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Modelling inflation dynamics: a Bayesian comparison
between GARCH and stochastic volatility

Hai Lea,b

aGraduate School of Economics, Kyoto University, Kyoto, Japan; bFaculty of International Business,
Banking Academy, Hanoi, Vietnam

ABSTRACT
This study employs a prominent model comparison criterion,
namely the Bayes factor, to compare three commonly used
GARCH models with their stochastic volatility (SV) counterparts in
modelling the dynamics of inflation rates. By using consumer
price index (CPI) data from 18 developed countries to evaluate
these models, we find that the GARCH models are generally out-
performed by their stochastic volatility counterparts. Furthermore,
the stochastic volatility in mean (SV-M) model is shown to be the
best for all 18 countries considered. The paper also examines
which model characteristics play a main role in modelling infla-
tion rates. It turns out that inflation volatility feedback is a crucial
feature that we should take into consideration when modelling
inflation rates. The relevance of a leverage effect, however, is
found to be rather ambiguous. Finally, the forecasting results
using the log predictive score confirm these findings.
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1. Introduction

Inflation and its volatility have received increasing attention in the economic litera-
ture due to their potential adverse impacts on the real economy. Theoretical studies
demonstrate that high volatile inflation will cause an inefficient allocation of resources
and thus may decrease economic growth and raise the unemployment rate (see, e.g.,
Friedman, 1977; Lucas, 2000). Given the cost of high volatile inflation, understanding
the interaction between inflation and inflation uncertainty plays a key role in imple-
menting an effective monetary policy.1

To document this relationship, empirical studies have to model inflation uncer-
tainty. Two popular methods have been used extensively in the literature. In a con-
ventional approach, this uncertainty can be modelled by a class of generalised
autoregressive conditional heteroscedastic (GARCH) models, where the inflation vola-
tility is a deterministic function of past data and the model parameters (see, e.g., Daal
et al., 2005; Grier & Perry, 1998; Keskek & Orhan, 2010; Kontonikas, 2004).
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Alternatively, recent studies have employed stochastic volatility models, under which
inflation uncertainty is treated as a latent variable that follows an autoregressive
model of order one, AR(1), process (see, e.g., Berument et al., 2012; Chan, 2017;
Stock & Watson, 2007). Unfortunately, these two types of volatility models are non-
nested and their implied inflation volatilities demonstrate very different characteris-
tics. Therefore, classical econometric methods cannot be used to compare these two
models. Since modelling inflation volatility plays a crucial part in documenting the
nexus between inflation and its uncertainty, it is of great importance to straightly
evaluate the model fit of these two types of volatility models by carrying out a formal
model comparison. Yet, such a comparison is rarely performed in the literature.

The present paper fills the gap by comparing the model fit of commonly used
GARCH models with that of their stochastic volatility counterparts in modelling the
dynamics of inflation rates. We also penalise the complex models to avoid over-fit-
ting. To this end, we employ a commonly used Bayesian model comparison
approach, namely the Bayes factor, to investigate the evidence in support of the
GARCH models against their stochastic volatility counterparts given the observed
data. The Bayes factor is computed as the ratio of a likelihood of one particular
model to that of another, and it can be used to assess the strength of evidence in
favour of one model among two competing two models. Therefore, we need to calcu-
late a marginal likelihood for each model first, and then use them to compute the
Bayes factor. The marginal likelihood can be referred to as the data density, which
indicates how likely it is that the observed data occurs given the model.

More specifically, for the Bayesian comparison exercise, we consider three GARCH
specifications that are commonly used for modelling inflation volatility in empirical
studies: (1) the standard GARCH, (2) GARCH with an asymmetric (or leverage)
effect, and (3) GARCH in mean. We then select three stochastic volatility models
which are closely parallel to GARCH models: (1) standard stochastic volatility, (2)
stochastic volatility with a leverage effect, and (3) stochastic volatility in mean. First,
by using pairwise comparison between GARCH models and their stochastic volatility
counterparts (standard GARCH versus standard stochastic volatility, GARCH with a
leverage effect versus stochastic volatility with a leverage effect, and GARCH in mean
versus stochastic volatility in mean), we can evaluate which model (GARCH or sto-
chastic volatility) is more strongly supported by the observed data. Second, we inves-
tigate which model features play a crucial role in modelling the inflation dynamics by
directly comparing the more complex GARCH specifications with the standard one
(and also the more complex stochastic volatility variants with the standard one).
Finally, we examine the impact of inflation uncertainty on inflation.

The main findings, using the CPI data from 18 advanced economies, are obtained
as follows. First, the stochastic volatility specifications generally outperform their
GARCH counterparts, which demonstrates that inflation uncertainty is better docu-
mented as a latent variable under stochastic volatility models than as a deterministic
conditional variance under GARCH models. This finding is consistent with the
results in both the energy economic literature (see, e.g., Chan & Grant, 2016a) and
finance literature (see, e.g., Kim et al., 1998) that favour the stochastic volatility mod-
els. Second, for all series considered, the inflation uncertainty feedback under both
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the stochastic volatility in mean and GARCH in mean is empirically important for
modelling the dynamics of inflation rates. The relevance of the leverage effect, on the
other hand, is found to be ambiguous under both classes of time-varying volatility
models. Third, we find that inflation uncertainty has a positive impact on inflation,
which confirms a hypothesis proposed by Cukierman and Meltzer (1986).2 Fourth,
stochastic volatility in mean is the best model for all 18 series, followed by the
GARCH in mean, which again confirms the importance of inflation volatility feed-
back. Finally, the forecast-based comparison results using the log predictive score for
both the expanding and rolling samples confirm these findings.

There have been other studies that investigate the relationship between inflation
and inflation uncertainty. However, to the best of our knowledge, this is the first
study to compare the performance of GARCH models with that of their stochastic
volatility counterparts in modelling inflation dynamics. Grier and Perry (1998) inves-
tigate the linkage between inflation and inflation uncertainty for G7 countries using
the GACH models. They show that inflation Granger-causes inflation uncertainty for
all G7 countries. However, mixed evidence on the impact of inflation volatility on
inflation is found. Daal et al. (2005) employ the asymmetric power GARCH
(PGARCH) model to explore the link between inflation and inflation volatility for 22
countries. They find that positive shocks to inflation have stronger effects on inflation
volatility for Latin American countries. Berument et al. (2012), using the stochastic
volatility in mean model to examine the interaction between inflation and inflation
uncertainty for the United States, demonstrate that an innovation in inflation volatil-
ity results in an increase in inflation rates. Using data from Germany, the United
States, and the United Kingdom, Chan (2017) introduces the time-varying parameter
stochastic volatility in mean specification to model the inflation rates. He demon-
strates that inflation volatility has a positive effect on the inflation rate for all three
countries considered. Furthermore, the results clearly show that the volatility-related
coefficients exhibit significant time-variation.

The remainder of this study is organised as follows. In Section 2, we outline two
kinds of volatility models in modelling inflation dynamics, which are stochastic vola-
tility and GARCH models. Section 3 gives a brief introduction of model comparison
using the Bayes factor and introduces an importance sampling algorithm to compute
marginal likelihoods with a view of evaluating these two classes of models. In Section
4, we provide the empirical findings which include the descriptive statistics, unit root
tests, the Bayesian model comparison, and the estimation results of the two classes of
time-varying volatility models. Section 5 presents the forecast-based comparison
results using the log predictive score for both expanding samples and rolling samples.
Finally, Section 6 concludes.

2. Models

2.1. GARCH models

In this section, we introduce three common generalised autoregressive conditional
heteroscedasticity (GARCH) models that are employed to model inflation uncer-
tainty.3 First, we consider a standard one, namely the GARCH(1,1) model (referred
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to as GARCH hereinafter):

pt ¼ aþ et , et�Nð0,r2
t Þ, (1)

r2
t ¼ bþ cr2

t�1 þ de2t�1, (2)

where pt is the inflation rate, r2
0 is a constant, and e0 ¼ 0: To make sure the variance

process is always stationary, we impose the restriction cþ d<1: It can be clearly seen
that the conditional variance r2

t representing a proxy for the inflation volatility is
determined by past data and the model parameters.

Another common GARCH model that is widely used in modelling inflation uncer-
tainty is the GARCH-GJR model developed by Glosten et al. (1993). The GARCH-
GJR model accounts for asymmetric (leverage) effects of positive and negative distur-
bances on the conditional variance. To be more specific, the conditional variance
equation is defined as follows:

r2
t ¼ bþ cr2

t�1 þ dþ h1ðet�1<0Þ½ �e2t�1, (3)

where 1ð�Þ denotes an indicator function. The parameter h captures the asymmetric
effect: if h>0, a negative shock would have a greater impact on inflation uncertainty;
if h<0, a negative shock would lower inflation uncertainty; and if h¼ 0, there is no
asymmetric effect documented, and thus this specification becomes the standard
GARCH model.

