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Impact of industrial relatedness on manufacturing
structural change: a panel data analysis for
Chinese provinces

Yanlin Sun and Yuanrong Lin

School of Economics, Huazhong University of Science and Technology, Wuhan, China

ABSTRACT
A large body of literature has explored the determinants of manu-
facturing structural change, but little has highlighted industrial
relatedness. This study probes the impact of technological and
vertical relatedness on manufacturing structural rationalisation
and advancement by constructing a panel data model with prov-
ince and year fixed effects using data of 30 Chinese provinces
from 2000 to 2019. The empirical results show that manufacturing
structural change differs based on industrial relatedness.
Specifically, at the national level, technological relatedness can
promote both structural rationalisation and advancement within
manufacturing. Vertical relatedness holds a negative effect on
structural rationalisation and no significant effect on structural
advancement. Besides, the effects of industrial relatedness exhibit
regional heterogeneity. In coastal China, technological relatedness
can still promote structural rationalisation and advancement.
Vertical relatedness has no significant effect on structural rational-
isation and a negative effect on structural advancement. In inland
China, governmental supports help break the dependency of
regional manufacturing structural change on industrial related-
ness, and the establishment of development zones restrains struc-
tural rationalisation within manufacturing. This study offers
insights for policymakers to adopt different approaches to sup-
port local manufacturing development, depending on the charac-
teristics of regional manufacturing structural evolution.
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1. Introduction

Manufacturing structural change has been one of China’s industrial policy priorities.
With a manufacturing value added of 3.854 trillion dollars in 2020 (World Bank
Data), China has the largest manufacturing sector in the world. However, the trad-
itional scale advantage of China’s manufacturing sector is gradually declining, while
the technical advantage represented by labour productivity and supply chain
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efficiency has not become prominent. Therefore, optimising and upgrading the manu-
facturing structure has become a critical task for China. Besides, with the gradual
development of new infrastructures (e.g., artificial intelligence, the industrial Internet,
and the Internet of things) in China since 2018, machines and devices have more
powerful recognition, learning, computation, and collaboration. Due to lower costs of
communication and information search, interactions among manufacturing firms
have become closer and shared factor resources more efficiently. The growing trend
towards closer interactions among manufacturing firms motivates us to ask two ques-
tions: Is industrial relatedness a critical determinant of structural change within man-
ufacturing in China? Does the impact of industrial relatedness on manufacturing
structural change vary among different regions in China?

Industrial structural change is a multi-layered and multidimensional dynamic pro-
cess (Zhou et al., 2020). Many studies have focused on determinants of structural
change across broad sectors of agriculture, manufacturing, and services (Du et al.,
2021; �SwieRcki, 2017; Wang et al., 2019; Zhang et al., 2019). Moreover, some scholars
have investigated determinants of structural change within manufacturing (Chen &
Qian, 2020; Hu et al., 2019; Samaniego & Sun, 2016; Syrquin & Chenery, 1989).
Existing theoretical studies have mainly attributed the driving force of structural
change within manufacturing to technological progress (Samaniego & Sun, 2016),
arguing that differences in technical efficiency among industries lead to production
factors flowing towards high-efficiency industries. Some empirical studies have add-
itionally highlighted the role of foreign direct investment (Hunya, 2002; Zhang, 2014)
or industrial policy (particularly environmental regulation) (Chen & Qian, 2020; Hu
et al., 2019; Zhou et al., 2020).

Despite the enormous interest of scholars exploring various determinants of struc-
tural change within manufacturing, the literature has paid little attention to explain-
ing manufacturing structural change with industrial relatedness. Many studies have
discussed the role of industrial relatedness in regional industrial evolution. These
studies have associated industrial relatedness with the short-term capacity of a region
to respond to an external shock (Cainelli et al., 2019; Diodato & Weterings, 2015)
and the long-term entry, expansion, contraction, and exit of local industries
(Boschma & Frenken, 2011; Essletzbichler, 2015; Guo & He, 2017; Neffke et al., 2011;
Xiao et al., 2018). We argue that structural change within manufacturing is implicit
in local industries’ ongoing evolutionary process to adapt to changes in the external
environment. Industrial relatedness may affect the reallocation of production factors
across different manufacturing industries during the evolutionary process, thus influ-
encing structural change within manufacturing.

This study investigates how industrial relatedness affects manufacturing structural
change in China and whether this impact differs between China’s coastal and inland
regions. We focus on two specific types of industrial relatedness: technological and
vertical relatedness. As for structural change within manufacturing, we divide it into
structural rationalisation and advancement. First, we propose a series of research
hypotheses on the impact mechanisms of industrial relatedness on manufacturing
structural change. Afterwards, we empirically test the research hypotheses using a
panel data model with province and year fixed effects, based on manufacturing data
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from 30 provinces in China. Considering the potential reverse causality between
industrial relatedness and structural change within manufacturing, we construct
instrumental variables based on average land slope, land surface relief degree, and
medium-and-long-term loan interest rate. We then apply a two-step efficient G.M.M.
estimator to obtain coefficient estimates correcting endogeneity bias. Finally, we
examine the regional heterogeneity between coastal and inland regions of China.

