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only repulsive gravitational effect on a test particle.

PACS numbers: 98.80 cq 11.27+d 04.20.jb UDC 524.83

Keywords: cosmic strings, Einstein-Cartan theory, gravitational field

1. Introduction

Many interesting developments in cosmology over the last 30 years have come
from the realization due to Kirzhnits [1], that (almost) each spontaneous symmetry
breaking in particle physics corresponds to a phase transition in the early Universe.
Just like phase transitions in more familiar solids and liquids, cosmological phase
transitions can give rise to defects of various kinds. Depending on the topology
of the symmetry groups involved, the defects can be in the form of surfaces, lines
or points. They are called domain walls, strings and monopoles, respectively [2].
The appearance of these structures has produced a great deal of interest because
of the cosmological as well as astrophysical implications [3]. In particular, cosmic
strings produced in the breaking of U(1) symmetry, are good candidates to seed
the formation of galaxies.

A typical symmetry-breaking model is described by the Lagrangian

L =
1

2
∂µΨa∂µΨa

− V (f) , (1)
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where Ψa is a set of scalar fields, a = 1, 2, . . . , N ; f = (ΨaΨa)1/2 and V (f) has
a minimum at a non zero value of f . The model has 0(N) symmetry and admits
domain wall, string and monopole solutions for N = 1, 2 and 3, respectively. To
study the structure of gauge defects, one has to add a gauge field in the above
Lagrangian and one should replace ∂µ by the gauge covariant derivative.

It has been recently suggested by Cho and Vilenkin (CV) [4,5] that topological
defects can also be formed in the models where V (f) is maximum at f = 0 and
they monotonically decrease to zero for f → ∞ without having any minima.

For example,

V (f) = λM4+n(Mn + fn)−1 (2)

where M , λ and n are positive constants.

This type of potential can arise in non-perturbative super-string models. Defects
arising in these models are termed as vacuumless. CV have studied the gravitational
field of topological defects in the above models within the framework of general
relativity [5]. Recently, A. A. Sen has studied vacuumless cosmic strings in Brans-
Dicke theory [6].

We know that in general relativity, matter is represented by the energy momen-
tum tensor which essentially provides a description of mass density distribution in
space time. But in particle physics, we know that the matter is formed by elemen-
tary particles, and follows the laws of special relativity and quantum mechanics,
and each particle is characterized not only by a mass, but also by a spin (intrinsic
angular momentum). So in general, the matter is described by mass and spin den-
sity. In general relativity, as given by Einstein, there is no way of considering the
spin effects on the geometry of space-time. The extension of the geometric principles
of general relativity to the physics at a microscopic level, where matter formation
is done by elementary particles, characterized by a spin angular momentum in ad-
dition to mass, is achieved in Einstein-Cartan theory. In a recent paper, we have
studied vacuumless global monopole in Einstein-Cartan theory [7]. In this paper,
we have studied the gravitational fields field of vacuumless global and gauge strings
in Einstein-Cartan theory under weak-field approximation of the field equations.

2. The basic equations

According to CV [4,5], a vacuumless cosmic string is described by a scalar
doublet (Φ1,Φ2) with a power law potential (2). In cylindrical coordinates (r, θ, z),
one can assume the ansatz as Φ1 = f(r) cos θ, Φ2 = f(r) sin θ.

For vacuumless global string, the flat space-time solution for f(r) is given by
[4,5]

f(r) = aM(r/δ)2/(n+2), (3)

where δ = λ−1/2M−1 is the core radius of the string, r is the distance from the
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string axis and

a = (n + 2)2/(n+2)(n + 4)−1/(n+2).

The solution (3) applies for

δ ≪ r ≪ R , (4)

where, R is the cut-off radius determined by the nearest string.

For gauge vacuumless strings, which have magnetic flux localized within a thin
tube inside the core, the scalar field outside the core is given by [4,5]

f(r) = a ln(r/δ) + b . (5)

But here a and b are sensitive to cutoff distance R,

a ∼ M(R/δ)2/(n+2)
[

ln(R/δ)](n+1)/(n+2) b ∼ a ln(R/δ) .

