. The information stored in the
memory of each hidden layer propagates from one time step to the next time step or from one
hidden layer to the next hidden layer, as shown by the horizontal arrows. These connections are
also parametrized by the weights. In this network architecture, the activation functions and the
biases are also used analogously to the standard feedforward approach. It should be stressed
that the same parameters are shared during the sequential processing, which means that the
same parameters are used at every time step. All the activation functions may also be the same.
Different design patterns of recurrent neural networks are also available as shown in
[Goodfellow 2016], but the architecture presented above is mostly used. As mentioned in the
introductory section, the RNNs employing multiple hidden layers, called deep recurrent
networks, were also proposed [21, 50].

X

1 ..1 » Where the connections between the layers are represented by the

Analogously to the feedforward approach, the learning process employing an iterative
update procedure using the back propagation based on the gradient descent algorithm is
performed. Here, the backpropagation through time (BPTT) algorithm [21] is applied. Since
the RNN is based on the mapping of an input sequence on an output sequence, the total loss
function 1s computed as the sum of the losses over all the time steps. The gradient of the loss
function with respect to the network parameters such as the weight and bias should be computed
for each neuron. During the learning process the error should backpropagate through the entire
length of sequence, and it is used to update the weights on the connections. The error is
multiplied by the connection weights between the hidden layers, where the weights are
stationary through time, and they do not change from one time step to the next time step. Thus,
the backpropagation through multiple time steps implicates the repeated multiplication of the
error gradient by the same set of weights. If this weight is a small value, it may diminish at an
exponential rate, and the error gradient also tends to diminish. Consequently, the gradient
descent will never converge to an optimum, and this problem is called the vanishing gradient
[48]. To solve this problem, long short-term memory networks (LSTMs) are proposed.
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3.2 Long short-term memory networks

In contrast to the standard RNNs, the LSTMs have an additional component in their
structure which is called the cell, where the information is maintained and propagated forward
through time. The flow of information within the cell is regulated by the structural components
called the gates, which are set in the LSTM hidden layer units. There are the forget gate, the
input gate, and the output gate. Each gate consists of layers of neurons, which contain one
neuron per activation function in the cell state. The information coming into an LSTM hidden
layer unit includes the cell state from the previous time step ¢, ,, the working memory from the

previous time step H, | and the input value from the current time step X, , as shown in Fig. 8.
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Fig. 8 Schematic of internal structure of LSTM unit

The forget gate has the role to decide what information in the cell should be forgotten at
each time step. The sigmoid activation functions are used, and their output numbers are between
zero and one. Since the cell state is multiplied by these numbers, the information multiplied by
zero is forgotten, and the other piece of information multiplied by one is remembered. The input
gate decides what information should be stored in the cell state and it is divided into two parts.
In the first part, the sigmoid activation functions are again used to determine the values in the
cell state to be updated. The second part uses the tanh activation function with the output values
between -1 and +1 and it identifies what information should be updated. Finally, the results of
both parts are multiplied by each other and added to the cell state. Thus, the old cell state is
updated into the new state c, . The third gate, the output, decides which values should be output

in response to the current input. Both the tanh and the sigmoid activation functions are
employed. Now, the output of the LSTM hidden layer unit consists of the cell state from the
current time step ¢,, and H, and O, stand for the working memory and the output from the

current time step, respectively, as shown in Fig. 8. More detailed information on LSTMs can
be found in [48, 81].

3.3 Application of the LSTM neural network to an elastoplastic problem

The purpose of this section is to show the use of the LSTM recurrent neural network in
the computation of an elastoplastic problem. The same porous plate as in the previous example
is considered. The material data describing elastic behaviour are also unchanged. The plastic
response is defined by the initial yield stress of 250 MPa and the linear isotropic hardening is
described by the plastic modulus of 50 GPa. Subjecting a porous plate to a series of plane strain
loading conditions is done in the same manner as in the example presented in the previous
section. Since the elastoplastic problem is a more complicated issue than the computation of
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the elastic response, the number of different loading conditions must be increased. Hence, a
total number of 100 different combinations of the strain components (&,, €,, 7., ) are applied
using the periodic boundary conditions expressed by equation (9) to obtain an adequate
database needed for the LSTM training.

The nonlinear finite element (FE) analysis has been performed by means of the linearized
finite element equation KAv=F, —F, where K is the tangent stiffness matrix employing the
consistent elastoplastic tangent modulus, Av is the increment of the nodal displacement vector,
and F, and F are the external and internal nodal force vectors, respectively. The finite element

equation is solved by using iterative procedures. The FE computations were performed using
the FE program Abaqus [75]. The elastoplastic algorithm employs the isotropic hardening von
Mises model. The integration of the nonlinear constitutive equation was performed by the return
mapping algorithm. The basic equations of the elastoplastic analysis are shown in Table 2. More
details on elastoplastic computations can be found in [82, 83].