The last one we consider is the GARCH in mean model (referred to as GARCH-
M) that accounts for potential volatility feedback on the inflation rates:

pt ¼ aþ kr2
t þ et , et�Nð0,r2

t Þ, (4)

r2
t ¼ bþ cr2

t�1 þ dðpt�1�a�kr2
t�1Þ2: (5)

The effect of inflation volatility on inflation itself is captured by the parameter k:
when k>0, inflation uncertainty has a positive impact on the inflation rate; when
k<0, inflation uncertainty has a negative impact on the inflation rate; and when
k¼ 0, inflation uncertainty has no impact on the inflation rate, and thus this specifi-
cation reduces to the standard GARCH model.

2.2. Stochastic volatility models

In this section, we consider three stochastic volatility variants which are fairly close
parallels to the three GARCH specifications just mentioned. In contrast to the
GARCH specifications, the inflation uncertainty under the stochastic models is a
latent variable following a stochastic process. The first model we consider is the
standard stochastic volatility model, which is referred to as SV:

pt ¼ aþ ept , ept �Nð0, ehtÞ, (6)

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 2115



ht ¼ ah þ qhðht�1�ahÞ þ eht , eht�Nð0,r2
hÞ: (7)

Here, the inflation uncertainty is specified in a logarithmic form ht that follows an
AR(1) process. To make sure this process is always stationary, we impose the restric-
tion �1<qh<1: Note that the parameter r2

h captures the uncertainty of future infla-
tion volatility and that the two innovations ept and eht are assumed to be uncorrelated
under the standard stochastic volatility model.

Next, we consider the counterpart of the GARCH-GJR specification, which is the
stochastic volatility model with a leverage effect (see, e.g., Omori et al., 2007).
Specifically, we accommodate a potential correlation between the two disturbances ept
and eht as follows:

pt ¼ aþ ept ,

ht ¼ ah þ qhðht�1�ahÞ þ eht ,

ept

eht

" #
�N 0,

eht qe
1
2htrh

qe
1
2htrh r2

h

" # !
:

To model the potential correlation, we assume that ept and eht jointly follow a
bivariate normal distribution. The correlation parameter q captures the leverage
effect: if q>0, a negative shock to inflation rate at time t� 1 tends to decrease the
inflation uncertainty at time t; if q<0, a negative shock at time t� 1 tends to increase
the inflation uncertainty at time t; and if q¼ 0, there is no leverage effect docu-
mented, and this variant becomes the standard SV. We refer to this specification as
SV-L.

Similar to the GARCH-M, the stochastic volatility in mean model proposed by
Koopman and Hol Uspensky (2002) accommodates the possibility of volatility feed-
back:

pt ¼ aþ keht þ ept , ept �Nð0, ehtÞ, (8)

ht ¼ ah þ qhðht�1�ahÞ þ eht , eht�Nð0,r2
hÞ: (9)

The parameter k here captures the impact of inflation volatility on the inflation
rate: when k>0, inflation volatility has a positive effect on the inflation rate; and
when k¼ 0, there is no volatility feedback documented.

3. Model comparison

In this section, we provide a brief introduction of model comparison employing a
prominent Bayesian criterion named the Bayes factor. In addition, we outline an
adaptive importance sampling algorithm introduced in Chan and Eisenstat (2015) to
compute the Bayes factor.
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3.1. Bayes factor

Suppose we have a set of L models fM1, . . . ,MLg and need to compare them. Let
p ¼ ðp1, p2, . . . , pTÞ0 be actual observed data, where T is the number of observations.
Then, each model Ml, with l 2 ð1, LÞ is constituted by two components: (1) a prior
density pðHl j MlÞ, and (2) a likelihood function pðp j Ml,HlÞ which relies on the
parameter vector Hl: To perform a model comparison exercise, we employ a promin-
ent Bayesian criterion, namely the Bayes factor, that is given by

BFij ¼ pðp j MiÞ
pðp j MjÞ , (10)

where pðp j MlÞ is the marginal likelihood under the model Ml, l ¼ i, j and is com-
puted as

pðp j MlÞ ¼
ð
pðp j Ml,HlÞpðHl j MlÞdHl: (11)

From this definition, we can simply interpret the marginal likelihood as a density
of the data given the model Ml evaluated with the actual data p: Thus, if the data is
highly likely under the model Ml, the implied log marginal likelihood would be rela-
tively small in absolute value and vice versa. In other words, if the Bayes factor BFij
> 1, the model Mi is more favoured by the observed data p than the model Mj.

4

Jeffreys (1998) provides a scale for a more concrete interpretation of the Bayes factor
BFij: a Bayes factor in the interval (3, 10) indicates moderate evidence to support the
model Mi; a Bayes factor in the interval (10, 30) provides strong evidence; a Bayes
factor in the range (30, 100) provides very strong evidence; and if a Bayes factor is
greater than 100, we have extreme evidence in favour of model Mi.

To calculate the Bayes factor, we need to compute the marginal likelihoods. In
what follows, we outline an efficient method to compute the marginal likelihoods for
both the GARCH-type and SV-type models.

3.2. Importance sampling for marginal likelihoods

One main challenge for calculating the marginal likelihood is to evaluate the integral
in Equation (11) since it is often non-standard and of high dimension and thus can-
not have an analytic solution. Following Chan and Eisenstat (2015), we compute the
marginal likelihoods for both the stochastic volatility and GARCH models using an
adaptive importance sampling algorithm. To this end, let gðHÞ be the proposal dens-
ity. The marginal likelihood can then be rewritten as follows:5

pðpÞ ¼
ð
pðp j HÞpðHÞ

gðHÞ gðHÞdH:

Let HðiÞ for all i 2 ð1,NÞ be an independent draw obtained from the proposal
density gðHÞ, then the estimated marginal likelihood is computed as
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dpðpÞ ¼ 1
N

XN
i¼1

pðp j HðiÞÞpðHðiÞÞ
gðHðiÞÞ (12)

and is shown to be unbiased and simulation consistent. It is clear that the perform-
ance of this estimator depends heavily on the choice of the proposal density gðHÞ:
Chan and Eisenstat (2015) provide a way of obtaining an optimal proposal density by
minimising the Kullback-Leibler divergence (or cross-entropy distance) to the zero-
variance density.6 Once the proposal density gðHÞ is obtained, we can quickly con-
struct the importance sampling estimator for the GARCH models as the correspond-
ing likelihoods pðp j HÞ are available analytically, and thus can be evaluated easily.
As an example, the log-conditional likelihood pðp j a, b, c, dÞ under the standard
GARCH model is given as follows:

log pðp j a, b, c, dÞ ¼ �T
2
log ð2pÞ� 1

2

XT
t¼1

logr2
t�

1
2

XT
t¼1

ðpt�aÞ2
r2
t

:

Unfortunately, we do not have an analytical form for the likelihoods pðp j HÞ
under the stochastic volatility models. Thus, we need to evaluate them by employing
an importance sampling algorithm. More specifically, recall that the integrated (or
observed-data) likelihood under the stochastic volatility models is given as follows:

pðp j HÞ ¼
ð
pðp, h j HÞdh ¼

ð
pðp j h,HÞpðh j HÞdh,

where pðp, h j HÞ is the joint density of p and h, pðh j HÞ is the prior density of the
log-inflation volatilities h ¼ ðh1, h2, ::, hTÞ, and pðp j h,HÞ is the conditional likeli-
hood. Let gðhÞ be a proposal density; the integrated likelihood can then be rewritten
as

pðp j HÞ ¼
ð
pðp j h,HÞpðh j HÞ

gðhÞ gðhÞdh: (13)

Suppose hð1Þ, hð2Þ, … , hðNÞ are N independent draws from the proposal density
gðhÞ, then the integrated likelihood pðp j HÞ can be approximated by

dpðp j HÞ ¼ 1
N

XN
i¼1

pðp j hðiÞ,HÞpðhðiÞ j HÞ
gðhðiÞÞ : (14)

