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ABSTRACT

Volatility is usually a proxy indicator for market variation or ten-
dency, containing essential information for investors and policy-
makers. This paper proposes a novel hybrid deep neural network
model (HDNN) with temporal embedding for volatility forecasting.
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The main idea of our HDNN is that it encodes one-dimensional
time-series data as two-dimensional GAF images, which enables
the follow-up convolution neural network (CNN) to learn volatil-
ity-related feature mappings automatically. Specifically, HDNN
adopts an elegant end-to-end learning paradigm for volatility
forecasting, which consists of feature embedding and regression
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components. The feature embedding component explores the  B16i B23; C60; G17

volatility-related temporal information from GAF images via the
elaborate CNN in an underlying temporal embedding space.
Then, the regression component takes these embedding vectors
as input for volatility forecasting tasks. Finally, we examine the
feasibility of HDNN on four synthetic GBM datasets and five real-
world Stock Index datasets in terms of five regression metrics.
The results demonstrate that HDNN has better performance in
most cases than the baseline forecasting models of GARCH,
EGACH, SVR, and NN. It confirms that the volatility-related tem-
poral features extracted by HDNN indeed improve the forecasting
ability. Furthermore, the Friedman test verifies that HDNN is statis-
tically superior to the compared forecasting models.

1. Introduction

Financial markets are highly uncertain because of economic dynamics (Barra et al., 2020;
Wang et al.,, 2021). Investors should have a deep insight into the market variation or
uncertainty to increase the potential profitability of investments (Khan et al., 2016; Li
et al, 2021). As volatility is an indicator of uncertainty, it plays a vital role in financial
markets. High volatility is associated with market turbulence and significant price
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fluctuation, while low volatility describes calm and quiet markets. Hence, forecasting the
tendency of volatility has become essential to success for investments.

In recent decades, volatility forecasting has been one of the most active areas in
time-series econometrics and financial data mining. Effective forecasting is of great
importance for many financial activities, such as risk management (Dvorsky et al.,
2021), option pricing (Kim et al, 2021), and portfolio optimisation (Lampariello
et al., 2021). Unlike other time-series applications, there are many unpredictable
influences on financial volatility, such as political events, investors’ psychology, and
market information asymmetry. Moreover, how to accurately forecast the fluctuation
or tendency of the Stock Index has become an urgent issue for investors and policy-
makers. Hence, studying the volatility of the Stock Index is imperative.

This paper proposes an end-to-end hybrid deep neural network (HDNN) model
with temporal embedding for volatility forecasting. Inspired by the time-series encod-
ing (TSE) framework (Wang & Oates, 2015), we first encode the raw ‘log returns’
and ‘realised volatility’ time-series data as particular two-dimensional GAF images.
These transformed GAF features allow the deep convolution neural network (CNN)
model to ‘visually’ recognise, exploit, and learn the temporal patterns for volatility
forecasting. Therefore, HDNN can automatically explore the temporal characteristics
of time-series data and capture the volatility dynamics via the deep CNN model. The
main attractive features of the proposed HDNN model are as follows:

e Rather than learning from time-series data directly, HDNN utilises an elegant
strategy to encode one-dimensional time-series data as two-dimensional GAF
images. These encoding images can preserve the temporal relationship between
successive time intervals.

e HDNN is an end-to-end learning model for volatility forecasting. Namely, it can
simultaneously learn the temporal feature mapping and the volatility forecast-
ing task.

e The network architecture of HDNN consists of feature embedding and regression.
The feature embedding component explores the volatility-related embedding space
from GAF images via CNN. Meanwhile, the regression component takes the
embedding vectors of the time-series data to perform volatility forecasting tasks.

The rest of the paper is structured as follows. Section 2 presents a comprehensive
review of volatility forecasting models. In Section 3, we first provide a brief introduction to
the notations and the learning tasks of volatility forecasting. Then, we present the approach
for encoding the time-series data into GAF images. Afterwards, we give the structure
design of the HDNN model. Section 4 describes the experimental settings. Subsequently,
the extensive results on the synthetic and real-world Stock Index datasets are analysed in
Section 5. Section 6 ends the paper with the conclusions and future works.

2. Literature review

In econometrics and financial data mining, the study of volatility has garnered much
attention. Therefore, a great deal of research has been conducted to forecast volatility
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(Poon & Granger, 2005; Shin, 2018; Takahashi et al., 2021; Vychytilova et al., 2019).
Generally, there are two main branches: ARCH and machine learning.

2.1. ARCH branch for volatility forecasting

The ARCH branch has been widely considered to explore volatility clustering and
leptokurtosis within financial time-series data. The pioneering work could be traced
back to ARCH proposed by the most influential economist Engle (1982). The main
idea of ARCH is to formulate the error variance as an autoregressive (AR) process.
Subsequently, Bollerslev (1986) proposed GARCH with lagged conditional variance to
track changes in historical innovations. As a powerful extension of ARCH, GARCH
uses a more general model in that the variance is expressed as an autoregressive mov-
ing average (ARMA) process. However, both fail to measure leverage effects because
of the symmetrical distribution assumption.