The contribution of this study is threefold. First, from the perspective of research
content, this study advances our knowledge of the role of industrial relatedness in
regional industrial evolution by extending the explained variable to multidimensional
manufacturing structural change. Second, from the perspective of variable measure-
ment, this study improves the measure of manufacturing structural change and indus-
trial relatedness in terms of accuracy and timeliness. Third, from the perspective of
causal identification, this study constructs instrumental variables for industrial
relatedness based on strictly exogenous geographical variables and interest rate shocks
to deal with the reverse causality issue.

Section 2 analyses theoretical mechanisms and develops hypotheses. Section 3
explains the research methodology. Section 4 describes the empirical findings, and
Section 5 concludes the implications of this study.

2. Theoretical mechanisms and research hypotheses

As previously mentioned, industrial structural change is a multi-layered and
multidimensional dynamic process (Zhou et al., 2020). Regarding the structural
change across broad sectors of agriculture, manufacturing, and services, most of this
literature has concentrated on two classic dimensions: structural rationalisation and
advancement (Hartwig, 2012; Peneder, 2003), especially those studies on China (Fan
et al., 2003; Wang et al., 2019). In China, structural change within manufacturing is
one of the most prominent parts of industrial structural change. Inspired by the exist-
ing literature (Fu et al., 2014; Li et al., 2019), we introduce structural rationalisation
and advancement to measure manufacturing structural change. Structural rationalisa-
tion encourages the dynamic transition towards higher efficiency of resource alloca-
tion among manufacturing industries (Zhou et al., 2020). Structural advancement
indicates the transition from low-technology-intensive industries (e.g., petrochemical,
ferrous and non-ferrous metals) to high-technology-intensive industries (e.g., elec-
trical machinery and equipment, electronic and communication equipment). During
the evolution of regional industries, industrial relatedness may influence structural
change within manufacturing by altering the reallocation of factor resources. By refer-
ring to previous related studies, we focus on two major types of industrial relatedness:
technological and vertical relatedness. Technological relatedness exists between local
industries with similar knowledge bases (e.g., skills, capabilities, and technologies)
(Boschma & Frenken, 2011; Cainelli et al., 2019; Howell et al., 2016). Vertical related-
ness exists between local industries linked by input-output relations (Cainelli et al.,
2019; Diodato & Weterings, 2015; Essletzbichler, 2015). In the following, we discuss
how technological and vertical relatedness influence the structural rationalisation and
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advancement within manufacturing, respectively, and propose the corresponding
research hypotheses.

2.1. Regional heterogeneity between coastal and inland China

Scholars often use technological relatedness to proxy regional historical trajectory and
previous production competencies (Boschma et al., 2012; Martin & Sunley, 2006).
They have described regional development as a path dependence process. Specifically,
regions tend to diversify into new technologically related industries to utilise local
relevant skills, capabilities, and technologies (Frenken & Boschma, 2007). Empirical
studies on developed economies have confirmed the existence of path dependence.
However, in a transitioning economy such as China, path dependence is not sufficient
to explain the evolution of regional industries. In the context of China’s gradual
opening up from east to west, coastal regions participated in the globalisation process
earlier than inland regions. With a better environment of market institutions, the
coastal regions have a stronger tendency of path dependence in their industrial evolu-
tion (Guo & He, 2017). In order to catch up with coastal regions, governments in
inland regions have improved local production conditions through a series of favour-
able policies aimed at attracting or developing advanced industries (Barbieri et al.,
2012). Thus, governmental policies have helped inland regions diversify into new
industries less related to their previous industrial portfolio and break through the
path dependence (Guo & He, 2017). Based on the above discussion, we propose the
following hypothesis:

Hypothesis 1: Technological relatedness is significantly related to manufacturing
structural change in coastal regions and shows no significant effect in inland regions.

Vertical relatedness reflects the extent to which manufacturing industries within a
region are linked to one another by supplier-customer relationships (Diodato &
Weterings, 2015). When the evolution of regional manufacturing structures is path-
dependent, diversification into new technologically related industries can utilise the
local supplier and customer base (Essletzbichler, 2015; Frenken & Boschma, 2007).
Thus, in coastal China, pre-existing networks of supplier-customer relationships sug-
gest which industries the region has already specialised in and which industries the
region can develop in the future. However, in inland China, new industries are often
introduced by governmental policies rather than the region’s previous networks of
supplier-customer relationships (Guo & He, 2017). Based on the above discussion, we
propose the following hypothesis:

Hypothesis 2: Vertical relatedness is significantly related to manufacturing structural
change in coastal regions and shows no significant effect in inland regions.

2.2. Technological relatedness and manufacturing structural rationalisation

Regions with a higher technological relatedness tend to have better factor mobility
across industries (Ji et al., 2016). Technologically related industries benefit from each
other’s co-occurrence since each of them can draw from a local pool of skills,
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capabilities, and technologies (Boschma, 2015). Therefore, technological relatedness
can contribute to manufacturing structural rationalisation by improving the inter-
industry factor allocation efficiency. The above arguments lead to the follow-
ing hypothesis:

Hypothesis 3a: Technological relatedness is positively related to manufacturing structural
rationalisation at the national level.

Combining Hypothesis 1, we further propose:

Hypothesis 3b: Technological relatedness is positively related to manufacturing structural
rationalisation in coastal regions and shows no significant effect in inland regions.