Table 2 Basic equations of elastoplastic analysis

Additive decomposition of strain tensor: de¢; =de; +de&/

Stress increment: doy; =D, (d g, —d 8,5)

o

Plastic strain increment: d 55 =dA——

do,

1
Von Mises yield surface: f(ay,gijf’) =J, —50'; =0

. . . S »
Linear isotropic hardening: o, =0y, + K¢,

. . . [2
Effective plastic strain increment: d¢/ = Edgif def

Kuhn-Tucker complementarity conditions: f (O',.j, &y ) <0, 120, Af (G., el ) =0

27y

In the relation presented in Table 2, D, is the elastic stiffness tensor, 4 is a scalar plastic

multiplier, J, denotes the second invariant of the stress deviator tensor, o, stands for the
initial yield stress, and K represents the plastic hardening modulus.

After running one hundred finite element simulations, a database of strain-stress pairs for
each loading condition is obtained. As in the previous example, the input data are three strain
components (&,, £, 7,,) and the output consists of four homogenized stress components

(0,,0,,0,,7,). This database is used to train an LSTM recurrent neural network for

predicting the stress components from the input sets of the strain components. The database
consists of 100 loading samples, each 100 time steps long and each time step contains all the
strain and homogenized stress components.

The created neural network consists of two hidden layers, each with 120 LSTM units.
The input layer again consists of three neurons (for three strain components), while the output
layer has four neurons (for four stress components). The neural network is made by using
TensorFlow and its Keras API, already described in the previous section. To prepare the data
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for the training, it is normalized to range from -1 to 1 by means of expression (11). As
mentioned before, the data set is again divided into two parts, 80% for training and 20% for
validation.

The network is trained for 220 epochs, with the loss function expressed by the mean
squared error and the ADAM algorithm used as the optimizer in combination with the
backpropagation through time (BPTT). The BPTT algorithm can be described as follows:

1. provide a sequence of input and output pairs,
2. unroll the network to cover all the time steps and accumulate errors for each time step,

3. roll-up the network and adjust the weights based on the calculated errors and the
ADAM algorithm [84].

Moreover, the early stopping criteria with patience of 30 epochs is used. The patience
of 30 epochs means that if the loss function value for the validation data set does not decrease
in that period, the training is stopped, and the weights and biases of the epoch with the lowest
loss are used for prediction. The epoch now corresponds to the period until the forward and
backward propagations are done for all time steps of all 100 loading conditions. The neural
network weights and biases are initialized with the Glorot uniform technique, which is also
used in the previous example. As shown in Fig. 9, the loss value for both the training and the
validation data sets has greatly decreased in the first 50 epochs, and the slight decline in the
loss value continued until the epoch number 196. After this epoch, the loss value for the
validation data set does not longer decrease, so the early stopping criteria is activated after 30
epochs. The weights and biases of the epoch 196 are saved and used for predictions.

071 1 —— Training
’ Validation

Loss value

0 50 100 150 200
Epoch

Fig. 9 Loss value changes over epochs

The trained neural network is tested on the load cases expressed by the strain components
&, up to 3%, &, up to 2% and the shear strain component y,, of 3%. Again, the prediction of

the trained neural network is compared to the results obtained by the 4baqus FEM analysis. As
can be seen in Fig. 10, the LSTM neural network prediction of the homogenized equivalent von
Mises stress shows high accuracy.
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Fig. 10 Equivalent von Mises stress-strain diagram

The comparison of the CPU time needed for the Abaqus analysis and the LSTM
prediction is presented in Table 3 showing a great computational potential of the LSTM usage
in solid mechanics analyses. As it is stated in Section 2.2, the incorporation of the neural
network into Abaqus could increase its calculation speed. On the other hand, the above shown
neural network can only be used on the model and loading cases it is trained on, which is an
obvious limitation to its usage.

Table 3 LSTM CPU time comparison

CPU time [s]
Abaqus FEM simulation 15.5
LSTM prediction 0.25

4. Conclusions

A review of the machine learning approaches within the artificial intelligence methods
with a special emphasis on the neural network techniques is presented. The mostly used neural
network architectures, such as the feedforward neural network, the convolutional neural
network, the recurrent neural network, and the physics-informed neural network, are
discussed. A special attention is directed to their application in the field of solid mechanics.
The feedforward neural network and the recurrent neural network are described in more detail
in separate sections. To solve the vanishing gradient problem within the recurrent neural
architecture, the long short-term memory (LSTM) network is presented.

Two simple examples of neural network application are shown. In the first example, the
feedforward neural network is used for solving an elastic boundary value problem, where a
porous plate subjected to the periodic boundary condition is considered. In the second
example, the LSTM recurrent neural network is applied to solve an elastoplastic boundary
value problem of the same plate. Both the elastic and the elastoplastic computations were also
performed by means of the finite element method using the software package 4baqus, and the
results and the numerical efficiency are compared. The neural network approaches show
lower computational cost when compared to the finite element computations, while high
accuracy is preserved.
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However, the design of the neural network architecture is still a great challenge, and it is
an extremely active area of research especially in the field of solid mechanics. Guiding
theoretical principles have not been formulated yet, and the design usually includes the process
of trial and error. The formulation of an efficient loss function is still an open issue. An advance
on neural network procedures and applied algorithms are expected in the future.
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