4. Empirical findings

4.1. Data

In this paper, we use quarterly CPI data for advanced economies obtained from the
Federal Reserve Economic Data.7 All data series are seasonally adjusted by the X-13-
ARIMA SEAT (autoregressive integrated moving average, seasonal extraction in
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ARIMA time series) method developed by the U.S. Census Bureau. Inflation is then
computed as the first difference of the log of CPI: pt ¼ 400 � ð logCPIt� logCPIt�1Þ:
Table 1 displays the summary statistics and unit root tests for 18 advanced countries.
From the table, we find that (for all data series): (1) the inflation distribution exhibits
positive (right) skewness; (2) the inflation distribution tends to be leptokurtic owing
to high excess kurtosis; (3) the Jarque-Bera (JB) test confirms these results: the test
rejects the null hypothesis that the inflation rate follows a normal distribution; (4)
both the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests reject the
null hypothesis, implying that all the data series are stationary.8

4.2. Model comparison findings

In this exercise, we perform the model comparisons between the three commonly
used GARCH variants and their SV counterparts using the algorithm presented in
Section 3. The results are shown in Table 2.9 Some broad overviews are obtained
from this exercise. On the whole, the best model for all 18 countries is the SV-M
model, which is followed by the GARCH-M model. Second, with only a few excep-
tions of GARCH-vs-SV and GARCH-GJR-vs-SV-L pairs, the GARCH variants are
outperformed by their SV counterparts. For example, let us consider the results for
Canada. The log marginal likelihoods under the GARCH and SV specifications are
�569.8 and �562.5, respectively, indicating a Bayes factor of 1480.30 in support of
the SV model against its GARCH competitor. According to Jeffreys (1998), this dem-
onstrates decisive evidence for choosing the former model. The Bayes factors for the
two remaining pairs are even larger, which again indicates decisive evidence in favour of
the SV-type models. This finding is consistent with the result in the energy economic
literature that the stochastic volatility variants generally outperform their GARCH

Table 1. Summary statistics and unit root tests.
Country Mean Median Std.Dev Skew Ex.Kur JB ADF PP

Canada 3.55 2.61 3.50 1.00 1.05 50.55��� �2.80��� �5.92���
France 4.05 2.67 3.72 1.15 0.57 55.22��� �1.81� �2.88��
Germany 2.61 2.21 1.90 0.80 0.30 26.18��� �2.08�� �4.96���
Italy 5.67 3.97 5.36 1.47 1.76 115.86��� �1.69� �2.70�
Japan 2.92 1.69 4.57 2.58 12.83 1878.9��� �3.66��� �6.44���
United Kingdom 5.06 3.26 4.97 2.17 5.89 525.56��� �2.35�� �4.35���
United States 3.70 3.19 3.03 0.81 2.92 110.65��� �2.60��� �5.23���
Australia 4.65 3.70 4.37 1.25 2.25 111.34��� �2.71��� �7.69���
Austria 3.23 2.75 2.34 1.09 1.48 68.37��� �2.74��� �6.96���
Belgium 3.48 2.90 3.01 1.28 2.73 137.94��� �2.47�� �5.78���
Denmark 4.31 2.71 4.17 1.35 1.98 98.93��� �3.20��� �6.39���
Finland 4.51 3.31 4.37 1.16 0.93 61.17��� �2.21�� �3.88���
Luxembourg 3.29 2.74 2.83 0.99 0.84 45.40��� �2.46�� �5.43���
Netherlands 3.31 2.55 2.87 0.94 1.04 45.61��� �2.82��� �7.13���
New Zealand 5.39 3.47 5.43 1.42 2.73 153.05��� �2.64��� �4.96���
Norway 4.46 3.61 3.79 1.05 2.97 130.89��� �2.87��� �8.02���
Sweden 4.26 2.96 4.17 1.11 1.21 62.94��� �2.89��� �6.82���
Switzerland 2.45 1.77 2.62 1.18 2.99 143.19��� �2.75��� �4.71���

Notes: � , �� , and ��� indicate the significance level of 10%, 5%, and 1%, respectively. Due to space constraints, we
only report: (1) an ADF test in the absence of drift and trend; (2) a PP test with intercept. The period spans from
1961Q1 to 2018Q4 for all countries except for Denmark (1967Q1 to 2018Q4). Note also that here we display an
‘Excess Kurtosis’ (Ex.Kur), which is simply a ‘Kurtosis-3’.
Source: Author.
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counterparts in modelling energy price dynamics (see, e.g., Chan & Grant, 2016a).
Furthermore, stochastic volatility specifications have been shown to perform better in
modelling financial returns (see, e.g., Kim et al., 1998; Yu, 2002).

Exceptions to this overall trend are the two pairs GARCH-vs-SV and GARCH-GJR-
vs-SV-L for four countries. Interestingly, these two pairs follow the same pattern: when-
ever the SV model outperforms its GARCH counterpart, the SV-L model dominates
the GARCH-GJR one and vice versa. However, the SV-M models outperform their
GARCH-M counterparts for all the countries. For instance, let us consider the results
for the United States. The log marginal likelihood for the GARCH and SV models are
�513.8 and �520.0, respectively. This demonstrates a Bayes factor of 492.75 in support
of the GARCH model against its SV competitor, showing decisive evidence for the for-
mer model. A similar conclusion is drawn for the GARCH-GJR-vs-SV-L pair with a
smaller, but still relatively large Bayes factor of 221.41 in favour of GARCH-GJR. In
contrast, the GARCH-M model is overwhelmed by the SV-M one with a Bayes factor
of 1:94� 1014 to support the latter model. Similar findings are found when this is
applied to three other countries (Germany, Belgium, and Switzerland).

Table 2. Log marginal likelihood of two classes of volatility models for 18 rich OECD countries’
inflation. The numbers in parentheses are numerical standard errors.
Type GARCH SV GARCH-GJR SV-L GARCH-M SV-M

Canada �569.8 �562.5 �563.9 �556.4 �555.8 �516.8
(0.09) (0.01) (0.15) (0.02) (0.02) (0.03)

France �543.8 �534.3 �551.5 �535.4 �479.0 �418.8
(0.24) (0.01) (0.07) (0.02) (0.09) (0.04)

Germany �440.6 �447.1 �440.2 �444.4 �431.0 �354.6
(0.29) (0.01) (0.13) (0.01) (0.08) (0.03)

Italy �599.2 �587.6 �606.8 �588.4 �543.9 �450.7
(0.31) (0.01) (0.15) (0.02) (0.06) (0.03)

Japan �613.7 �597.9 �611.7 �599.2 �585.0 �524.4
(0.11) (0.04) (0.18) (0.04) (0.06) (0.02)

United Kingdom �583.0 �565.9 �597.1 �567.0 �535.3 �476.9
(0.36) (0.01) (0.36) (0.03) (0.07) (0.04)

United States �513.8 �520.0 �511.7 �517.1 �515.0 �482.1
(0.11) (0.03) (0.32) (0.02) (0.05) (0.03)

Australia �578.3 �564.4 �573.5 �563.3 �551.7 �508.4
(0.10) (0.01) (0.15) (0.02) (0.03) (0.03)

Austria �496.7 �486.0 �495.8 �486.6 �474.1 �435.8
(0.21) (0.01) (0.25) (0.02) (0.05) (0.03)

Belgium �527.1 �536.4 �527.9 �533.6 �522.4 �483.9
(0.13) (0.02) (0.10) (0.01) (0.05) (0.04)

Denmark �524.7 �483.5 �530.2 �485.0 �461.8 �435.2
(0.29) (0.01) (0.21) (0.01) (0.04) (0.02)

Finland �610.8 �605.1 �608.1 �604.2 �551.4 �490.8
(0.14) (0.01) (0.17) (0.03) (0.08) (0.03)

Luxembourg �523.0 �521.5 �523.2 �520.6 �517.8 �465.1
(0.07) (0.03) (0.16) (0.02) (0.03) (0.05)

Netherlands �531.2 �518.7 �534.6 �519.9 �511.7 �485.3
(0.12) (0.01) (0.10) (0.01) (0.05) (0.03)

New Zealand �658.7 �645.2 �653.1 �642.5 �637.4 �562.0
(0.44) (0.01) (0.31) (0.02) (0.04) (0.03)

Norway �630.9 �598.9 �628.4 �599.1 �599.3 �555.7
(0.05) (0.02) (0.10) (0.02) (0.07) (0.02)

Sweden �641.3 �624.2 �639.0 �619.7 �610.0 �533.9
(0.18) (0.01) (0.17) (0.02) (0.04) (0.01)

Switzerland �502.3 �513.6 �501.6 �511.4 �490.2 �413.6
(0.38) (0.02) (0.26) (0.02) (0.07) (0.03)

Source: Author.
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Now, we turn to examine which model characteristics play a crucial role in
explaining the dynamics of inflation rates. First, we investigate the importance of the
leverage effect by juxtaposing GARCH with GARCH-GJR and SV with SV-L. For
both the GARCH-type and SV-type models, the results are rather mixed. In essence,
accounting for the asymmetric effect increases the marginal likelihood for countries
like Canada, Australia, and the United States, whereas the Netherlands, France, and
the United Kingdom experience a decrease in their marginal likelihoods. These find-
ings may seem surprising; since the GARCH-GJR nests the GARCH (the SV-L nests
the SV), the former would be assumed to provide a better fit. However, remember
that the marginal likelihood is in fact a density evaluation, and thus it suffers a pen-
alty for the complexity of model. Therefore, these findings demonstrate that the cost
of model complexity could exceed its benefit when referring to the leverage effect.