2.3. Vertical relatedness and manufacturing structural rationalisation

In the early stage of a region’s exposure to an external shock, the level of vertical
relatedness is crucial for propagating the initial hit to different parts of the economy
(Diodato & Weterings, 2015). As manufacturing industries become more embedded
in a local productive system, i.e., with more diverse and well-connected local sources
of intermediate inputs, they also become more vulnerable to shocks (He & Chen,
2019). If a local productive system is highly vertically connected, even an industry-
specific shock can negatively affect the resource allocation efficiency of the entire
manufacturing sector through propagation mechanisms (Cainelli et al., 2019).
Therefore, higher vertical relatedness is unfavourable for manufacturing structural
rationalisation. The above arguments underpin the following hypothesis:

Hypothesis 4a: Vertical relatedness is negatively related to manufacturing structural
rationalisation at the national level.

Combining Hypothesis 2, we further propose:

Hypothesis 4b: Vertical relatedness is negatively related to manufacturing structural
rationalisation in coastal regions and shows no significant effect in inland regions.

2.4. Technological relatedness and manufacturing structural advancement

Technological relatedness in a region affects the nature and scope of knowledge spill-
overs (Boschma & Frenken, 2011) since regions with different but technologically
related industries can benefit more from knowledge spillovers (Frenken et al., 2007).
Either too much or too little cognitive proximity goes against effective knowledge
transfers and the emergence of innovation (Nooteboom, 2000). The development of
high-tech manufacturing industries is more dependent on technological progress than
low-tech manufacturing industries. Therefore, technological relatedness accelerates the
development of high-tech manufacturing industries, thereby contributing to the struc-
tural advancement within manufacturing. Based on the above arguments, we propose
the following hypothesis:

Hypothesis 5a: Technological relatedness is positively related to manufacturing structural
advancement at the national level.

2512 Y. SUN AND Y. LIN



Combining Hypothesis 1, we further propose:

Hypothesis 5b: Technological relatedness is positively related to manufacturing structural
advancement in coastal regions and shows no significant effect in inland regions.

2.5. Vertical relatedness and manufacturing structural advancement

Vertical relatedness reflects the extent to which manufacturing industries within a
region are linked to one another by supplier-customer relationships (Diodato &
Weterings, 2015). As the level of vertical relatedness increases, manufacturing indus-
tries can access more diverse and well-connected intermediate inputs locally (He &
Chen, 2019). In such a circumstance, incumbent firms are more likely to survive since
the co-agglomeration of vertically related industries is conducive to saving transport
costs and increasing productivity (Venables, 1996). However, the region also tends to
specialise in particular industries and become locked into its previous trajectory
(Grabher, 1993), making it more difficult to diversify into new advanced industries.
Therefore, higher vertical relatedness is unfavourable for manufacturing structural
advancement. The above arguments lead to the following hypothesis:

Hypothesis 6a: Vertical relatedness is negatively related to manufacturing structural
advancement at the national level.

Combining Hypothesis 2, we further propose:

Hypothesis 6b: Vertical relatedness is negatively related to manufacturing structural
advancement in coastal regions and shows no significant effect in inland regions.

3. Research methodology

3.1. Data collection

This study used the sample of 30 provinces in China (Hong Kong, Macau, Taiwan
and Tibet excluded) from 2000 to 2019 for empirical analysis. The output value and
employment data of two-digit manufacturing industries at the provincial level were
from China Industrial Statistical Yearbooks. Other province-level characteristics were
collected from the Statistical Yearbooks of each province. We acquired the direct con-
sumption coefficient information from 2002, 2007, 2012, and 2017 China regional
input-output tables. All the monetary values were deflated with 2000 as the base year,
and missing values were linearly imputed.

3.2. Variables measurement

3.2.1. Manufacturing structural change
Previous studies (Fu et al., 2014; Li et al., 2019) have typically measured manufactur-
ing structural rationalisation at the provincial level based on the dispersion degree of
labour productivity among three categories classified by technology intensity. We
improved this measure and based it on two-digit industries rather than the three cate-
gories to make it more accurate, as shown in Equation (1):
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MSR ¼
Xn

i¼1

Yi

Y

� �
ln

Yi

Y
=
Li
L

� �
(1)

In Equation (1), Yi=Y and Li=L respectively denote the output value and employ-
ment share of two-digit industry i in the manufacturing sector. Given the total
amount of two-digit manufacturing industries n, MSR decreases with the evenness of
the distribution of labour productivity. When the manufacturing structure reaches the
rationalised state with full factor mobility, it equals zero. In other words, a higher
value of MSR implies a lower degree of manufacturing structural rationalisation. By
definition, it is also reasonable to measure manufacturing structural rationalisation
based on total factor productivity. However, labour productivity is more widely used
in evaluating the development of Chinese enterprises (Gao & Yuan, 2020) since it has
a stable and positive relationship with total factor productivity over time (Martino,
2015) and is more intuitive and easier to calculate.