For a vacuumless cosmic string, the space-time is static, cylindrically symmetric
and also has a symmetry with respect to the Lorenz boost along the string axis.
One can write the corresponding line element as

ds2 = A(r)(−dt2 + dz2) + A(r)dr2 + r2B(r)dθ2 . (6)

The general energy momentum tensor for the vacuumless string is given by

T t
t = T z

z =
1

2
[(f ′)2/A] +

1

2
[f2(1 − α)2/Br2] +

1

2
[(α′)2/Br2] + V (f) , (7)

T r
r = −

1

2
[(f ′)2/A] +

1

2
[f2(1 − α)2/Br2] −

1

2
[(α′)2/2Br2] + V (f) , (8)

T θ
θ =

1

2
[(f ′)2/A] −

1

2
f2[(1 − α)2/Br2] −

1

2
[(α′)2/Br2] + V (f) . (9)

The string ansatz for the gauge field is Aθ(r) = −α(r)/(er), where e is the strength
of the gauge coupling. T b

a ’s with α = 0 are that for the global string.

Following Prasanna [8], the Einstein-Cartan equations can be written as

Rb
a −

1

2
Rδb

a = −8πGT b
a , (10)

Qa
bc − δa

b Ql
lc − δa

c Ql
bl = −8πGSa

bc . (11)

Here we have assumed that the spins of individual particles are aligned along the
symmetry axis (z axis).
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So, the only nonzero components of the spin tensor Sij are

Srθ = −Sθr = K(say) . (12)

The non-zero components of Sa
bc are

St
rθ = −St

θr = K , (13)

[ here, Sa
bc is the spin density described through the relation Sa

bc = UaSbc, with
U cSbc = 0, where Ua is the four-velocity vector Ua = δa

t ].

Consequently, from Cartan equations (11), we get the torsion tensor Qa
bc to be

Qt
rθ = −Qt

θr = −8πGK , (14)

where the other components are zero.

The filed equations for the metric (6) in Einstein-Cartan theory are

1

2
(A′B′/A2B) +

1

4
[(A′)2/A3] + (A′/rA2) + (1/A)16π2G2K2 = 8πGT r

r , (15)

−
3

4
[(A′)2/A3] + (A′′/A2) + (1/A)16π2G2K2 = 8πGT θ

θ , (16)

−
1

2
[(A′)2/A3] +

1

2
(A′′/A2) +

1

2
(B′′/B2A) + (B′/rAB) −

3

4
[(B′)2/AB2]

−(1/A)16π2G2K2 = 8πGT t
t (17)

[ ‘ ′ ’ indicates differentiation w.r.t. r].

3. Global string

Under the weak-field approximations, one can write

A(r) = 1 + β(r) and B(r) = 1 + γ(r) , (18)

where β and γ ≪ 1. For a global vacuumless string, one can use the flat space
approximation for f(r) in (3) for r ≫ δ and the form of V (f) given in (2). Now,
under these weak field approximations, the field equations take the following forms

(β′/r) + 16π2G2K2 = D[(n2 + 6n + 16)/(n + 2)2]r−b , (19)

β′′ + 16π2G2K2 = D[(n − 4)/(n + 2)]r−b , (20)

1

2
β′′ +

1

2
γ′′ + (γ′/r) − 16π2G2K2 = D[(n + 4)/(n + 2)]r−b , (21)
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where D = 8πGa2M2δ−4/(n+2) and b = 2n/(n + 2).

From Eq.(19), we get the following solution for β

β = −8π2G2K2r2
− D

n2 + 6n + 16

(2 − b)(n + 2)2
r−b+2 . (22)

Also from Eq.(20), we get the following solution for β

β = −8π2G2K2r2
− D

n − 4

(1 − b)(2 − b)(n + 2)
r−b+2 . (23)

For consistency, we must have that the second term of both equations is same,
i.e., n is obtained from the consistency relation n3 + 2n2

− 4n − 24 = 0. One can
see that n lies between 2 and 3.