As a result, several studies have brought great efforts to their improvements.
EGARCH (Nelson, 1991) was proposed to capture asymmetry in time-series data by
separating the sign and the volume of previous returns. However, when data are non-
stationary, the performance of EGARCH will degrade. Engle (2002) extended
GARCH with the dynamic conditional correlation (DCC) strategy for multivariate
volatility. However, the DCC procedure is less tractable than expected. Bauwens et al.
(2007) proposed Mixed-GARCH by modelling the conditional distribution of time
series with a mixture of multivariate normal distributions. Nevertheless, the normal
distribution assumption is too strict in practice. To forecast the nonstationary volatility,
Li et al. (2018) presented ZD-GARCH with a first-order zero drift strategy for heterosce-
dasticity. It performs stability with the sample path oscillating randomly between zero
and infinity overtime under a specific condition. Paolella et al. (2019) improved GARCH
with hidden Markov regime-switching dynamics for volatility and further proposed
Markov-GARCH. This model is coherent in the sense of being a well-defined stochastic
process. Wang et al. (2021) established ARMA-GARCH models with Student’s t-distribu-
tion assumption for the daily volatility of stock forecasting.

However, most ARCH models strongly depend on the generalised linearity
assumption. Thus, it is challenging to disclose the nonlinear relationship within vola-
tility. Moreover, most of them were originally proposed for low-frequency data (daily,
weekly, etc.), which are unsuitable for high-frequency large-scale intraday data.

2.2. Machine learning branch for volatility forecasting

Another branch of volatility forecasting is machine learning (ML), which can auto-
matically explore underlying patterns from a large amount of financial time-series
data (Sezer et al., 2020; Ge et al.). Henrique et al. (2019) provided a comprehensive
review of the most influential literature on financial market prediction, including
neural network (NN), support vector machine (SVM), gradient boosting tree (GBT),
and random forest (RF). The results showed that machine learning models outper-
formed the traditional ARCH models with lower forecasting errors in most cases.
Yang et al. (2020) verified that SVM could significantly improve predictive ability



1380 W.-J. CHEN ET AL.

compared with the GARCH models. Meanwhile, Kim et al. (2021) demonstrated that
machine learning models provided better forecasting performance than generalised
linear models. Based on approximately 80 relevant papers in the finance volatility
forecasting field, Ge et al. (2023) surveyed that NN could effectively learn from the
time-series data and achieve excellent forecasting performance.

Other researchers have applied various machine learning methods to financial data
for volatility forecasting. To enhance the ability of GARCH models for S&P 500 fore-
casting, Hajizadeh et al. (2012) proposed a hybrid NN-EGACH model by feeding NN
with the estimates of volatility from GARCH. Mishra and Padhy (2019) extended the
support vector regression (SVR) for stock volatility and then applied it to portfolio
construction. With the Markowitz strategy, Ma et al. (2021) combined SVR, RF, and
deep learning (DL) models for portfolio optimisation. Zhang et al. (2021) constructed
an NN model with different horizon times to forecast copper fluctuations. To
improve the ability of echo state networks, Gabriel et al. (2021) proposed a hybrid
model by incorporating the consistent PSO metaheuristic approach for hyperpara-
meter tuning. Overall, many results in recent research (Ecer, 2013; Eduardo et al,
2019; Lee & Kim, 2020; Nayak et al., 2015; Yang et al., 2020) affirmed that machine
learning models generally provide better forecasting ability than standard statis-
tical models.

However, most machine learning methods learn directly from the raw time-series
data. Such a raw form may not suitably represent the essential data characteristics
(Wang & Oates, 2015). Thus, it is urgent to extract the most task-related temporal
features from the raw data to explore the underlying volatility patterns.

3. Methodology
3.1. The learning task of volatility forecasting

First, we give notations used throughout this paper. Upper and lower boldface letters
are used for matrices and column vectors, respectively. All vectors are column vectors
unless transformed to row vectors by a prime superscript (-)'. A vector of zeros and
ones of arbitrary dimensions is represented by 0 and e, respectively. An identity
matrix of arbitrary dimensions is denoted as I.

In what follows, we describe the learning task of volatility forecasting (Liu, 2019;
Yang et al.,, 2020).

Definition 1. (Log returns) Suppose the transaction price series is P =
[P1> - -->pi—1, i), whose element p, denotes the t-th transaction price observation.
Then, the ¢-th log returns r; is defined as

ry = log pi—logps—; (1)

Definition 2. (Interval) Suppose two consecutive observations are p; and p;_;. Then,
the sampling interval or frequency I, is defined as
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In = Time(p,)—Time(p;—1) (2)

where Time(p) is the timestamp of the observation p.
It can be seen that the higher the frequency of the transaction price series, the
smaller the time interval.

Definition 3. (Realised volatility, RV) The RV is the square root of the realised vari-
ance, which is calculated as the variance of the log returns in a window of m intervals
into the future,
J— O
RVt = — Z (ri — Tt) (3)

m i=t—m+1

where 7, stands for the average log returns in the considered window.

The RV measures the magnitude of the change in terms of returns, which reflects
the actual market risk or reward. Thus, we model RV as the forecasting parameter
of volatility.

Definition 4. (The learning task of volatility forecasting) Let Ry = {rt—mi1, ..., 71} €
R™ and V; = {RV;_y11, ..., RV} € R™ be the time-series of log returns r and real-
ised volatility RV with m historical lags at the t timestamp. The goal of volatility fore-
casting for our MDVF is to learn a nonlinear function

RV =f(R, Vi) (4)

which maps the predictor time-series R, and V, at the ¢ timestamp to the response
variable RV, at the future t + 1 timestamp.

3.2. Encoding the time-series data into GAF images

Recently, the convolution neural network (CNN), one of the most popular deep
neural networks, has achieved state-of-the-art computer vision performance (LeCun
et al, 2015). CNN has the attractive property that it is good at feature extraction
according to the particular learning task without any prior knowledge and human
intervention. That is, it can automatically learn the task-related features via the train-
ing process, whereas these features should be hand-engineered in traditional algo-
rithms. Moreover, CNN can generate shift-invariance mappings with the sharing
weights through the receptive fields. Although CNN achieves significant performance
in many domains, it cannot extract the temporal features directly from the raw finan-
cial time-series data. The reason is that the representation of time-series data is a
one-dimensional vector, while the input of many pre-trained CNNs requires a two-
dimensional matrix.