By referring to Fu et al. (2014) and Li et al. (2019), we measured manufacturing
structural advancement using the ratio of high-tech industries’ output value to low-
tech industries’ output value, as shown in Equation (2). The expansion of high-tech
industries and the exit of low-tech industries contribute to a region’s more advanced
manufacturing structure. High-tech industries include chemicals, pharmaceuticals,
general equipment, special equipment, transportation equipment, electrical machinery
and equipment, electronic and communication equipment, instruments and meters.
Low-tech industries include all other manufacturing industries.

MSA ¼ Yh=Yl (2)

In Equation (2), Yh and Yl respectively denote the output value of high-tech and
low-tech manufacturing industries. MSA increases with the expansion of high-tech
industries and the exit of low-tech industries. A higher MSA implies a higher degree
of manufacturing structural advancement.

3.2.2. Industrial relatedness
Previous studies on China (Guo & He, 2017; Howell et al., 2016) have typically meas-
ured industrial relatedness using the Annual Survey of Industrial Firms (A.S.I.F.) data
set. However, the data set is only publicly available until 2013, limiting the timeliness
of the measured industrial relatedness indicators. To overcome this deficiency, we
used the data of two-digit manufacturing industries by province to measure industrial
relatedness at the provincial level from 2000 to 2019.

Following Cainelli et al. (2019), we measured technological relatedness based on
the technological similarity between every pair of product sectors and the number of
employees in each product sector. The intensity of technological spillovers between
two product sectors was assumed to depend on the technological similarity and the
number of employees in each sector.

Following Fan and Lang (2000), we first estimated technological similarity (xij)
using the cosine similarity measure applied to the intermediate input structure in two
manufacturing product sectors.
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xij ¼
Pm

k¼1 aik � ajkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 aikð Þ2 �Pm

k¼1 ajkð Þ2
h ir (3)

In Equation (3), aik and ajk are direct consumption coefficients from input-output
tables reflecting the likelihood of firms in product sectors i and j acquiring inputs
from product sector k, and m denotes the total number of manufacturing product
sectors in input-output tables. The more similar the intermediate input structure in
product sectors i and j, the closer xij is to 1.

We then computed technological relatedness (TR) as in Equation (4):

TR ¼
Pm

i¼1

Pm
j¼1 Li � Lj � xijð ÞPm

i¼1

Pm
j¼1 Li � Ljð Þ (4)

Li and Lj denote the respective employment of product sectors i and j, and xij

denotes the technological similarity between product sectors i and j. TR increases
with the similarity in the composition of manufacturing product sectors’ inputs. A
higher TR implies a higher level of technological relatedness.

Following Cainelli et al. (2019), we measured vertical relatedness (VR) by assuming
that the likelihood of each product sector acquiring inputs from the same sector or
another sector is correlated linearly with the number of employees in the supply-side
sector.

VR ¼
Pm

i¼1 Li � aiið Þ þPm
j¼1, j 6¼i Lj � aijð Þ

h i
Pm

i¼1 Li þ
Pm

j¼1, j6¼i Lj
� � (5)

In Equation (5), Li and Lj denote the respective employment of product sectors i
and j, and aii and aij denote the share of inputs acquired by product sector i from
the same sector or sector j (j 6¼i). VR increases with the local accessibility of inter-
mediate inputs for manufacturing product sectors. A higher VR implies a higher level
of vertical relatedness.

3.2.3. Control variables
To examine the impact of industrial relatedness on manufacturing structural change,
we followed prior studies to control province-level characteristics. The control varia-
bles include development zone (ZONE), financial development (FD), urbanisation
(URBAN), R&D expenditure (RD), infrastructure construction (INFRASTR), globalisa-
tion participation (GLOBAL), population density (POPDEN). These control variables
are expected to affect manufacturing structural change significantly. For example,
infrastructure construction may positively affect manufacturing structural change as
infrastructure is a generic localised capability generally required in regional industrial
evolution. Table 1 shows the description and measurement of control variables.
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Table 2 presents the descriptive statistics for all variables. The mean value of all
variables except GLOBAL is larger than the standard deviation, indicating that the
data does not include extreme values and the overall dispersion is not high.

3.3. Model specification and estimation strategy

Our regression models are shown in Equations (6) and (7). We included province
and year fixed effects to control for unobservable provincial heterogeneity and shocks
that simultaneously affect all provinces’ manufacturing structures. We also included
all control variables as lagged values (t-1) to deal with the potential reverse causality
between the explained and control variables. According to the results of Frees (1995)
Q test, the error term structure has cross-sectional dependence. Therefore, we esti-
mated the models using Driscoll and Kraay (1998) robust standard errors.

MSRpt ¼ a0 þ a1TRpt þ a2VRpt þ a3Controlp, t�1 þ
X

Province, Year (6)

MSApt ¼ b0 þ b1TRpt þ b2VRpt þ b3Controlp, t�1 þ
X

Province, Year (7)

The reverse causality between manufacturing structural change and industrial
relatedness might create a systematic distortion in our estimation. For example,
regions with high manufacturing structural rationalisation and advancement are more
likely to follow their previous industrial trajectory (Boschma et al., 2012). The entry
of technologically related industries and the exit of unrelated industries will lead to a
greater concentration of the technology base and the supplier-customer relationship

Table 2. Descriptive statistics.
Variables Obs. Mean Std. Dev. Min. Max.