Finally, we compare the GARCH with GARCH-M and the SV with SV-M to
explore the relevance of volatility feedback for modelling the inflation rates. It is clear
that the volatility feedback plays a key role in explaining the dynamics of the inflation
rates. More specifically, the Bayes factors for all the countries’ data in support of the
GARCH-M against GARCH are extremely large (for instance, 2:68� 105 and 1636
for Canada and France, respectively), which implies decisive evidence in favour of the
former. Similar findings are achieved for the SV models.

4.3. Bayesian estimation results

This section provides estimated results of model-specific parameters for both
GARCH-type and SV-type specifications.10 Because of space limits, we only report
the posterior estimates for the G7 countries, which largely represent the findings for
the remaining countries.

4.3.1. Bayesian estimation for GARCH models
The estimated results for the GARCH models are presented in Table 3. It can be eas-
ily checked that most of the parameter estimates across the three models for all coun-
tries are statistically different from zero. For instance, let us consider the results for
Canada. In the GARCH model, the parameter a is estimated at 2.78, and its 95%
credible interval is estimated to be ð2:74, 2:82Þ, which excludes zero, indicating the
estimate is statistically different from zero. A similar result is obtained by the
GARCH-GJR model while the GARCH-M model experiences a relatively smaller esti-
mate of a. This is due to the effect of the volatility feedback on the mean equation.
The parameters describing the persistence of the inflation volatility equation (d and
c) have quite similar estimated results across the three models and are statistically dif-
ferent from zero. More specifically, the inflation volatility equation is highly persistent
for all three variants with the sum of the two parameters d and c ranging from 0.88
to 0.96, which is consistent with previous literature (see, e.g., Grier & Perry, 1998).
Similar findings are found when this is applied for the remaining six countries.

We then further explore the dynamics of the inflation rates through model fea-
tures. First, we consider the leverage effect. For Canada, the posterior estimate of h is
�0.39 and is statistically different from zero due to its credible interval excluding
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zero, implying that a negative shock at time t� 1 would lower the inflation volatility
at time t. A similar result is found for the United States with the leverage effect h
being estimated at �0.43.11 However, the posterior estimate of h is insignificant for
countries like France, Germany, and Italy, showing no asymmetric effect. These find-
ings support the ranking of marginal likelihood shown in the previous section.12 In
other words, the leverage effect is found to be mixed. This finding is in line with pre-
vious literature. For example, Daal et al. (2005) employ the PGARCH model to cap-
ture the asymmetric effect of inflation volatility for 22 countries and show that there
are mixed results regarding the relevance of the leverage effect.

Finally, we investigate the impact of inflation volatility on the inflation rate. It is
clearly shown that the volatility feedback plays a crucial role in modelling the infla-
tion rates. As an example, let us consider the results for France. The volatility

Table 3. Bayesian estimation for the GARCH models: Estimated posterior means (posterior stand-
ard error in parentheses).
Countries Models a b d c h k

Canada GARCH 2.78 1.35 0.42 0.45
(0.02) (0.46) (0.09) (0.09)

GARCH-GJR 2.71 1.91 0.54 0.37 �0.39
(0.05) (0.49) (0.10) (0.09) (0.11)

GARCH-M 1.54 0.41 0.31 0.65 0.09
(0.17) (0.19) (0.06) (0.06) (0.02)

France GARCH 3.14 0.51 0.38 0.54
(0.06) (0.26) (0.09) (0.10)

GARCH-GJR 3.16 0.56 0.40 0.53 �0.04
(0.01) (0.27) (0.09) (0.09) (0.12)

GARCH-M 0.60 0.06 0.13 0.86 0.46
(0.17) (0.03) (0.02) (0.02) (0.03)

Germany GARCH 2.18 0.40 0.35 0.53
(0.06) (0.11) (0.07) (0.06)

GARCH-GJR 2.11 0.44 0.41 0.50 �0.17
(0.06) (0.12) (0.07) (0.07) (0.09)

GARCH-M 0.64 0.11 0.12 0.84 0.57
(0.31) (0.04) (0.04) (0.04) (0.15)

Italy GARCH 4.38 1.27 0.56 0.35
(0.12) (0.44) (0.11) (0.12)

GARCH-GJR 4.49 1.37 0.59 0.33 �0.05
(0.06) (0.39) (0.11) (0.11) (0.12)

GARCH-M 1.80 0.04 0.16 0.83 0.22
(0.20) (0.02) (0.04) (0.04) (0.04)

Japan GARCH 1.87 0.70 0.21 0.73
(0.05) (0.33) (0.05) (0.05)

GARCH-GJR 1.80 1.52 0.29 0.64 �0.22
(0.06) (0.52) (0.07) (0.07) (0.10)

GARCH-M �0.36 0.19 0.07 0.91 0.20
(0.23) (0.08) (0.01) (0.02) (0.03)

United Kingdom GARCH 3.61 0.59 0.39 0.57
(0.08) (0.25) (0.07) (0.07)

GARCH-GJR 3.98 1.34 0.48 0.49 �0.23
(0.07) (0.42) (0.07) (0.07) (0.10)

GARCH-M 1.75 0.04 0.17 0.82 0.18
(0.11) (0.02) (0.02) (0.02) (0.01)

United States GARCH 2.97 1.10 0.64 0.24
(0.05) (0.30) (0.10) (0.09)

GARCH-GJR 2.98 1.30 0.66 0.25 �0.43
(0.05) (0.35) (0.10) (0.10) (0.13)

GARCH-M 2.36 0.72 0.49 0.42 0.06
(0.18) (0.24) (0.10) (0.10) (0.02)

Source: Author.
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parameter k is estimated at 0.46 and is statistically significant, implying that inflation
volatility has a positive effect on the inflation rate. The same conclusions are drawn
for the remaining countries. The finding is consistent with the ranking of marginal
likelihood that favours GARCH-M over GARCH.

4.3.2. Bayesian estimation for stochastic volatility models
Table 4 provides results for the three stochastic volatility variants. Similar to the find-
ings from the GARCH models, most of the posterior estimates across the three var-
iants are statistically significant. Also, all the models imply high persistence of the
inflation volatility equation with the posterior estimate of qh ranging from 0.92 to
0.98, which is in line with previous literature. For instance, Chan (2017) proposes the
time-varying parameter stochastic volatility in mean (TVP-SVM) variant to model

Table 4. Bayesian estimation for the stochastic volatility models: Estimated posterior means (pos-
terior standard error in parentheses).
Countries Models a ah qh r2

h q k

Canada SV 2.01 1.52 0.97 0.09
(0.16) (0.88) (0.02) (0.04)

SV-L 2.01 1.20 0.92 0.08 0.67
(0.14) (0.30) (0.02) (0.03) (0.16)

SV-M �0.12 1.12 0.97 0.03 0.80
(0.86) (0.62) (0.02) (0.01) (0.28)

France SV 1.97 1.34 0.98 0.09
(0.12) (1.11) (0.01) (0.03)

SV-L 1.97 1.11 0.97 0.10 0.15
(0.12) (0.86) (0.02) (0.04) (0.13)

SV-M �1.84 0.14 0.97 0.02 4.38
(0.65) (0.53) (0.02) (0.00) (1.13)

Germany SV 1.82 0.65 0.95 0.15
(0.10) (0.64) (0.03) (0.06)

SV-L 1.81 0.42 0.89 0.13 0.44
(0.10) (0.29) (0.03) (0.06) (0.15)

SV-M �2.34 �0.63 0.93 0.02 9.22
(0.57) (0.29) (0.03) (0.00) (2.62)

Italy SV 2.42 1.57 0.99 0.11
(0.11) (1.23) (0.01) (0.03)

