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Some bulk viscous general solutions are found for domain walls in Lyra geometry in
the plane symmetric inhomogeneous spacetime. Expressions for the energy density
and pressure of domain walls are derived in both cases of uniform and time varying
displacement field β. The viscosity coefficient of bulk viscous fluid is assumed to
be a power function of mass density. Some physical consequences of the models are
also given. Finally, the geodesic equations and acceleration of the test particle are
discussed.
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1. Introduction

Topological structures could be produced at phase transitions in the Universe
as it cooled [1] – [5]. Phase transitions can also give birth to solitonlike structures
such as monopoles, strings and domain walls [6]. Within the context of general
relativity, domain walls are immediately recognizable as especially unusual and
interesting sources of gravity. Domain walls form when discrete symmetry is spon-
taneously broken [7]. In the simplest models, symmetry breaking is accomplished
by a real scalar field φ whose vacuum manifold is disconnected. For example, sup-
pose that the scalar potential for φ is U(φ) = λ(φ2 − µ2)2. The vacuum manifold
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for φ then consists of two points [φ = µ and φ = −µ]. After symmetry breaking,
different regions of the Universe can settle into different parts of the vacuum with
domain walls forming the boundaries between these regions. As was pointed out
by Zel’dovich et al. [6], the stress-energy of domain walls is composed of surface
energy density and strong tension in two spatial directions, with the magnitude
of the tension equal to that of the surface energy density. This is interesting be-
cause there are several indications that tension acts as a repulsive source of gravity
in general relativity, whereas pressure is attractive. We note, however that this
analysis neglects the effects of gravity [8]. Locally, the stress energy for a wall of
arbitrary shape is similar to that of a plane-symmetric wall having both surface
energy density and surface tension. Closed-surface domain walls collapse due to
their surface tension. However, the details of the collapse for a wall with arbitrary
shape and finite thickness are largely unknown.

The spacetime of cosmological domain walls has now been a subject of interest
for more than a decade since the work of Vilenkin [9] and Ipser and Sikivie [10]
who use Israel’s thin wall formalism [11] to compute the gravitational field of an
infinitesimally thin planar domain wall. After the original work [9, 10] for thin
walls, attempts focused on trying to find a perturbative expansion in the wall
thickness [8, 12]. With the proposition by Hill, Schramn and Fry [13] of a late
phase transition with thick domain walls, there were some efforts in finding exact
thick-wall solution [14, 15]. Recently, Bonjour et al. [16] considered gravitating
thick domain wall solutions with planar and reflection symmetry in the Goldstone
model. Bonjour et al. [17] also investigated the spacetime of a thick gravitational
domain wall for a general potential V (φ). Jensen and Soleng [18] have studied
anisotropic domain walls where the solution has naked singularities and the generic
solution is unstable to Hawking decay.

The investigation of relativistic cosmological models usually has the energy mo-
mentum tensor of matter generated by a perfect fluid. To consider more realistic
models, one must take into account the viscosity mechanisms, which have already
attracted the attention of many researchers. Most of the studies in cosmology
involve a perfect fluid. Large entropy per baryon and the remarkable degree of
isotropy of the cosmic microwave background radiation, suggests that we should
analyze dissipative effects in cosmology. Further, there are several processes which
are expected to give rise to viscous effects. These are the decoupling of neutrinos
during the radiation era and the recombination era [19], decay of massive super-
string modes into massless modes [20], gravitational string production [21, 22] and
particle creation effect in the grand unification era. It is known that the introduc-
tion of bulk viscosity can avoid the big bang singularity. Thus, we should consider
the presence of a material distribution other than a perfect fluid to have realistic
cosmological models (see Grøn [23] for a review on cosmological models with bulk
viscosity). A uniform cosmological model filled with fluid which possesses pressure
and second (bulk) viscosity was developed by Murphy [24]. The solutions that he
found exhibit an interesting feature that the big bang type singularity appears in
the infinite past.

Einstein (1917) geometrized gravitation. Weyl, in 1918, was inspired by it and
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he was the the first to unify gravitation and electromagnetism in a single space-
time geometry. He showed how one can introduce a vector field in the Riemannian
spacetime with an intrinsic geometrical significance. But this theory was not ac-
cepted as it was based on non-integrability of length transfer. Lyra [25] introduced
a gauge function, i.e., a displacement vector in Riemannian spacetime which re-
moves the non-integrability condition of a vector under parallel transport. In this
way Riemannian geometry was given a new modification by him and the modified
geometry was named as Lyra’s geometry.