Explained variables MSR 600 0.201 0.172 0.032 1.602
MSA 600 0.865 0.654 0.105 3.480

Core explanatory variables TR 600 0.337 0.070 0.178 0.604
VR 600 0.038 0.008 0.020 0.082

Control variables ZONE 600 0.492 0.442 0.000 1.860
FD 600 1.197 0.441 0.545 3.848
URBAN 600 0.506 0.154 0.139 0.896
RD 600 0.014 0.011 0.002 0.070
INFRASTR 600 1.128 0.904 0.072 5.623
GLOBAL 600 2.711 2.958 0.001 14.884
POPDEN 600 2.353 1.362 0.026 6.307

Source: The authors.

Table 1. Description and measurement of control variables.
Variables Symbol Measure

Development zone ZONE Number of development zones
Financial development FD Loan balance from financial institutions/Regional GDP
Urbanisation URBAN Urban population/Total registered population
R&D expenditure RD Governmental expenditure on R&D/Regional GDP
Infrastructure construction INFRASTR Highway densityþ Railway density
Globalisation participation GLOBAL Actually utilised foreign capitals
Population density POPDEN Urban population density

Source: The authors.
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network (Essletzbichler, 2015), thus a higher technological and vertical relatedness.
We employed the instrumental variable (I.V.) regression to address this concern. The
two-step efficient G.M.M. estimator is preferred over the traditional 2SLS estimator
since it is more efficient in such an over-identified model with cross-sectional
dependence. By referring to Han et al. (2018) and Chen and Qiu (2020), we con-
structed a set of instrumental variables, including one-year lagged technological and
vertical relatedness values and the interaction of interest rates with two geograph-
ical variables.

The two geographical variables, i.e., average land slope and land surface relief
degree, capture a region’s topographic characteristics. They are negatively related to
the closeness of interactions among manufacturing firms by altering the cost of com-
munication and transportation (Burchfield et al., 2006) but cannot directly determine
manufacturing structural change. Thus, the two geographical variables can nicely
meet the two conditions of valid instrumental variables: closely correlated with indus-
trial relatedness and strongly exogenous. However, our sample was in the form of
panel data, while the average land slope and the land surface relief degree did not
vary much over the sample period. Therefore, we had to combine the geographical
variables with an exogenous time-varying variable. We selected the benchmark inter-
est rates for medium and long term loans (including 1–3 years, 3–5 years, and more
than five years), published by People’s Bank of China. When interest rates decrease,
firms have lower financing costs and are more willing to make relocation decisions.
The relocation of firms optimises the spatial allocation of resources and tends to
increase industrial relatedness in the regions involved. Since the two geographical var-
iables and the interest rates are all negatively related to industrial relatedness, we mul-
tiplied the average land slope and the land surface relief degree by interest rates of
different maturities. For now, the number of instrumental variables equalled the num-
ber of endogenous variables. We could not test the exogeneity of all instrumental var-
iables using Hansen’s (1982) J test for such an exactly-identified model. Thus, we
referred to Han et al. (2018) and further included one-year lagged values of industrial
relatedness in the set of instrumental variables.

4. Empirical results

4.1. National full-sample results

Table 3 shows the national full-sample results for the impact of technological and
vertical relatedness on manufacturing structural rationalisation. It is noteworthy that
a higher value of MSR indicates a lower degree of structural rationalisation. Thus, a
negative coefficient of an explanatory variable implies that it favours the rationalisa-
tion of manufacturing structures and vice versa. According to the proposed hypothe-
ses H3a and H4a, manufacturing structural rationalisation is positively affected by
technological relatedness and negatively affected by vertical relatedness at the national
level. We first conducted O.L.S. regression to test the two hypotheses, as shown in
Model (1). The coefficient of technological relatedness is negative and significant,
indicating that technological relatedness is beneficial to the structural rationalisation
within manufacturing. The coefficient of vertical relatedness is positive but not
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significant, indicating that the negative effect of vertical relatedness on manufacturing
structural rationalisation fails the significance test. The results of Model (1) align with
H3a but not with H4a.

Given that reverse causality may bias the coefficient estimates, we employed I.V.
regression to re-estimate the relationship between industrial relatedness and manufac-
turing structural rationalisation, as shown in Model (2)–(4). Model (2), (3) and (4)
use instrumental variables based on interest rates of three different maturities,
respectively. Regardless of which set of instrumental variables, technological related-
ness shows significantly positive effects, and vertical relatedness shows significantly
adverse effects. After dealing with endogeneity issues, the results of Model (2)–(4) are
in line with H3a and H4a. At the national level, technological relatedness contributes
to manufacturing structural rationalisation by improving the inter-industry factor
allocation efficiency. Vertical relatedness increases the region’s vulnerability to shocks,
which is unfavourable for manufacturing structural rationalisation.