Therefore, transforming time-series features into ‘visual’ two-dimensional features
has attracted much attention in signal processing and physics. The time-series encod-
ing (TSE) framework (Wang & Oates, 2015) provides an elegant way to transform
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time-series into GAF images. As a result, it enables the existing pre-trained deep
CNN models to learn from the encoding data directly, rather than the time-consum-
ing process of training RNN or 1D-CNN models from scratch.

We now discuss how to encode the predictor time-series R; and V; by GAF
images under the TSE framework (Wang & Oates, 2015). For simplicity, we unify R;
and V; as the time-series X; = {X;—+1, - .., %} with m lags at the ¢ timestamp.

First, we rescale the elements of X; into the interval [—1, + 1] via the following
normalisation operation:

o= (x; — max(X;)) + (x; — min(Xy))
’ max(X;) — min(X;)

(5)

Then, we transform the rescaled time-series X, from the Cartesian coordinate sys-
tem into the polar coordinate system by

¢; = arccos(x;), x; € X,
i
i = j c 0’
a N 1 [ m]

(6)

where ¢; is the angle of X;, a; is the corresponding amplitude or radius, i is the
sequence number in X;, and m is the length of X; to regularise the span of the polar
coordinate system. Equation (6) describes the coordinates of each element of X, in
the polar system, which provides a new perspective on X;.

Based on the new polar system, we construct two Gramian Angular Fields (GAF)
matrices by calculating the sum/difference between elements within the series X; as
follows:

cos (¢ +y) -+ cos (b + b,,)
cos (¢y +¢y) -+ cos (P, + b,,)

St — : .. : (7)
cos (¢, + ) - cos(d,, +d,)

and

sin (¢ +¢y) - sin(d; +P,,)
sin (¢2 + d)l) e sin ((1)2 + d)m)

D; = : . . (8)

Sin (G + G1) -+ sin (G + by)

Remark 1. From (7) and (8), we can efficiently analyse the temporal correlation
property of the series X; in the polar system by considering the trigonometric sum
and difference between different time intervals. Precisely, the time interval increases
as the position moves from top-left to bottom-right in the GAF matrices, which pre-
serves the rich temporal dependency within the series. That is, assuming x; and X;



ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA @ 1383

with |i — j| = k in X,, the element of GAF matrices represents the relative correlation
of x; and x; with respect to time interval k.
According to some mathematical knowledge, we reformulate (7) and (8) in the fol-

lowing form
/
S, —X’tf(t—< e—f(f) ( e—f(f) )

and

D, = —( e—X?) Xt—f(/t<\/e—f(f) (10)

where the dimension of S; and D; is m x m. Note that the operations in (9) and (10)
can encode the series X, effectively into two-dimensional GAF matrices, which is
suitable for most CNN models.

Finally, we merge a series of images I; from the above matrices as

S’ SRV)
L=t (11)
(5 o

where the dimension of I; is 2m x 2m, and the superscripts r and RV in §; and Dy
denote the GAF encoding of R, and V;, respectively. The whole procedure for gener-
ating the GAF images from the time-series data is illustrated in Figure 1.

3.3. A hybrid deep neural network model for volatility forecasting

This subsection introduces a novel hybrid deep neural network (HDNN) for volatility
forecasting. The architecture of the HDNN is described in Figure 2. Specifically, our
HDNN consists of two components: feature embedding and regression. The feature
embedding part aims to automatically learn an underlying embedding space from the
GDF images via CNN. To preserve as much temporal information as possible, it gen-
erates a series of feature mappings that transform each GDF image from the original
space into a new embedding space. Then, the regression part uses these new repre-
sentation vectors combined with the historical time-series for the volatility regression
learning task.

Now we discuss the structure of the CNN in our HDNN model. Inspired by the
art-of-the-state VGG16 network (Zhang et al., 2016), the CNN comprises six conv2D
(2D convolution) layers and a fully connected dense layer, detailed as follows:

e Similar to VGG16 (Simonyan & Zisserman, 2015), we use the two stacked 3 x 3
conv2D layers with a stride of one throughout the whole neural network rather
than relatively large receptive fields in the convolution layers. The advantage of
such a network structure is that it needs fewer parameters but obtains more nonli-
nearity or discriminative ability than 5 x 5 or 7 X 7 conv2D layers.
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Figure 1. The procedure for transforming the time-series data into the encoding GAF images.
Source: The authors’ illustration.
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Figure 2. The architecture of hybrid deep neural network model (HDNN).
Source: The authors’ illustration.

e To extract the underlying temporal feature from GAF images, we configure three
groups of two stacked conv2D layers with 32, 64, 128 channels, as shown in differ-
ent colours in Figure 2.

e To avoid model overfitting, we implement the Dropout layer after the convolution
layers. It offers remarkably effective regularisation to improve the generalisation
ability in deep neural networks.

e Moreover, we use ReLU for the activation function in each layer. Since ReLU has
a simple formula max(0,x), it obtains a more efficient gradient computation than
the sigmoid or tanh function. Additionally, it reduces the vanishing gradient issue
during the training procedure.

e Finally, we use a flatten layer to convert the output of the conv2D layers into a
single long feature vector. With the flattening vector, we further connect it to a
dense layer to perform dimensionality reduction. In other words, we put all the
high-dimensional tensors together in one line and make connections with the
dense layer.