SV-L 2.43 1.15 0.97 0.12 0.17
(0.11) (0.95) (0.02) (0.04) (0.13)

SV-M �2.92 �0.15 0.97 0.02 8.26
(0.66) (0.49) (0.02) (0.00) (2.26)

Japan SV 0.65 1.94 0.98 0.07
(0.20) (1.08) (0.01) (0.03)

SV-L 0.61 1.77 0.96 0.09 0.17
(0.20) (0.87) (0.03) (0.05) (0.21)

SV-M �1.41 1.26 0.97 0.05 0.94
(0.34) (0.62) (0.02) (0.02) (0.19)

United Kingdom SV 2.27 1.17 0.99 0.12
(0.12) (1.25) (0.01) (0.04)

SV-L 2.29 0.95 0.97 0.13 0.14
(0.12) (1.01) (0.02) (0.04) (0.14)

SV-M 0.66 0.64 0.97 0.06 1.46
(0.31) (0.72) (0.02) (0.01) (0.34)

United States SV 2.75 1.21 0.96 0.15
(0.13) (0.71) (0.02) (0.06)

SV-L 2.72 1.03 0.92 0.15 0.37
(0.14) (0.39) (0.03) (0.06) (0.12)

SV-M 0.77 0.66 0.98 0.04 0.84
(0.34) (0.71) (0.02) (0.01) (0.17)

Source: Author.
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inflation dynamics and shows high persistence of 0.963 for the transition of infla-
tion volatility.

Next, we consider the importance of the leverage effect for modelling inflation
rates. Similar to the GARCH-GJR results, the posterior estimate of the leverage par-
ameter q under SV-L is consistent with the findings from the marginal likelihoods.
More specifically, recall that Canada experiences an increase in the marginal likeli-
hood when adding the leverage effect, and thus we would expect that little mass
around zero is observed in the posterior distribution of q. This is indeed the case
since the 95% credible interval of q excludes zero. In addition, a positive correlation
ðq ¼ 0:67Þ indicates that a negative shock at time t� 1 decreases the volatility at time
t, which is in line with the GARCH-GJR findings. Similarly, the posterior estimate of
q for the United States is 0.37 and is statistically significant from zero. In the instance
of France, the posterior estimate of q under SV-L is 0.15, but is insignificant, indicat-
ing that no leverage effect is found. Same conclusions are drawn for Italy, Japan and
the United Kingdom. Contrary to the finding from the GARCH-GJR model, the
asymmetric effect for Germany under the SV-L is estimated to be 0.44 and its 95%
credible interval excludes zero. This is, however, consistent with the finding from the
model comparison using the log marginal likelihood.

Finally, we investigate the relevance of the inflation volatility feedback in explain-
ing the dynamics of the inflation rates. Similar to the GARCH-M findings, the volatil-
ity feedback parameter k under SV-M is estimated to be positive and is significantly
different from zero for all countries, implying that the volatility feedback is relevant
in modelling the inflation rates. This finding is in line with the empirical work of
Berument et al. (2012), who employ the SV-M model and demonstrate that an innov-
ation in inflation volatility generates an increase in inflation. Furthermore, the esti-
mate of the volatility parameter k under SV-M is considerably larger than that under
the GARCH-M, which shows that a relatively stronger volatility feedback is found
under the SV-M. These findings can be generalised to all the remaining coun-
tries considered.

5. Forecast-based comparison

In this exercise, we perform the forecast-based comparisons between the GARCH
specifications and their SV counterparts. More specifically, we compare these models
by employing the log predictive score for both expanding samples and rolling sam-
ples.13 A greater value of the log predictive score demonstrates better prediction per-
formance, and vice versa.

5.1. Expanding samples

First, we calculate the one-step-ahead density forecast pðptþ1 j P1:tÞ under a certain
model. Clearly, it is the predictive density for ptþ1 computed at time t by employing
the data from periods 1, 2,… , t. This predictive density is then evaluated at the
actual observed data potþ1 by computing the log predictive likelihood
log pðptþ1 ¼ potþ1 j P1:t). It is apparent that this log likelihood will be large when the
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actual value potþ1 is highly likely under the predictive density, and vice versa. Second,
we repeat the above exercise using the data up to time tþ 1, tþ 2, and so forth.
Lastly, the log predictive score for the expanding samples is computed as the sum of
the log predictive likelihoods:

XT�1

t¼t0

log pðptþ1 ¼ potþ1 j P1:tÞ:

Here, t0 þ 1, … , T are evaluation periods. The one-step-ahead predictive likeli-
hood pðptþ1 ¼ potþ1 j P1:tÞ can be computed as follows:

pðptþ1 ¼ potþ1 j P1:tÞ ¼
ð
pðptþ1 ¼ potþ1 j H,P1:tÞpðH j P1:tÞdH:

Suppose Hð1Þ, Hð2Þ, … , HðNÞ are N draws from the posterior distributions of the
parameters, then the predictive likelihood can be approximated by:

pðptþ1 ¼ potþ1 j P1:tÞ ¼ 1
N

XN
i¼1

pðptþ1 ¼ potþ1 j HðiÞ,P1:tÞ:

5.2. Rolling samples

While the expanding samples make use of the entire sample, the rolling samples
employ the most recent data of CPI, and the log predictive score is computed as:

XT�1

t¼t0þ1

log pðptþ1 ¼ potþ1 j pt , pt�1, . . . , pt�t0Þ:

Similarly, the one-step-ahead predictive likelihood for the rolling samples pðptþ1 ¼
potþ1 j pt, � pt�1, . . . , pt�t0Þ can be approximated using draws HðiÞði ¼ 1, 2, . . . ,NÞ
from the posterior distributions of the parameters:

pðptþ1 ¼ potþ1 j pt , pt�1, . . . , pt�t0Þ ¼
1
N

XN
i¼1

pðptþ1 ¼ potþ1 j HðiÞ, pt , pt�1, . . . , pt�t0Þ:

5.3. Forecasting results

This section provides the forecasting results of the two exercises for Canada.14 The
evaluation period for both the expanding samples and rolling samples is from
2009Q1 to 2018Q4. The results are presented in Table 5. The forecast-based compari-
son findings are widely similar to the model comparison findings using the Bayes fac-
tor. More specifically, the SV specifications produce better forecast performance than
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their GARCH competitors. In addition, the volatility feedback improves the predictive
density significantly for both the GARCH and SV variants. Yet, the importance of the
leverage effect is found to be rather ambiguous. For instance, let us consider the forecast-
ing results of the expanding sample. The log predictive score for the GARCH and SV
models are �84.15 and �75.16, respectively. This demonstrates better density predictions
of the SV model against its GARCH counterpart. A similar conclusion is drawn for the
GARCH-GJR-vs-SV-L and the GARCH-M-vs-SV-M pairs. Moreover, we find that the
volatility feedback is important for modelling the inflation dynamics by comparing
the GARCH with GARCH-M and the SV with SV-M. Next, we investigate the relevance
of the leverage effect by comparing the forecast performance of the GARCH and SV
specifications with that of the GARCH-GJR and SV-L models. The numbers show that
the GARCH-GJR and SV-L specifications give better density forecasts than the GARCH
and SV models, respectively, which demonstrates the importance of the leverage effect
for Canada.15 These findings are confirmed when we employ the rolling samples.

6. Conclusion

In this paper, we have performed a Bayesian estimation to evaluate three widely used
GARCH specifications and their stochastic volatility counterparts in modelling infla-
tion rates for 18 advanced countries. By employing a formal Bayesian comparison cri-
terion–the Bayes factor–to compare a variety of models, we find that the GARCH
variants are generally surpassed by their stochastic volatility counterparts in modelling
inflation dynamics. In addition, the stochastic volatility in mean model is shown to
be the best one for all 18 countries considered. The forecast-based comparison results
using the log predictive score for both the expanding samples and rolling samples
confirm these findings.

The study also investigates which model characteristics are important in modelling
inflation rates. We show that the inflation volatility feedback is a crucial feature that
we should take into consideration when modelling the inflation rates. Moreover,
inflation volatility has a positive impact on the inflation rate, which confirms a
hypothesis introduced by Cukierman and Meltzer (1986). However, we find mixed
results when taking the leverage effect into consideration.

For future research, it would be of considerable interest to allow for time-varying
parameters in both GARCH and stochastic volatility specifications and evaluate the
effectiveness of these models in modelling inflation dynamics. In addition, the inter-
action between CPI inflation and macroeconomic variables has been a topic of great
interest. As a result, incorporating macroeconomic variables into present models and
extending them to multivariate GARCH and stochastic volatility variants would also
be desirable.