Besides, we tested the validity of instrumental variables used in Model (2)–(4).
Kleibergen and Paap (2006) rank L.M. tests reject the null hypothesis that the matrix
of reduced form coefficients is under-identified, thus supporting the relevance of our
instrumental variables. Kleibergen and Paap (2006) rank Wald F tests present higher
values than Stock and Yogo (2005) critical values, suggesting that our instrumental

Table 3. Full-sample results: the explained variable is structural rationalisation.
Model (1) (2) (3) (4)

TRt �0.345�� �0.532��� �0.524��� �0.523���
(0.139) (0.146) (0.146) (0.146)

VRt 0.250 2.162�� 2.196�� 2.134��
(0.991) (0.893) (0.914) (0.924)

ZONEt�1 �0.012 �0.021 �0.019 �0.021
(0.027) (0.022) (0.022) (0.022)

FDt�1 �0.065��� �0.084��� �0.083��� �0.082���
(0.022) (0.019) (0.018) (0.018)

URBANt�1 0.169�� 0.212��� 0.208��� 0.208���
(0.069) (0.059) (0.058) (0.058)

RDt�1 1.562�� 2.050��� 1.980��� 2.033���
(0.724) (0.648) (0.633) (0.636)

INFRASTRt�1 �0.021 �0.026� �0.025 �0.025
(0.019) (0.016) (0.016) (0.016)

GLOBALt�1 �0.006��� �0.005��� �0.005��� �0.005���
(0.002) (0.001) (0.001) (0.001)

POPDENt�1 �0.027��� �0.030��� �0.030��� �0.030���
(0.008) (0.007) (0.007) (0.007)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
Observations 570 570 570 570
R2 0.201 0.081 0.081 0.081
Kleibergen-Paap rk LM statistic 7.893 7.855 7.864
p-value [0.048] [0.049] [0.049]
Kleibergen-Paap rk Wald F statistic 12.251 12.314 11.994
Stock-Yogo critical value 9.93 9.93 9.93
Hansen J statistic 2.090 2.528 2.256
p-value [0.352] [0.283] [0.324]

Notes: ���, �� and � represent significance at 1%, 5% and 10% level, respectively. All specifications include a con-
stant term. The Driscoll-Kraay robust standard error in () and the p-value in []. Kleibergen-Paap rk LM statistic for
the under-identification test, Kleibergen-Paap rk Wald F statistic for weak identification test, and Hansen J statistic
for over-identification test.
Source: The authors.
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variables are not weak. Hansen’s (1982) J tests fail to reject the null hypothesis that
all instrumental variables are exogenous. The above tests demonstrate the validity of
instrumental variables and suggest that the I.V. regression results are more reasonable
and rigorous than the O.L.S. regression results. We will only report the I.V. regres-
sion results in the next section to save space.

According to the I.V. regression results in Model (2)–(4), various control variables,
including FD, URBAN, RD, GLOBAL and POPDEN, show various effects on manufac-
turing structural rationalisation. In detail, the positive effects of FD show that finan-
cial development contributes to manufacturing structural rationalisation by mitigating
the capital mismatch caused by financial frictions (Wu, 2018). The effects of URBAN
are adverse, suggesting that the increased labour supply from urbanisation is relatively
less educated and flows more into labour-intensive industries (Liu et al., 2019), hin-
dering the rational allocation of factors. The adverse effects of RD indicate that the
increased R&D intensity may strengthen the specialisation of human capital and dis-
courage factor mobility, hampering manufacturing structural rationalisation. The
positive effects of GLOBAL imply that globalisation participation brings about a more
competitive market environment and higher resource allocation efficiency among
industries (Lu & Yu, 2015). The effects of POPDEN are also positive, indicating that
higher population density may correspond to better labour mobility and thus more
rational manufacturing structures.

Table 4 presents the national full-sample results for the impact of technological
and vertical relatedness on manufacturing structural advancement. According to the
proposed hypotheses H5a and H6a, manufacturing structural advancement is affected
positively by technological relatedness and negatively by vertical relatedness at the
national level. Model (5) shows that the technological and vertical relatedness coeffi-
cients are not significant in the O.L.S. regression, which is not in line with the expect-
ations of H5a and H6a. After addressing the endogeneity bias, technological
relatedness shows significantly positive effects, and vertical relatedness shows adverse
but insignificant effects in the I.V. regressions in Model (6)–(8). The findings of
technological relatedness are in line with H5a, implying that technological relatedness
contributes to manufacturing structural advancement by accelerating the development
of high-tech industries at the national level. However, the findings of vertical related-
ness are inconsistent with H6a. This inconsistency may be because active governmen-
tal policies have intervened in the evolution of manufacturing structures at the
national level to a large extent, especially in inland regions. Overall, the pattern of
regional manufacturing specialisation implied behind the network of supplier-cus-
tomer relationships have not fully conditioned the emergence of new advanced indus-
tries. Moreover, several tests have confirmed the instrumental variables’ validity in
Model (6)–(8).

According to the I.V. regression results in Model (6)–(8), various control variables,
including ZONE, URBAN, RD, INFRASTR and POPDEN, present various effects on
manufacturing structural advancement. Specifically, the positive effects of ZONE
show that establishing development zones has promoted manufacturing structural
advancement at the national level by selecting advanced industries for priority devel-
opment following the principle of comparative advantage (Li & Shen, 2015). The
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positive effects of URBAN suggest that urbanisation contributes to manufacturing
structural advancement by improving resource utilisation and providing a better
environment for technological innovation (Chen et al., 2020). The effects of RD are
adverse, indicating that high-tech manufacturing industries may have lower efficiency
to transform governmental expenditures on R&D into output expansion. The positive
effects of INFRASTR imply that a well-developed transport infrastructure facilitates
the improvement of innovation networks, leading to more advanced manufacturing
structures (Fritsch & Slavtchev, 2011). The adverse effects of POPDEN indicate that
population density is more of a disincentive than a facilitator of regional innovation,
i.e., higher population density generates labour-intensive industries and inhibits cap-
ital- and technology-substituting innovation (Zhu et al., 2019).