After obtaining the feature vector from the dense layer in the CNN, we combine it
with the historical time-series R; and V; via a concatenation operation. Then, the
concatenated vector is fed as the input of the follow-up network for volatility fore-
casting. Here, we utilise three fully connected dense layers to implement the regres-
sion task: the first two have 128 channels with the ReLU activation function, and the
third performs volatility forecasting with one output channel. The configuration of
these dense layers is the same in all networks.
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Once the HDNN model is built, we should design a criterion to validate its fore-
casting ability to guide the model optimisation. It is worth noting that the loss func-
tion plays an essential role during the model learning phase, which measures how
good the prediction is. Namely, we estimate the model performance iteratively via the
loss function and then update the parameters to reduce errors on the subsequent
evaluation. In our model learning, we adopt the mean square error (MSE) or least
square as the loss function

1 m
MSE:—Z RV, — RV;) (12)

§

where RV is the volatility forecast, RV; is the ground-truth volatility, and m is the
scale of the dataset. MSE is the average of the squared differences between the pre-
dicted RV; and actual RV;, which is one of the best measures for volatility.

Remark 2. Different from most existing volatility forecasting methods, our HDNN
can automatically learn the volatility-related temporal embedding via a convolution
neural network. Specically, it enjoys the following attractive features: (1) Rather than
learning from the time-series data directly, HDNN utilises an elegant strategy to
encode one-dimensional time-series data as two-dimensional GAF images. These
encoding images can preserve the temporal relationship between successive time
intervals. (2) HDNN is an end-to-end learning model for volatility forecasting. There
is no need to construct or select features manually. That is, it can learn the temporal
feature mapping and the volatility forecasting task simultaneously. (3) The network
architecture of HDNN consists of feature embedding and regression. The feature
embedding component explores the volatility-related embedding space from GAF
images via CNN. Meanwhile, the regression component takes the embedding vectors
of the time-series data to perform volatility forecasting tasks.

4. Experimental setting

To demonstrate the validity of our HDNN model, we investigate its performance on
both synthetic and real-world time-series datasets. The synthetic datasets are gener-
ated by the geometric Brownian motion (GBM) process, while the real-world datasets
are collected from five Stock Index datasets. The implementations are carried out on
a Linux Centos workstation using Python 3.8 with an Intel i9-10090k processor
(3.7 GHz) and 128 GB random-access memory (RAM).

4.1. Baselines

Our experiments focus on comparisons between the proposed HDNN and five time-
series forecasting methods, including GARCH, EGARCH, linear kernel SVR, RBF
kernel SVR and NN, detailed as follows:

e GARCH (Bollerslev, 1986) and EGARCH (Nelson, 1991) are popular volatility
methods that use observations of returns to model volatility shocks. Here, we
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utilise the ‘ARCH’ Python library to train both GARCH and EGARCH in our
experiments. The optimal lag parameters (p and g) in GARCH and EGARCH are
chosen from {1,2, ...,10} according to the Bayesian Information Criteria (BIC).

e SVR (Mishra & Padhy, 2019) is the regression version of SVM, which is a preemi-
nent maximum-margin learning paradigm for data mining. The structural risk
minimisation principle gives SVR an excellent generalisation ability. We consider
the linear SVR (SVR_lin) and the RBF nonlinear SVR (SVR_rbf) for comparison
in the experiments. Moreover, we utilise the ‘scikit-learn” Python library to train
these SVR models. The optimal parameters (C for both SVR models and o for
RBF kernel) are chosen from {27%,27°,...,2° 2%} according to the cross-valid-
ation method.

e Neural Network (NN) (LeCun et al., 2015), is a well-known mathematical model that
uses learning algorithms to explore the underlying pattern among data. It employs a
series of hidden neurons to approximate the complex relationships between inputs
and outputs. For a better comparison, the structure of the baseline NN consists of
three dense layers with the same setting as the regression part of the HDNN. The
combination vector of the historical log returns and realised volatility time-series is
the input of the NN. We utilise the ‘PyTorch’ deep learning Python library with
CUDA 10.2 to develop both the NN and our HDNN. The Adam optimiser is used
to train these models on an NVIDIA GPU (Quadro RTX 8000). Moreover, the learn-
ing rate is chosen from the set {0.0001,0.005,0.001,0.005}.

4.2. Performance criteria

In this subsection, we describe the criteria used to evaluate the performance of these
volatility forecasting models. Without loss of generality, let m be the number of sam-
ples, RV; be the volatility forecast, RV; be the ground-truth volatility, and RV =
L%~ RV; be the average value of the series {RV},RV,, ...,RV,,}. Then we use the
following criteria (Davidovic, 2021; Liu, 2019; Wu et al., 2021; Yang et al., 2020) for
model evaluation.

e RMSE: The mean squared error (MSE) is a risk metric corresponding to the
expected value of the squared error, defined as

1 & —\2
RMSE = \/;Z; (RV; — RV;) (13)

e MAD: The mean absolute deviation (MAD) is a risk metric corresponding to the
expected value of the absolute error, defined as

1 & —
MAD = %Z |RV,—RVj| (14)

i=1

o MedAE: The median absolute error (MedAE) is calculated by taking the median
of all absolute differences between the ground truth and the prediction, defined as



1388 W.-J. CHEN ET AL.
MedAE:median()va “RVi|, ...,|RV} —lﬁ/\m)) (15)

e MAPE: The mean absolute percentage error (MAPE) is the mean or average of
the absolute percentage errors of forecasts, defined as

100 & |RV: = RVi|
MAPE =—3 1~ " 16

e R’ The coefficient of determination R” is a statistical measure that represents the
proportion of the variance for a dependent variable, defined as

Z:il RV; — E‘Z
- XL [RV - RV

R =

(17)

4.3. Time-series cross-validation for volatility forecasting

For the time-series learning tasks, the traditional cross-validation strategy becomes
invalid. Namely, we cannot split training and validating sets in the random sense for
the time-series forecasting. The reason is that such a random instance selection mech-
anism will cause discontinuity and break down the temporal relationship within the
series. It makes no sense to forecast the past using future-looking data. Thus, we
must avoid choosing future-looking data in the training set during model learning. In
short, we should preserve the temporal dependency within the training and validat-
ing dataset.