For n > 2, the finite temperature potential has always a local minimum at
f = 0. However, this minimum is protected by a potential barrier whose width and
height rapidly decrease with the temperature. This barrier can be easily overcome
by thermal fluctuations [9].

Also, we get the solution for γ as

γ = 8π2G2K2r2 + D
n + 12

(3 − b)(2 − b)(n + 2)
r−b+2 . (24)

4. Gauge string

For gauge vacuumless string, the energy momentum tensor with f(r) given in
(5) can be approximated as [ 4,5]

T t
t = T z

z = T θ
θ = −T r

r =
1

2
(f ′)2 =

1

2
[a2/r2] . (25)

This form of the energy momentum is valid for

r ≪ R[ln(R/δ)]−1/2 , (26)

where R is the cutoff radius determined by the nearest string.

For the gauge string, using the weak-field approximations (18), the field equa-
tions read

(β′/r) + 16π2G2K2 = −4πG[a2/r2] , (27)

β′′ + 16π2G2K2 = 4πG[a2/r2] , (28)

1

2
β′′ +

1

2
γ′′ + (γ′/r) − 16π2G2K2 = 4πG[a2/r2] . (29)
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Solving these equations, we get

β = −8π2G2K2r2
− 4πGa2 ln r , (30)

γ = 8π2G2K2r2 + 4πGa2 ln r . (31)

5. Gravitational effects on test particles

The repulsive and attractive character of the global string can be discussed by
either by studying the time-like geodesics in the space-time, or by analyzing the
acceleration of an observer who is at rest relative to the string.

We now calculate the radial acceleration vector A
r of a particle that remains

stationary (i.e., V 1 = V 2 = V 3 = 0) in the field of the string.

Let us consider an observer with the four-velocity Vi =
√

(g00) δt
i . Now,

A
r = V 1

;0V
0 = Γ1

00V
0V 0 . (32)

[0 and 1 stand for t and r respectively]. For a global string,

A
r =

[

−16π2G2K2r − D
−n + 4

(b − 1)(n + 2)
r−b+1

]

(1 + β)−3 . (33)

We see that A
r is a function of r, and for n between 2 and 3, the expression A

r

is negative. Thus in this case, the gravitational force varies with the radial distance
and one can have repulsive gravitational effect on a test particle.

For gauge string,

A
r = [−16π2G2K2r − (4πGa2/r)](1 + β)−3 . (34)

Here the acceleration vector is always negative and gravitational force is repulsive.

6. Conclusions

This work extends the earlier work by Cho and Vilenkin regarding the gravita-
tional field of vacuumless cosmic strings to Einstein-Cartan theory. We see that in
going from the general relativity to Einstein-Cartan theory, both space-time cur-
vature and topology are affected by the presence of spin tensor. Study of motion
of the test particle reveals that the vacuumless global string in Einstein-Cartan
theory exerts gravitational force which is repulsive in nature. It is similar to the
case of a vacuumless global string in general relativity where the vacuumless global
string has only repulsive gravitational effect [5], but dissimilar to the case studied
in Brans-Dicke theory [6].
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In the case of a gauge string, we see that the vacuumless gauge string in Einstein-
Cartan theory exerts gravitational force which is only repulsive in nature. The
vacuumless gauge string in general relativity exerts attractive gravitational force
near the string and repulsive far away [5]. So, this observation is in striking contrast
with the analogue in Einsteins theory. Recently, Rahaman et al. [10] have shown
that global string in Einstein-Cartan theory exhibits repulsive gravitational force.
Thus it seems the spin in the Einstein-Cartan theory is responsible of these repulsive
forces.
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BEZVAKUUMSKE KOZMIČKE STRUNE U EINSTEIN-CARTANOVOJ
TEORIJI

Gravitacijska polja bezvakuumskih globalnih i baždarnih struna istražuju se u
okviru Einstein-Cartanove teorije uz pretpostavku slabog polja u jednadžbama
polja. Pokazuje se da globalne i baždarne strune mogu imati samo odbojni gra-
vitacijski učinak na ispitnu česticu.
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