4.2. Regional sub-sample results

As discussed in Section 2.1, there is apparent heterogeneity in the manufacturing evo-
lutionary patterns between China’s coastal and inland regions. Hence, we divided the
entire sample of 30 provinces into two sub-samples: coastal and inland regions.
Coastal regions include Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Hainan and inland regions include the rest of

Table 4. Full-sample results: the explained variable is structural advancement.
Model (5) (6) (7) (8)

TRt 0.002 0.361� 0.366� 0.366�
(0.198) (0.209) (0.209) (0.209)

VRt �1.566 �1.813 �1.686 �1.653
(1.978) (1.379) (1.396) (1.393)

ZONEt�1 0.031 0.064�� 0.063�� 0.065��
(0.054) (0.031) (0.031) (0.031)

FDt�1 0.039 0.033 0.037 0.039
(0.065) (0.039) (0.040) (0.039)

URBANt�1 0.594��� 0.671��� 0.672��� 0.675���
(0.162) (0.114) (0.114) (0.114)

RDt�1 �7.189�� �6.025��� �5.887��� �5.831���
(2.812) (2.114) (2.080) (2.069)

INFRASTRt�1 0.077��� 0.069��� 0.069��� 0.070���
(0.010) (0.012) (0.012) (0.012)

GLOBALt�1 0.022� 0.009 0.009 0.009
(0.011) (0.008) (0.007) (0.007)

POPDENt�1 �0.039�� �0.043��� �0.042��� �0.042���
(0.015) (0.011) (0.011) (0.011)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
Observations 570 570 570 570
R2 0.180 0.076 0.076 0.075
Kleibergen-Paap rk LM statistic 7.893 7.855 7.864
p-value [0.048] [0.049] [0.049]
Kleibergen-Paap rk Wald F statistic 12.251 12.314 11.994
Stock-Yogo critical value 9.93 9.93 9.93
Hansen J statistic 3.110 2.964 2.793
p-value [0.211] [0.227] [0.247]

Notes: ���, �� and � represent significance at 1%, 5% and 10% level, respectively. All specifications include a con-
stant term. The Driscoll-Kraay robust standard error in () and the P-value in []. Kleibergen-Paap rk LM statistic for
the under-identification test, Kleibergen-Paap rk Wald F statistic for weak identification test, and Hansen J statistic
for overidentification test.
Source: The authors.
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provincial administrative regions. As shown in Table 5, we estimated Model (9)–(12)
to examine whether the impact of industrial relatedness on manufacturing structural
change varies with the location. To save space, we only reported the regression results
using instrumental variables based on interest rates with the term of 1–3 years. A ser-
ies of tests have demonstrated the validity of instrumental variables.

According to the proposed hypotheses H3b and H4b, manufacturing structural
rationalisation is significantly affected positively by technological relatedness and
negatively by vertical relatedness only in coastal regions. Technological and vertical
relatedness is assumed to have no significant effect on manufacturing structural
rationalisation in inland regions. We also suppose that governmental intervention
plays a much more essential role than industrial relatedness in the evolution of man-
ufacturing structures in inland regions. Establishing development zones has been one
of the most critical policies conducted by local governments to promote manufactur-
ing development. Furthermore, many detailed policies such as low-priced land and
income tax break have targeted the firms in development zones. Therefore, we took
the establishment of development zones as a proxy of governmental supports and
paid particular attention to its estimated coefficient.

As presented in Model (9) and (10), the findings of technological relatedness are
in line with H3b, implying that technological relatedness contributes to manufactur-
ing structural rationalisation only in coastal regions by improving factor allocation
efficiency. However, the findings of vertical relatedness are inconsistent with H4b.
We suppose that vertical relatedness significantly dampens manufacturing structural
rationalisation in coastal regions, but the estimate shows an insignificant effect. The
reason may be that coastal regions are more mature in developing manufacturing and
their institutional environments are more capable of withstanding external shocks.
Even when the productive system is highly vertically connected, the local government

Table 5. Regional sub-sample results.