Sen [26] and Sen and Dunn [27] have proposed a new scalar-tensor theory of
gravitation and constructed the field equations analogous to the Einstein’s field
equations, based on Lyra’s geometry which in normal gauge may be written in the
form

Rij −
1

2
gijR +

3

2
φiφj −

3

4
gijφkφk = −8πGTij , (1)

where φi is the displacement vector and other symbols have their usual meanings.

Halford [28] pointed out that the constant vector displacement field φi in Lyra’s
geometry plays the role of the cosmological constant Λ in the normal general rel-
ativistic treatment. It was shown by Halford [29] that the scalar-tensor treatment
based on Lyra’s geometry predicts the same effects, within observational limits
as the Einstein’s theory. Several investigators [30] – [43] have studied cosmological
models based on Lyra geometry in different contexts. Soleng [31] has pointed out
that the cosmologies based on Lyra’s manifold with constant gauge vector φ will
either include a creation field and be equal to Hoyle’s creation field cosmology [44] –
[46] or contain a special vacuum field which together with the gauge vector term
may be considered as a cosmological term. In the latter case, the solutions are equal
to the general relativistic cosmologies with a cosmological term.

The Universe is spherically symmetric and the matter distribution in it is on
the whole isotropic and homogeneous. But during the early stages of evolution, it
is unlikely that it could have had such a smoothed out picture. Hence, we consider
plane symmetry which provides an opportunity for the study of inhomogeneity.
Recently Pradhan et al. [47] have studied plane symmetric domain wall in the
presence of a perfect fluid.

Motivated by the situations discussed above, we shall focus in this paper upon
the problem of establishing a formalism for studying the general solutions for do-
main wall in Lyra geometry in the plane symmetric inhomogeneous spacetime met-
ric in the presence of bulk viscous fluid. Expressions for the energy density and
pressure of domain walls are obtained in both cases of uniform and time varying
displacement field β. This article is organized as follows: The metric and the basic
equations are presented in Section 2. In Section 3, we deal with the solution of
the field equations. The Subsection 3.1 contains the solution of the uniform dis-
placement field (β = β0, constant). This section also contains two different models
and also the physical consequences of these models. The Subsection 3.2 deals with
the solution with time-varying displacement field (β = β0t

α). This subsection also
contains two different models and their physical consequences are discussed. The

FIZIKA B (Zagreb) 15 (2006) 2, 57–70 59



pradhan et al.: plane symmetric inhomogeneous bulk viscous domain wall in lyra . . .

geodesic equations and accelerations of the test particle are discussed in Section 4.
Finally, in Section 5 concluding remarks are given.

2. The metric and basic equations

Thick domain walls are characterized by the energy-momentum tensor of a
viscous field which has the form

Tik = ρ(gik + wiwk) + p̄wiwk, wiw
i = −1 , (2)

where

p̄ = p − ξwi
;i . (3)

Here ρ, p, p̄, and ξ are the energy density, the pressure in the direction normal
to the plane of the wall, the effective pressure and the bulk viscous coefficient,
respectively, and wi is a unit space-like vector in the same direction.

The displacement vector φi in Eq. (1) is given by

φi = (0, 0, 0, β) , (4)

where β may be considered constant as well as a function of the time coordinate,
like the cosmological constant in Einstein’s theory of gravitation.

The energy momentum tensor Tij in comoving coordinates for thick domain
walls takes the form

T 0
0 = T 2

2 = T 3
3 = ρ, T 1

1 = −p̄, T 0
1 = 0 . (5)

We consider the most general plane-symmetric spacetime metric suggested by Taub
[48]

ds2 = eA(dt2 − dz2) − eB(dx2 + dy2) , (6)

where A and B are functions of t and z.

Using Eq. (5), the field Eqs. (1) for the metric (6) reduce to

e−A

4
(−4B′′ − 3B′2 + 2A′B′) +

e−A

4
(Ḃ2 + 2ḂȦ) − 3

4
e−Aβ2 = 8πρ , (7)

e−A

4
(−B′2 − 2B′A′) +

e−A

4
(−4B̈ + 3Ḃ2 − 2ȦḂ) +

3

4
e−Aβ2 = −8πp̄ , (8)

e−A

4
[−2(A′′ + B′′) − B′2] +

e−A

4
[2(Ä + B̈) + Ḃ2] +

3

4
e−Aβ2 = 8πρ , (9)

−Ḃ′ + Ḃ(A′ − B′) + ȦB′ = 0 . (10)
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In order to solve the above set of field equations, we assume the separable form of
the metric coefficients as follows

A = A1(z) + A2(t), B = B1(z) + B2(t) . (11)

From Eqs. (10) and (11), we obtain

A′

1

B′

1

=
(Ḃ2 − Ȧ2)

B2
= m, (12)

where m is considered as the separation constant.