Table 5. Log predictive score of two classes of volatility models for both the expanding samples
and rolling samples (Canada).

GARCH SV GARCH-GJR SV-L GARCH-M SV-M

Expanding �84.15 �75.16 �82.29 �73.38 �70.96 �68.16
Rolling �86.15 �75.47 �84.38 �73.27 �70.94 �69.89

Source: Author.
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Notes

1. Since no consensus on the terminologies between inflation uncertainty and inflation
volatility has been reached in the literature, these two terms will be used interchangeably
in this article.

2. They demonstrate that due to a lack of commitment, the monetary authorities are highly
likely to generate inflation surprises by carrying out an expansionary monetary policy to
stimulate the economy when facing a high inflation uncertainty environment. Thus, an
increase in inflation uncertainty raises inflation. In contrast, Holland (1995) argues that
in such a high inflation uncertainty environment, the state bank, owing to its
stabilization incentive, should implement a tightening monetary policy to diminish the
welfare cost of high volatile inflation, and thus lower the inflation rate.

3. The GARCH model is proposed by Bollerslev (1986) to generalise the earlier study on
autoregressive conditional heteroscedasticity model by Engle (1982).

4. Note that another widely used model selection, namely the Bayesian information
criterion (BIC) introduced by Schwarz (1978) is shown to be asymptotically convergent
to the the logarithm of the Bayes factor (see, e.g., Kass & Raftery, 1995). In other words,
both the Bayes factor and BIC asymptotically choose the same candidate model. More
specifically, it can be easily checked that

ðBICi�BICjÞ� logBFij
logBFij

converges to zero as T goes to infinity. Here T is the number of observations, and the
BIC under the model Ml with l 2 i, j is computed as

BICl ¼ log f ðp j Ml,HlÞ� nl
2
logT,

where nl is the number of estimated parameters, and Hl is the maximum likelihood
estimate value.

5. For simplicity, we drop out the notation M for the model in the expression.
6. Chan and Eisenstat (2015) show that the posterior density pðH j pÞ is the zero-variance

density for estimating the marginal likelihood. Unfortunately, we cannot use this density
as a proposal due to its unknown normalizing constant.

7. The advanced economies, as defined in this study, are ones with GDP per capita over
40,000US dollars under the IMF’s list of countries by nominal GDP per capita. In
addition, we only include countries with at least 50 consecutive years of data for CPI.
The resulting data contains 18 economies: the G7 countries (Canada, France, Germany,
Italy, Japan, the United Kingdom, and the United States), Australia, Austria, Belgium,
Denmark, Finland, Luxembourg, the Netherlands, New Zealand, Norway, Sweden, and
Switzerland. This is almost the same list considered by Uribe and Schmitt-Groh�e (2017).
In their study, they characterise the rich economies as all of those with purchasing power
parity (PPP)-converted GDP per capita in 2005U.S. dollars above 25,000.

8. We also perform: (1) an ADF test with drift; (2) an ADF test with both drift and trend;
and (3) a PP test with trend. The findings also suggest that the inflation rates
are stationary.

9. We report the marginal likelihoods of the models because the Bayes factor is computed
based on the marginal likelihoods. This is also a common method used by researchers.

10. The estimation method is presented in Appendix A and Appendix B.
11. The negative estimate of the asymmetric effect is also found in the previous literature

(see, e.g., Abbas Rizvi et al., 2014).
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12. Similar conclusions are drawn for the remaining countries. This means the posterior
estimates of an asymmetric effect parameter h is in line with the ranking of the marginal
likelihoods. The results can be found in the Appendix C.

13. Interested readers are referred to Geweke and Amisano (2011) for a more in-depth
consideration of the log predictive score using the expanding samples and
rolling samples.

14. The results for the other countries can be found in the Appendix D.
15. We found no improvement in the density prediction of the GARCH-GJR (SV-L) over

the GARCH (SV) for countries like France, Germany, Italy. This finding is in line with
the result from the model comparison using the log marginal likelihood. To summarise,
the relevance of the asymmetric effect is shown to be mixed.

16. This approach has been used recently, for example, by Chan and Jeliazkov (2009) and
McCausland et al. (2011) for linear state space models, and by McCausland (2012) and
Djegn�en�e and McCausland (2015) for nonlinear state space models.

17. We choose the mode of conditional density pðh j p, a, ah, qh,r2
hÞ as a point to expand

since it can be quickly computed by the Newton-Raphson method. Interested readers are
referred to Kroese et al. (2013) for a more detailed explanation.

18. From Equation (6), we can derive the log-conditional density of p given the parameter a
and the volatility ht as:

log pðpt j ht , aÞ ¼ � 1
2
ht� 1

2
log ð2pÞ� 1

2
e�htðpt�aÞ2:

19. Interested readers are referred to Kroese and Chan (2014) for a detailed proof.
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Appendix A. Hyper-rameters setting

A.1. GARCH-type models
We assume independent priors for a and the group of parameters D ¼ ðb, c, dÞ0 as follows:

a�Nða0,VaÞ, logD�NðD0,VDÞ1ðcþ d<1Þ:

We impose the inequality cþ d<1 to induce stationarity. For the GARCH-GJR, the coeffi-
cient of leverage q is assumed to have a uniform prior conditional on D. As for the volatility
feedback parameter k under the GARCH-M, we assume a normal distribution: k�Nðk0,VkÞ:
Following Chan and Grant (2016a), we consider the noninformative priors as follows: a0 ¼
0, D0 ¼ ð1, log 0:1, log 0:8Þ, k0 ¼ 0, Va ¼ 5, VD ¼ diagð5, 1, 1Þ, and Vk ¼ 100:

A.2. SV-type models
Similar to the GARCH-type models, we use independent priors for a, ah, qh, and r2

h as
follows:

a�Nða0,VaÞ, ah�Nðah0,VahÞ, qh�Nðqh0,VqhÞ1ðjqhj<1Þ, r2
h�IGðrh0,VrhÞ:

Here IGð�Þ is the inverse-gamma distribution. We also impose a restriction jqhj<1 to
induce stationarity. As for the SV-L, we assume a uniform prior for the leverage parameter q.
For the SV-M, we assume that the volatility feedback parameter k follows a normal distribu-
tion k�Nðk0,VkÞ: To obtain similar dynamics for the inflation volatility as in the GARCH
variants, we also set noninformative priors for the parameters of the SV models: ah0 ¼
1, qh0 ¼ 0:97, rh0 ¼ 5, Vah ¼ 5, Vqh ¼ 0:12, and Vrh ¼ 0:16:

Appendix B. Bayesian estimation

In this section, we provide a brief discussion of Bayesian estimation for our models. Two
classes of time-varying models are estimated by the Markov chain Monte Carlo (MCMC)
methods. More specifically, we generate Markov samplers to draw from the posterior distribu-
tions and use these independent draws to calculate moments of interest such as the log mar-
ginal likelihoods, the posterior means, and standard deviations.

B.1. GARCH models
For the GARCH models, following Chan and Grant (2016a), we draw from the posterior

distributions using the Metropolis-Hastings (MH) algorithm. We group parameters into blocks
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and sequentially sample from conditional distributions. As an example, let us consider the
standard GARCH model. We first divide the parameters into two blocks: (1) a and (2) j ¼
ðb, c, dÞ: We then sequentially sample from the two conditional distributions pðajp, jÞ and
pðjjp, aÞ: To this end, we resort to the Metropolis-Hasting algorithm for sampling as these
conditional distributions are not standard,. More specifically, we use a Gaussian distribution
centred at the sample mean �p with the variance s2=T, where s2 is the sample variance, to
draw a. For a block j, we use a Gaussian distribution with the mean and the covariance
matrix being set to be the mode of pðjjp, aÞ and the outer product of the scores, respectively.
For the two remaining GARCH variants, the algorithm remains unchanged, but additional
blocks are required to deal with additional parameters.