To address the above issue, we utilise cross-validation on a rolling basis (Bergmeir
& Benitez, 2012) for our forecasting learning task, as shown in Figure 3. Specifically,
we begin with a small subset of series data from the start to the ¢ timestamp for
training and forecast the follow-up future data with a length of t+ n. Then, we
evaluate the forecasting performance with the criteria in Section 4.2. Subsequently, we
expand the training set to the ¢ + n timestamp with the last forecasted data and fore-
cast the future segment with n length. The process moves the forecasted segment suc-
cessively until it hits the end of the instances.

5. Experimental analysis
5.1. Results of the synthetic GBM time-series datasets

To demonstrate the effectiveness of our HDNN model, in this subsection, we perform
comparisons on the synthetic time-series datasets generated by the geometric
Brownian motion (GBM) process (Chen & Tsai, 2020). GBM is a powerful mathem-
atical finance tool to model stock prices, similar to the famous Black-Scholes pricing
model. It describes the pricing model as a continuous-time stochastic process, in
which the logarithm of price p; over time obeys a Brownian diffusion process:
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Figure 3. The procedure of time-series cross-validation on rolling windows.
Source: The authors’ illustration.

dpt = rptdt + Gptth (18)

where r is the risk-free rate, o is the constant volatility for the pricing process, and
the random variable w,~A/(0, 5*t). For an initial price py, Equation (18) has an ana-
lytic solution:

2

Pt = po exp (r - c;)tJr oWy (19)

Following the GBM process in Equation (19), we generate four pricing time-series
with different levels, ie, o ={0.05,0.1,0.15,0.2}. Each pricing series consists of
1000 samples with a random initial value po, as illustrated in Figure 4. For simplicity,
we use TypeA ~ TypeD to notate them. Figure 4 shows that TypeA ~ TypeD have
diverse volatilities and tendencies, which can reflect different market situations.
Table 1 summarises the statistics of volatility on these datasets.

In our experiments, we train and test each forecasting model via the five-fold
time-series cross-validation executions. Table 2 records the mean and std results of
six regressors on each GBM time-series dataset in terms of the five metrics. The
entries in table with the best performance (the lowest RMSE, MAD, MedAD and
MAPE, and the highest R*) are highlighted in bold. Each entry in Table 2 has two
parts: the first denotes the mean value of the cross-validation results, and the second
stands for plus or minus the standard deviation. From Table 2, we can obtain
the following:

e Our HDNN model yields better generalisation capability than other models in all
cases. Specifically, HDNN exhibits the smallest RMSE, MAD, MedAD and MAPE
with the largest R> among these methods. It confirms the effectiveness of our
HDNN in forecasting time-series data with different volatility levels.

e The comparison results between HDNN and NN show that the feature embedding
component helps HDNN construct the informative temporal embedding space. As



1390 W.-J. CHEN ET AL.

TypeA of GBM
13
12
Q
K
“11
10
200 400 600 800 1000
Timestamp
TypeB of GBM
100 yp
o 90
L2
&
80
0 200 400 600 800 1000

Timestamp
TypeC of GBM

30

Price
N
w

20

0 200 400 600 800 1000
Timestamp
TypeD of GBM
25 yp!
20
Q
L
<15 NJW\NJFWWWW
10
0 200 400 600 800 1000
Timestamp

Figure 4. The illustration of four types of GBM time-series datasets.
Source: The authors’ illustration.

Table 1. The statistics of realised volatility for the four GBM time-series datasets.

Datasets Mean Std Skewness Kurtosis
TypeA 0.4558 0.1618 0.3591 0.5102
TypeB 0.9501 0.3496 0.4871 —0.0607
TypeC 1.4351 0.5517 0.3453 0.3326
TypeD 1.8372 0.6412 0.2531 —0.2236

Source: The authors’ illustration.

a result, it can better understand the volatility and tendency within the time-ser-
ies data.

e The machine learning models (HDNN, NN, and SVR) outperform the traditional
ARCH based methods (GARCH and EGARCH), with a lower forecasting error
and variance in most cases. GARCH and EGARCH formulate the volatility in the
linear sense, which may not be suitable for high volatility cases.

5.2. Results on the real-world Stock Index datasets

In this subsection, we apply our HDNN to forecast the volatility of five 5-minute
high-frequency real-world Stock Index datasets. These datasets' come from the
CSI300 Index (000300.SS), SSE50 Index (000016.SS), ChiNext Index (399006.SZ), S&P
500 Index (.SPX), and NASDAQ Composite (.IXIC), described as follows:
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Table 2. The forecasting results of each regressor on the four GBM time-series datasets, in terms
of the five metrics.