Explained variables
Structural rationalisation Structural advancement

Sub-sample Coastal Inland Coastal Inland
Model (9) (10) (11) (12)

TRt �1.237��� �0.009 1.408��� �0.084
(0.245) (0.076) (0.286) (0.342)

VRt 2.408 0.222 �30.071��� 1.801
(1.946) (1.029) (4.815) (1.407)

ZONEt�1 �0.065 0.048��� 0.077 �0.063
(0.054) (0.017) (0.052) (0.048)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
Observations 209 361 209 361
R2 0.193 0.156 0.461 0.163
Kleibergen-Paap rk LM statistic 8.207 7.278 8.207 7.278
p-value [0.042] [0.064] [0.042] [0.064]
Kleibergen-Paap rk Wald F statistic 56.766 13.197 56.766 13.197
Stock-Yogo critical value 9.93 9.93 9.93 9.93
Hansen J statistic 1.879 0.055 2.063 4.056
p-value [0.391] [0.973] [0.356] [0.132]

Notes: ���, �� and � represent significance at 1%, 5% and 10% level, respectively. All specifications include a con-
stant term. The Driscoll-Kraay robust standard error in () and the p-value in []. Kleibergen-Paap rk LM statistic for
the under-identification test, Kleibergen-Paap rk Wald F statistic for weak identification test, and Hansen J statistic
for overidentification test. All control variables included but not shown to save space.
Source: The authors.
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can minimise the negative impact of external shocks on manufacturing structural
rationalisation through measures such as tax incentives, information dissemination,
and social security. The findings of establishing development zones are in line with
our expectations. Establishing development zones does not significantly affect manu-
facturing structural rationalisation in coastal regions where industrial relatedness typ-
ically characterises manufacturing structures’ evolution. In inland regions where
governmental policies strongly intervene in regional industrial evolution, establishing
development zones inhibits manufacturing structural rationalisation while industrial
relatedness has no significant effect. Establishing development zones in inland regions
has intended to accelerate industrial agglomeration. However, the limited local supply
of high-quality human capital has reduced the efficiency of resource allocation and
restricted manufacturing structural rationalisation (Yuan & Zhu, 2018).

According to the proposed hypotheses H5b and H6b, manufacturing structural
advancement is significantly influenced positively by technological relatedness and
negatively by vertical relatedness only in coastal regions. Technological and vertical
relatedness is supposed to have no significant effect on manufacturing structural
advancement in inland regions. As shown in Model (11) and (12), the findings of
technological relatedness align with H5b, implying that technological relatedness con-
tributes to manufacturing structural advancement only in coastal regions by accelerat-
ing the development of high-tech industries. The findings of vertical relatedness are
also in line with our proposed hypothesis H6b, indicating that vertical relatedness
hinders manufacturing structural advancement only in coastal regions by decreasing
the region’s potential to diversify into new advanced industries. As to the impacts of
establishing development zones, we suppose it significantly promotes manufacturing
structural advancement in inland regions as it does at the national level, but the esti-
mate shows an insignificant effect. The reason may be that the limited independent
innovation capacity in inland regions and the imitated industrial policies due to
inter-regional competition have weakened the facilitating role of establishing develop-
ment zones on manufacturing structural advancement (Guo & He, 2017).

5. Conclusions and implications

Based on the analysis of impact mechanisms of industrial relatedness on manufactur-
ing structural change, we empirically examine the effects of technological and vertical
relatedness on the structural rationalisation and advancement within manufacturing
using panel data of 30 provinces in China from 2000 to 2019. We also explore
whether the impact of industrial relatedness on manufacturing structural change dif-
fers between coastal and inland regions. The main conclusions are as follows. At the
national level, technological relatedness can promote both structural rationalisation
and advancement within manufacturing. Vertical relatedness holds a negative effect
on structural rationalisation and no significant effect on structural advancement.
Besides, the effects of industrial relatedness exhibit regional heterogeneity. In coastal
regions, technological relatedness can still promote manufacturing structural rational-
isation and advancement. Vertical relatedness has no significant effect on structural
rationalisation and a negative effect on structural advancement. In inland regions,
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governmental supports help break the dependency of regional manufacturing struc-
tural change on industrial relatedness, and the establishment of development zones
restrains manufacturing structural rationalisation.

Our findings can help policymakers answer how regional manufacturing should
develop and what they can do to promote a rationalised and advanced manufacturing
structure. Our study highlights the role of industrial relatedness. The impact of indus-
trial relatedness on manufacturing structural change shows substantial regional differ-
ences between China’s coastal and inland regions. For coastal regions, there is strong
path dependence in the evolution of regional manufacturing structure. Therefore,
local governments in coastal regions should have a comprehensive understanding of
historical production capability in local manufacturing when undertaking industrial
planning. Policymakers should focus on attracting and supporting industries that are
technologically related to existing local industries. The introduction of technologically
related industries can reduce the uncertainty in developing new industries by taking
advantage of existing relevant skills, capabilities, and technologies. It can also rapidly
embed itself into the local productive system by utilising the local network of sup-
plier-customer relationships. In inland regions, governmental supports have played an
essential role in breaking the path-dependent trajectory. Governments have improved
the local production conditions by adopting favourable policies to attract or develop
new industries unrelated to their previous industrial portfolio. However, empirical
results show that governmental support, represented by the establishment of develop-
ment zones, has not promoted structural rationalisation and advancement within
manufacturing. This finding implies that the facilitating role of preferential policies in
inland regions on manufacturing structural rationalisation and advancement has been
constrained by the supply of high-quality human capital and the capacity for inde-
pendent innovation and further weakened as they became more widely used. In order
to practically promote manufacturing structural rationalisation and advancement,
local governments should do more than build supporting upstream and downstream
industrial chains for introduced industries. More importantly, policymakers should
make efforts to improve the region’s capacity for independent innovation, provide a
more abundant supply of human capital and build a more stable institutional envir-
onment to develop local core competitiveness.
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