B.2. Stochastic volatility models
For stochastic volatility variants, a main challenge is to jointly draw the log-inflation volatil-

ities h ¼ ðh1, h2, . . . , hTÞ conditional on the observed data and model parameters. To this end,
we employ the acceptance-rejection Metropolis-Hastings algorithm proposed by Chan (2017)
to draw h. A main feature of this approach is the use of fast band and sparse matrix routines
which take advantage of the specialty of the problem, namely, that the Hessian of the log-con-
ditional density of h contains only a few non-zero elements along the diagonal band. In gen-
eral, this approach has proved to be more efficient than the conventional Kalman filter.16

B.2.1. Standard stochastic volatility model
First, we discuss the algorithm for the standard stochastic volatility specification. For con-

venience, we refer to this algorithm as the baseline one. Let p ¼ ðp1, p2, . . . , pTÞ be the
observed data. The posterior draws can then be attained by sequentially sampling from:

1. pðh j p, a, ah, qh,r2
hÞ;

2. pða j p, h, ah, qh,r2
hÞ ¼ pða j p, hÞ;

3. pðah j p, h, a, qh,r2
hÞ ¼ pðah j h, qh,r2

hÞ;
4. pðr2

h j p, h, a, ah, qhÞ ¼ pðr2
h j h, ah, qhÞ;

5. pðqh j p, h, a, ah,r2
hÞ ¼ pðqh j h, ah,r2

hÞ:

In the first step, we need to jointly draw log-inflation volatilities h, which is a key ingredi-
ent to implement the acceptance-rejection Metropolis-Hastings algorithm. The fundamental
idea is to approximate the target pðh j p, a, ah, qh,r2

hÞ using a Gaussian density. Note that
from Bayes’ Theorem, we have:

pðh j p, a, ah, qh,r2
hÞ / pðp j h, aÞpðh j ah, qh,r2

hÞ:

Hereinafter, we derive the explicit expressions for the two conditional densities, pðp j h, aÞ
and pðh j ah, qh,r2

hÞ: The former density pðp j h, aÞ can be approximated by a Gaussian dis-
tribution in h. To this end, we approximate the conditional density log pðp j h, aÞ ¼PT

t¼1 log pðpt j ht , aÞ around a point �h ¼ ð�h1, �h2, . . . , �hTÞ0 which is chosen to be the mode of
pðh j p, a, ah, qh,r2

hÞ by using a second-order Taylor expansion to obtain:17

log pðp j h, aÞ� log pðp j �h, aÞ þ ðh��hÞ0F� 1
2
ðh��hÞ0Gðh��hÞ

¼ � 1
2
ðh0Gh�2h0ðF þ G�hÞÞ þ a1,

(15)

where a1 is a constant, and F ¼ ðF1, F2, . . . , FTÞ0 and G ¼ diagðG1,G2, . . . ,GTÞ are the gradi-
ent and the negative Hessian of the log-conditional density of pt evaluated at �h, respectively.
Ft and Gt for all t 2 ð1,TÞ are computed as follows:18
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Ft ¼ o
oht

log pðpt j ht , aÞjht¼ht
¼ � 1

2
þ 1
2
e�ht ðpt�aÞ2,

Gt ¼ � o2

oh2t
log pðpt j ht , aÞjht¼ht

¼ 1
2
e�htðpt�aÞ2:

Next, we consider the conditional density pðh j ah, qh,r2
hÞ: It is proved that this density is

Gaussian (see, e.g., Chan & Grant, 2016b). Let Hqh be the following matrix:

Hqh ¼

1 0 0 . . . 0
�qh 1 0 . . . 0
0 �qh 1 . . . 0

..

. ..
. . .

. . .
. ..

.

0 0 . . . �qh 1

2666664

3777775:

Then, we can rewrite the volatility equation of the standard stochastic volatility model in
(7) as follows:

Hqhh ¼ � þ �h, �h�Nð0,RhÞ, (16)

where � ¼ ðah, ð1�qhÞah, . . . , ð1�qhÞahÞ0, �h ¼ ðeh1, eh2, . . . , ehTÞ0, and Rh ¼
diagðr2

h=ð1�q2hÞ,r2
h, . . . ,r

2
hÞ: Since the determinant of Hqh is one, the matrix is invertible

regardless of the value of qh. Therefore, from Equation (16), we obtain:

ðh j ah, qh,r2
hÞ�Nð� h, ðH0

qh
R�1
h HqhÞ�1Þ,

where � h ¼ H�1
qh
� : Hence, the log-conditional density can be written as follows:

log pðh j ah, qh,r2
hÞ ¼ � 1

2
ðh0H0

qh
R�1
h Hqhh�2h0H0

qh
R�1
h Hqh� hÞ þ a2, (17)

where a2 is a constant parameter independent of h. Finally, combining Equations (15) and
(17), we obtain the following result:

log pðh j p, a, ah, qh,r2
hÞ ¼ log pðp j h, aÞ þ log pðh j ah, qh,r2

hÞ þ a3

�� 1
2
ðh0Khh�2h0khÞ þ a4,

(18)

where a3 and a4 are constant parameters independent of h, Kh ¼ H0
qh
R�1
h Hqh þ G and kh ¼

F þ G�h þH0
qh
R�1
h Hqh� h: The expression in (18) can be shown as the log-kernel of Nð~h,K�1

h Þ
with ~h ¼ K�1

h kh:
19 In other words, we can approximate the joint conditional density

pðh j p, a, ah, qh,r2
hÞ by the Gaussian density with the mean vector ~h and variance vector

K�1
h : It is easy to check that Kh is a tridiagonal matrix, and hence, we can quickly obtain ~h by

solving the linear system Khx ¼ kh for x without computing the inverse matrix K�1
h :

Moreover, it is quite fast to sample from the density Nð~h,K�1
h Þ by using the precision sampler

introduced in Chan and Jeliazkov (2009).
The posterior draws for a, ah, and r2

h can be easily obtained as their corresponding condi-
tional distributions are Gaussian:

1: ða j p, hÞ�Nð~a,KaÞ,
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where ~a ¼ Kaða0V�1
a þPT

t¼1 pte
�htÞ and K�1

a ¼ V�1
a þPT

t¼1 e
�ht :

2: ðah j h, qh,r2
hÞ�Nð ~ah ,KahÞ,

where ~ah ¼ Kahðah0V�1
ah

þ Xah
0R�1

h yahÞ and K�1
ah

¼ V�1
ah

þ Xah
0R�1

h Xah : Here, Xah and yah are
defined as Xah ¼ ð1, 1�qh, . . . , 1�qhÞ0 and yah ¼ ðh1, h2�h1qh, . . . , hT�hT�1qhÞ:

3: ðr2
h j h, ah, qhÞ�IGðrh0 þ T=2, ~VrhÞ,

where ~Vrh ¼ Vrh þ ½ð1�q2hÞðh1�ahÞ2 þ
PT

t¼2ðht � ah � qhðht�1 � ahÞÞ2�=2:
Finally, we can draw from pðqh j h, ah,r2

hÞ by employing an independence-chain
Metropolis-Hastings algorithm with the proposal density Nð ~qh ,KqhÞ1ðjqhj<1Þ, where ~qh ¼
KqhðV�1

qh
qh0 þ X0

qh
Zqh=r

2
hÞ and K�1

qh
¼ V�1

qh
þ X0

qh
Xqh=r

2
h, with Xqh ¼ðh1�ah, h2�ah, . . . , hT�1�ahÞ0 and Zqh ¼ ðh2�ah, h3�ah, . . . , hT�ahÞ0:

B.2.2. Stochastic volatility in mean model
Some modifications of the baseline algorithm are required in order to estimate the stochas-

tic volatility in mean model. First, the log-conditional density of pt given parameters ða, kÞ
and the volatility ht now become:

log pðpt j ht , a, kÞ ¼ � 1
2
ht� 1

2
log ð2pÞ� 1

2
e�htðpt�aÞ2� 1

2
k2eht þ ðp�aÞk:

Hence, the first and second derivatives of this log-conditional density with respect to ht are
as follows:

o
oht

log pðpt j ht , a, kÞ ¼ � 1
2
� 1
2
k2eht þ 1

2
e�htðpt�aÞ2,

o2

oh2t
log pðpt j ht , a, kÞ ¼ � 1

2
k2eht� 1

2
e�ht ðpt�aÞ2:

We can then sample h from the joint distribution as in Step 1 of SV model. A second
adjustment is that in Step 2 of the baseline algorithm, we need to jointly draw ða, kÞ from
pða, k j p, hÞ: This can be done easily since the joint conditional distribution is Gaussian.
Specifically, we define W as W ¼ ða, kÞ: The conditional distribution is shown as follows:

1: ðW j p, hÞ�Nð ~W,KWÞ,

where ~W ¼ KWðV�1
W W0 þ X0

WR
�1
p pÞ and K�1

W ¼ X0
WR

�1
p XW þ V�1

W : Here, VW, W0, and Rp are
defined as

VW ¼ diagðVa,VkÞ, W0 ¼ ða0, k0Þ, Rp ¼ diagðeh1 , . . . , ehT Þ, XW ¼
1 eh1

..