Datasets Regressors RMSE | MAD| MedAD | MAPE | R*1
TypeA GARCH 0.164 +0.020 0.130+0.017 0.108 £0.020 0.422+0.098 0.017 £0.048
EGARCH 0.162+0.015 0.128+0.013 0.107 £0.017 0.417 £0.098 0.033+0.088
SVR_lin 0.126 +0.026 0.096 +0.022 0.074+0.026 0.270+0.076 0.392+0.176
SVR_rbf 0.118+£0.021 0.089+0.018 0.070+0.021 0.241£0.057 0.409+0.196
NN 0.119+0.021 0.089+0.019 0.065+0.016 0.251+0.072 0.447 £0.194
HDNN 0.112+0.009 0.083 +0.007 0.061+0.004 0.228 £0.035 0.517 £0.087
TypeB GARCH 0.341+0.033 0.284+0.029 0.254+0.025 0.397 £0.067 0.057 +0.082
EGARCH 0.327 +£0.025 0.272+0.020 0.246+£0.014 0.384+0.065 0.089+0.145
SVM_lin 0.254+0.077 0.199 +0.068 0.162+£0.075 0.264+0.117 0.392+0.294
SVM_rbf 0.243 +0.059 0.191 +£0.058 0.153£0.070 0.252+0.092 0.443+0.239
NN 0.234+0.035 0.182+0.036 0.143+£0.038 0.241 £ 0.069 0.490+0.133
HDNN 0.220+0.010 0.167 +0.008 0.125+0.005 0.215+0.025 0.550+0.090
TypeC GARCH 0.532+0.066 0.440+0.061 0.386+0.088 0.419+0.049 0.047 £0.048
EGARCH 0.524 +0.065 0.433 +0.060 0.379£0.083 0.415+£0.050 0.076 £0.051
SVM_lin 0.382+0.035 0.285+0.034 0.225+0.047 0.251+0.042 0.482+0.218
SVM_rbf 0.367 +0.037 0.277 £0.038 0.213£0.049 0.246 £ 0.055 0.504+0.232
NN 0.362+0.031 0.273+0.030 0.211+0.032 0.241 £0.045 0.521+0.199
HDNN 0.349+0.016 0.260 +0.009 0.197£0.010 0.224£0.009 0.570+0.090
TypeD GARCH 0.615+0.037 0.501 +0.026 0.458 £0.030 0.371£0.051 0.052+0.059
EGARCH 0.627 +0.026 0.512+0.017 0.451+0.021 0.380+0.046 0.014+0.052
SVM_lin 0.473+0.145 0.360+0.124 0.272+0.124 0.236 +0.064 0.416+0.345
SVM_rbf 0.465+0.113 0.352+0.090 0.269 £ 0.087 0.229+£0.037 0.443+0.236
NN 0.433+0.053 0.330+0.048 0.257 £0.057 0.222+£0.027 0.528+0.088
HDNN 0.422 +0.034 0.315+0.022 0.234+0.034 0.211+£0.017 0.554 +0.049

Source: The authors’ illustration.

The CSI300 Index is a capitalisation-weighted stock market index designed to
reflect the performance of the top 300 A-shares on the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE). It consists of the 300 constituent
stocks with the largest market capitalisation and liquidity from the entire universe
of A-share enterprises in China.

The SSE50 Index consists of the 50 most representative A-shares from the SSE by
the scientific and objective method. It aims to reflect the complete picture of those
excellent quality enterprises, which have the most influence within SSE.

The ChiNext Index is free-float capitalisation-weighted and comprises the 100
largest liquid A-shares listed on the ChiNext Market of SZSE. As the benchmark
index of the ChiNext Market, the ChiNext Index aims to reflect the performance
of innovative businesses and emerging industries.

The S&P 500 Index is a stock market index tracking the performance of 500 large
companies listed on stock exchanges in the United States. It is one of the most
commonly followed equity indices.

The NASDAQ Composite is a stock market index that includes almost all stocks
listed on the NASDAQ stock exchange in the United States. The composition of
the NASDAQ Composite is heavily weighted towards companies in the informa-
tion technology sector.

Specifically, our experiments use the 5-minute high-frequency data of CSI300,

SSE50, ChiNext, S&P 500, and NASDAQ observed in the last three years: 2019, 2020,
and 2021, as shown in Figure 5. Firstly, we conduct an exploratory data analysis on
the above index datasets to investigate their characteristics. Take CSI300 in 2020 for
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Figure 5. The illustration of CSI300, SSE50, ChiNext, S&P 500, and NASDAQ datasets.
Source: The authors’ illustration.
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Figure 6. The log returns (left) and realized volatility (right) of CSI300 index in 2020.
Source: The authors’ illustration.

example. Figure 6 plots the corresponding intraday log returns (left) and realised
volatility (right). Continuous fluctuations appear during different timeframes. Due to
the effects of COVID-19, the fluctuations in the first half of 2020 are relatively large,
while the fluctuations in the second half tend to be stable. This phenomenon indi-
cates that the financial market is more sensitive to unpredictable events than other
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Table 3. The statistics of realized volatility for the five Stock Index datasets.

Datasets Year Samples Mean Std Skewness Kurtosis
CSI300 2019 11707 0.1226 0.1030 4.6032 36.6748
(000300.5S) 2020 11664 0.1356 0.1371 11.9027 274.2992
2021 9264 0.1354 0.0918 2.8142 14.2064
SSE50 2019 11707 0.1192 0.0995 4.2232 29.7014
(000016.SS) 2020 11664 0.1299 0.1270 10.4634 222.4348
2021 9264 0.1397 0.0913 24601 10.3207
ChiNext 2019 11707 0.1642 0.1204 3.9350 29.6242
(399006.52) 2020 11664 0.1905 0.1533 73723 120.1962
2021 9264 0.2007 0.1360 2.5952 11.9347
S&P 500 2019 11707 0.0711 0.0978 6.2247 52.4028
(.SPX) 2020 11664 0.1209 0.2046 7.2763 82.5521
2021 9264 0.0692 0.0994 5.3037 35.2403
NASDAQ 2019 11707 0.0745 0.1204 6.0673 49.0550
(IXIC) 2020 11664 0.1703 0.2541 4.8389 35.0700
2021 9264 0.0707 0.1416 5.8012 42.4892

Source: The authors’ illustration.
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Figure 7. The RMSE metric of regressors on the five Stock Index datasets.
Source: The authors’ illustration.

forecasting applications. Moreover, Table 3 summarises the statistics of realised vola-
tility on these datasets.

To verify the forecasting ability of the models, we perform the five-fold time-series
cross-validation on the above real-world Stock Index datasets. Figures 7-11 illustrate
the box plot of the comparison results of each regressor in terms of RMSE, MAD,
MedAD, MAPE and R’. Box in these Figures records the metric score of the five-fold
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cross-validation for each regressor on each dataset, including the minimum score,
first (lower) quartile, median, third (upper) quartile, and maximum score. The lower
the RMSE, MAD, MedAD, and MAPE, the better performance of the regressor is;
vice versa for R%. Moreover, the larger the interquartile range in the box, the more
the deviation of the regressor is. From Figures 7-11, we can obtain that:

e HDNN performs fairly well and has a smaller RMSE, MAD, MedAD and MAPE
with a larger R* on almost all datasets. It confirms the efficacy of the proposed
HDNN on high-frequency time-series learning tasks.

o The prediction results of the HDNN, NN, and SVM are better than those of the
statistical GARCH and EGARCH models. The reason is that GARCH and
EGARCH only consider the linear structure of variance to model volatility, leading
to less capability to track the complex high-frequency information.

e HDNN and NN outperform SVR in most cases. The structure of SVR can be seen
as a single hidden layer shallow network, which is suitable for small sample tasks.
For large-scale learning cases, the nonlinear multilayer network of HDNN and
NN enjoys more capacity than SVR to exploit the high-frequency volatility trend.

e HDNN achieves better performance than NN. With the help of the time-series
encoding framework, our HDNN can use the CNN to extract the underlying tem-
poral embedding from the high-frequency time-series data. This strategy enables
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HDNN to learn more informative features for volatility, which helps improve fore-
casting performance.

To provide more statistical evidence (Hatamlou, 2013; Yu et al,, 2017), we employ
the Friedman test to verify whether there are significant differences between HDNN
and the other regressors on the learning results in Figures 7-11. Tables 4-8 record
the rank of regressors obtained via the Friedman test according to each metric. The
results show that HDNN is ranked first in the whole situation, followed by NN
successively.

Now, we calculate the X’ 127 value for the Friedman test as follows:

k

k+1
|2

=1

12N
= (20)

where k is the number of regressors, and r; is the rank on the N datasets for the i-th
regressor listed in Tables 4-8. In our experiments, k =6 and N = 15 (3years with
the five-fold time-series cross-validation, i.e., N = 3 x 5).

Let us consider, for example, the RMSE metric on CSI300. The term Zle r? s
computed for the first line of Table 4:
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Table 4. Rank and statistic of the Friedman test on the CSI300 dataset.

Regressors (Rank)

Metric GARCH  EGARCH  SVM_lin  SVM_rbf NN HDNN  Statistic p-value Hypothesis
RMSE 5.0666 5.0666 3.8000 3.6000 24666  1.0000 33.3428  4.08954E-10  reject
MAD 5.4000 5.4666 3.2666 3.0666 26666  1.1333  23.0962  6.5955E-9 reject
MedAD  5.4666 5.1333 3.2000 3.2666 25999 13333 320911  5.1398E-10 reject
MAPE 5.6000 5.2000 3.4000 2.9333 2.4666 1.4000 41.7945 1.0913E-10 reject
R? 5.5333 5.2666 2.8000 3.6000 22666  1.5333  42.2500  1.0809E-10 reject