. ..
.

1 ehT

264
375:

B.2.3. Stochastic volatility with leverage
To fit this stochastic volatility specification, a few modifications are required. First, we need

to draw from pðh j p, a, ah, qh,r2
h, qÞ, where h now is defined as h ¼ ðh1, h2, . . . , hTþ1Þ,

which means h is of length Tþ 1. The conditional density of pt given parameters and ht, htþ1

is as follows:
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ðpt j ht , htþ1, a, ah, qh,r
2
h, qÞ�N aþ q

rh
e
1
2htðhtþ1 � qhht � ahð1� qhÞÞ, eht ð1� q2Þ

� �
:

Hence, the log-conditional density is as follows:

log ðpt j ht , htþ1, a, ah, qh,r
2
h, qÞ ¼ � 1

2
log ð2pð1�q2ÞÞ� 1

2
ht

� 1
2ð1� q2Þ e

�ht pt � a� q
rh

e
1
2htðhtþ1 � qhht � ahð1� qhÞÞ

� �2

:

To sample h, we go through a similar procedure as in the baseline algorithm with only
slight changes. Second, we need one extra step to sample q from the conditional distribution
pðq j p, h, a, ah, qh,r2

hÞ: It can be checked that the log-conditional distribution of q is as
follows:

Table C.1. The posterior estimates of the leverage effect and volatility feedback for other coun-
tries. The numbers in parentheses are numerical standard errors.
Country GARCH-GJR (h) GARCH-M (k) SV-L(q) SV-M(k)

Canada �0.39 0.09 0.67 0.80
(0.11) (0.02) (0.16) (0.28)

France �0.04 0.46 0.15 4.38
(0.12) (0.03) (0.13) (1.13)

Germany �0.17 0.57 0.44 9.22
(0.09) (0.15) (0.15) (2.62)

Italy �0.05 0.22 0.17 8.26
(0.12) (0.04) (0.13) (2.26)

Japan �0.22 0.20 0.17 0.94
(0.10) (0.03) (0.21) (0.19)

United Kingdom �0.23 0.18 0.14 1.46
(0.10) (0.01) (0.14) (0.34)

United States �0.43 0.06 0.37 0.84
(0.13) (0.02) (0.12) (0.17)

Australia �0.24 0.32 0.37 0.74
(0.08) (0.06) (0.15) (0.19)

Austria �0.13 0.61 0.21 1.90
(0.07) (0.08) (0.15) (0.63)

Belgium �0.27 0.25 0.43 2.36
(0.12) (0.08) (0.13) (0.63)

Denmark 0.00 0.34 �0.05 0.92
(0.05) (0.05) (0.13) (0.17)

Finland �0.17 0.33 0.52 3.66
(0.17) (0.03) (0.26) (1.02)

Luxembourg �0.17 0.23 0.33 3.40
(0.08) (0.05) (0.15) (0.95)

Netherlands �0.01 0.37 0.12 1.34
(0.09) (0.07) (0.14) (0.38)

New Zealand �0.66 0.09 0.48 1.61
(0.13) (0.01) (0.16) (0.55)

Norway �0.39 0.64 0.24 0.61
(0.12) (0.02) (0.15) (0.16)

Sweden �0.25 0.17 0.66 1.26
(0.09) (0.02) (0.18) (0.24)

Switzerland �0.25 0.25 0.34 4.74
(0.15) (0.05) (0.11) (1.40)

Notes: The period spans from 1961Q1 to 2018Q4 for all countries except for Denmark (1967Q1 to 2018Q4).
Source: Author.
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log pðq j p, h, a, ah, qh,r2
hÞ / log pðqÞ�T

2
log ð1�q2Þ� 1

2ð1� q2Þ m1 � 2qm2

rh
þ q2m3

r2
h

 !
:

Here, pðqÞ is a prior distribution; m1, m2, and m3 are defined as m1 ¼PT
t¼1 e

�htðpt�aÞ2, m2 ¼
PT

t¼1 e
�ht=2ðpt�aÞeht , and m3 ¼

PT
t¼1 ðeht Þ2: The remaining parame-

ters can be drawn similarly as the standard stochastic volatility model.

Appendix C. Estimation results for all 18 countries

In this section, we present the estimated results for the all 18 countries. Because of space limit,
we only report the posterior estimates for the leverage effect and volatility feedback. The
results are presented in Table C.1. It is clear that the posterior estimates of volatility feedback
k for both the GARCH-M and SV-M are all positive and statistically significant, which demon-
strates that inflation volatility has a positive impact on the inflation rate. However, we find
mixed results when taking the leverage effect into account. These findings are in line with the
results of the model comparison using the marginal likelihood.

Appendix D. Forecasting comparison results for all 18 countries

This section provides the forecasting comparison results for all 18 countries. The results are
presented in Table D.1 for the expanding samples and Table D.2 for the rolling samples. It is
clear that the SV specifications surpass their GARCH counterparts in performing the density
forecast of the inflation rate for both the expanding samples and rolling samples. This result is
consistent with the finding of the model comparison using the log marginal likelihood.

Table D.1. Log predictive score of two classes of volatility models for all 18 countries
(Expanding samples).
Type GARCH SV GARCH-GJR SV-L GARCH-M SV-M

Canada �84.15 �75.16 �82.29 �73.38 �70.96 �68.16
France �93.59 �75.08 �93.96 �74.93 �74.01 �63.83
Germany �65.20 �59.74 �64.95 �59.13 �56.88 �50.68
Italy �109.48 �82.66 �109.55 �83.77 �97.38 �71.87
Japan �97.23 �86.42 �97.12 �86.05 �90.10 �85.63
United Kingdom �89.77 �64.22 �89.77 �64.93 �65.93 �65.61
United States �85.22 �84.54 �84.10 �83.08 �82.10 �80.06
Australia �90.56 �77.24 �89.52 �77.01 �77.89 �76.82
Austria �71.43 �66.05 �71.17 �65.91 �59.88 �58.74
Belgium �81.36 �80.85 �81.33 �80.34 �79.98 �75.99
Denmark �93.60 �73.83 �94.69 �73.69 �72.68 �71.95
Finland �98.52 �80.44 �99.15 �79.32 �71.16 �70.33
Luxembourg �79.66 �76.65 �78.95 �76.99 �75.51 �67.04
Netherlands �83.03 �76.39 �83.35 �76.19 �73.84 �73.72
New Zealand �108.95 �90.56 �107.45 �90.96 �90.35 �83.45
Norway �95.93 �79.49 �93.69 �78.52 �80.02 �77.58
Sweden �101.04 �85.86 �99.10 �82.08 �78.68 �71.19
Switzerland �88.08 �80.33 �87.20 �82.45 �84.05 �70.52

Notes: The evaluation period is from 2009Q1 to 2018Q4.
Source: Author.
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Table D.2. Log predictive score of two classes of volatility models for all 18 countries
(Rolling samples).
Type GARCH SV GARCH-GJR SV-L GARCH-M SV-M

Canada �86.15 �75.47 �84.38 �73.27 �70.94 �69.89
France �92.86 �73.30 �93.74 �73.46 �71.45 �63.44
Germany �63.83 �57.64 �63.54 �57.73 �57.48 �49.64
Italy �109.75 �81.90 �110.05 �82.77 �93.22 �75.42
Japan �96.48 �86.20 �94.96 �85.68 �89.97 �85.61
United Kingdom �90.59 �63.38 �90.24 �64.15 �65.62 �63.73
United States �87.21 �86.35 �87.11 �86.09 �82.56 �80.69
Australia �93.07 �77.98 �92.67 �77.73 �75.93 �73.95
Austria �69.75 �64.83 �69.58 �64.58 �60.11 �56.85
Belgium �81.55 �80.42 �81.44 �79.92 �77.50 �75.31
Denmark �88.95 �74.76 �89.21 �72.99 �70.65 �69.15
Finland �96.81 �77.79 �97.04 �76.31 �75.11 �69.01
Luxembourg �79.85 �76.44 �79.28 �76.68 �73.58 �67.08
Netherlands �82.36 �75.89 �81.56 �75.77 �72.90 �73.21
New Zealand �110.51 �89.74 �108.90 �90.41 �88.62 �84.02
Norway �94.08 �78.50 �92.14 �77.52 �81.89 �76.92
Sweden �100.61 �82.27 �98.15 �80.01 �76.91 �71.73
Switzerland �84.55 �76.37 �82.83 �78.70 �81.51 �68.79

Notes: The evaluation period is from 2009Q1 to 2018Q4.
Source: Author.
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