Source: The authors’ illustration.
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Table 5. Rank and statistic of the Friedman test on the SSE50 dataset.
Regressors (Rank)
Metric GARCH EGARCH SVM_lin SVM_rbf NN HDNN Statistic p-value Hypothesis
RMSE 5.3333 5.1999 3.4333 3.6333 2.4000 1.0000 51.0120 6.0951E-11 reject
MAD 5.3666 5.2666 3.0000 3.5666 2.4000 1.4000 34.8047 2.9598E-10 reject
MedAD 5.2666 5.2666 3.4666 3.6000 2.2666 1.1333 45.4019 7.5646E-11 reject
MAPE 5.4000 5.3999 2.6000 3.7333 2.4000 1.4666 46.1801 7.7125E-11 reject
R? 5.7333 5.2666 2.7333 3.6666 2.0666 1.5333 71.8644 4.7931E-11 reject
Source: The authors’ illustration.
Table 6. Rank and statistic of the Friedman test on the ChiNext dataset.
Regressors (Rank)
Metric GARCH EGARCH SVM_lin SVM_rbf NN HDNN Statistic p-value Hypothesis
RMSE 5.1333 5.4000 3.1333 4.0000 2.3333 1.0000 61.9297 4.2042E-11 reject
MAD 5.4000 5.4666 3.2666 3.0666 2.6666 1.1333 56.3125 5.0725E-11 reject
MedAD 5.6000 5.1999 3.4000 3.2000 2.3333 1.2666 51.3139 6.2281E-11 reject
MAPE 5.6666 5.2666 3.3333 2.8667 2.6000 1.2666 56.8547 5.3429E-11 reject
R? 5.5333 5.4666 3.1333 3.2000 2.2666 1.4000 59.3045 6.8930E-11 reject
Source: The authors' illustration.
Table 7. Rank and statistic of the Friedman test on the S&P 500 dataset.
Regressors (Rank)
Metric GARCH EGARCH  SVM_lin  SVM_rbf NN HDNN Statistic p-value Hypothesis
RMSE 5.2333 5.2333 3.2000 3.4999 2.6000 1.2333 51.6285 6.87707E-10 reject
MAD 5.6000 5.3999 2.8000 3.0000 2.6666 1.5333 57.0952 1.16210E-9 reject
MedAD 5.7333 5.0000 2.9333 3.0000 2.5666 1.7666 50.0761 1.37109E-9 reject
MAPE 5.5333 5.3999 3.2666 3.2666 2.2333 1.2999  61.2761 4.4418E-11 reject
R? 5.1999 5.4666 3.4000 3.4666 2.3666 1.0999 59.1999 6.9053E-11 reject
Source: The authors’ illustration.
Table 8. Rank and statistic of the Friedman test on the NASDAQ dataset.
Regressors (Rank)
Metric GARCH  EGARCH  SVM_lin  SVM_rbf NN HDNN  Statistic p-value Hypothesis
RMSE 5.5333 5.0666 3.2666 3.8666 2.2666 1.0000 623523 3.72648E-11 reject
MAD 5.7666 5.2333 2.2666 3.2666 2.6666 1.7999 57.0095 1.14100E-9 reject
MedAD  5.6000 5.1333 2.6666 3.3333 2.7333 1.5333 32.0911 5.1398E-10 reject
MAPE 5.6666 5.3333 3.8000 3.0000 1.9333 1.2666 67.8761 4.5638E-11 reject
R? 5.1666 5.7666 3.5333 3.3333 2.1666 1.0333 67.7428 4.1790E-11 reject
Source: The authors’ illustration.
> 7 = (5.0666 + 5.0666” + 3.87 + 3.6> + 2.4666 + 1.0*)~85.8249 (21)
= . . . . .07 )==85.
i=1
Then, substituting k = 6, N = 15, and (21) into (20), we obtain
2
12 x 15 6(6+1
= (85.8249 — (6 +1)7) _ 52.8213 (22)
6(6+1)

Based on the above Friedman statistic X% = 52.8213, we calculate the F-distribu-
tion statistic Fp with (k—1,(k — 1)(N — 1)) = (5,70) degrees of freedom
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Fr=

N-1)x X} 15— 1) x 52.8213
( 1) P (5-1) ~33.3428 (23)

N(k—1)— &% 15x (6 —1)—52.8213

Similarly, we calculate the statistic Fr for the other cases, summarised in the
‘Statistic’ column of Tables 4-8. Additionally, the p-value is provided by the
Friedman test. The significance level is set as 0.05. The results reject the null hypoth-
esis (there is no significant difference among the compared regressors.) for these
datasets. It indicates that our HDNN is statistically superior to the other forecasting
models. Overall, the above results confirm the feasibility of HDNN.

6. Conclusion

Learning volatility from time-series data plays an essential role in making investment
decisions for the financial market. This paper proposes a novel deep neural network
model with temporal embedding for volatility forecasting, termed HDNN. The main
characteristics of our HDNN are as follows:

1. An elegant time-series encoding strategy is introduced to transform one-dimen-
sional time-series data into two-dimensional GAF images. These images can pre-
serve the temporal relationship among the time-series data.

2. With the encoding GAF images, the follow-up CNN can automatically learn the
volatility-related feature mappings, which is very challenging for traditional fea-
ture engineering methods. The feature embedding component can explore an
underlying temporal embedding space from the GAF images via the elaborate
CNN. The new representation vectors of the time-series data in the embedding
space preserve the temporal information as much as possible.

3. HDNN is an end-to-end learning model for volatility forecasting. It can simul-
taneously carry out temporal feature learning (feature embedding component)
and volatility forecasting tasks (regression component).

Note that most existing methods (Henrique et al., 2019; Wang et al.,, 2021) directly
utilise the raw time-series data to build the volatility forecasting model. However, the
raw time-series data cannot effectively express the volatility tendency. To address the
above issue, our HDNN encodes one-dimensional time-series data as two-dimen-
sional GAF images rather than directly learning from the raw time-series data. Then,
the CNN constructs the most volatility-related features in the embedding space.
Afterwards, the volatility-related features are used to train the forecasting regressor.
Compared with the raw data, these features can better represent the time-series data
with more helpful and pure information related to volatility.

Finally, the proposed HDNN model is compared with the state-of-the-art GARCH,
EGACH, SVR, and NN models on the GBM synthetic dataset and the real-world
high-frequency Stock Index datasets (CSI300, SSE50, ChiNext, S&P 500, and
NASDAQ). The extensive results confirm that the HDNN remarkably improves the
forecasting ability. Furthermore, the Friedman test results indicate that HDNN is stat-
istically superior to the other forecasting models.
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Our future research works will extend the HDNN to examine more high-frequency
volatility forecasting situations, such as 1-minute intervals or tick levels. Moreover,
stock picking based on regularities in the time series is one of the most valuable
topics in the financial industry (Barucci et al., 2021). However, selecting high-quality
stocks is very challenging. Various machine learning techniques have been employed
for this task. Another future work is applying our HDNN to build a trading strategy
algorithm based on real-time intraday time-series data.
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