Equation (12) yields the solution

A1 = mB1 , (13)

A2 = (1 − m)B2 . (14)

Again, subtracting Eq. (9) from Eq. (7) and using Eq. (11), we obtain

A′′

1 − B′′

1 − B′2
1 + A′

1B
′

1 = Ä2 + B̈2 − Ȧ2Ḃ2 + 3β2 = k , (15)

where k is another separation constant.

With the help of Eqs (13) and (14), Eq. (15) may be written as

(m − 1)[B′′

1 + B′2
1 ] = k , (16)

(2 − m)B̈2 + (m − 1)Ḃ2
2 = k − 3β2. (17)

3. Solutions of the field equations

In this section we shall obtain exact solutions for thick domain walls in some
cases.

Using the substitution u = eB1 and a =
k

1 − m
, Eq. (16) takes the form

u′′ + au = 0 , (18)

which has the solution

eB1 = u = c1 sin(z
√

a) + c2 cos(z
√

a) , when a > 0 , (19)

where c1 and c2 are integrating constants. Equation (19) represent the general
solution of the differential Eq. (18) when a > 0. It may be noted that Rahaman
et al. [37] have obtained a particular solution for the case a < 0 in the presence of
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the perfect fluid. Recently Pradhan et al. [47] have investigated a general solution
in the presence of the perfect fluid.

Equation (17) may be written as

B̈2 −
(1 − m)

(2 − m)
Ḃ2

2 +
3

(2 − m)
β2 =

k

2 − m
. (20)

Now we shall consider uniform and time varying displacement field β separately.

3.1. Case I: Uniform displacement field (β = β0, constant)

By the use of the transformation v = e−[(1−m)/(2−m)]B2 , Eq. (19) reduces to

v̈ + bv = 0 , (21)

where
b =

(1 − m)(k − 3β2
0)

(2 − m)2
.

Again, it can be easily seen that Eq. (21) has the solution

e−[(1−m)/(2−m)]B2 = v = c̄1 sin(t
√

b) + c̄2 cos(t
√

b) when b > 0 , (22)

where c̄1 and c̄2 are integrating constants. Hence the metric coefficients have the
explicit forms when a > 0 and b > 0,

eA = [c1 sin(z
√

a) + c2 cos(z
√

a)]m × [c̄1 sin(t
√

b) + c̄2 cos(t
√

b)](m−2) , (23)

eB = [c1 sin(z
√

a) + c2 cos(z
√

a)] × [c̄1 sin(t
√

b) + c̄2 cos(t
√

b)]−(m−2)/(1−m). (24)

With the help of Eqs. (23) and (24), the energy density and pressure can be obtained
from Eqs. (7) and (8) as given by

32πρ = e−A

[

4a + a

(

Z1

Z2

)2

(1 + m) +
(3 − m)(2 − m)2

(1 − m)2
b

(

T2

T1

)2

− 3β2
0

]

, (25)

32π(p − ξθ) =

e−A

[

a(1+m)

(

Z1

Z2

)2

+
4b(2−m)

(1−m)
+

b(2−m)(2m2−7m+2)

(1−m)2
×

(

T2

T1

)2

−3β2
0

]

, (26)

where
Z1 = c1 − c2 tan(z

√
a) ,

Z2 = c2 + c1 tan(z
√

a) ,

T1 = c̄2 + c̄1 tan(t
√

b) ,

T2 = c̄1 + c̄2 tan(t
√

b) .
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Here ξ, in general, is a function of time. The expression for kinematical para-
meter expansion θ is given by

θ =
e−A/2

(m − 1)

(

T3

T1

)

, (27)

where T3 = c̄1 − c̄2 tan(t
√

b) . Thus, given ξ(t), we can solve Eq. (26). In most
investigations involving bulk viscosity, it is assumed to be a simple power function
of the energy density [49] – [52]

ξ(t) = ξ0ρ
n, (28)

where ξ0 and n are constants. For a small density, n may even be equal to unity as
used in Murphy’s work for simplicity [24]. If n = 1, Eq. (28) may correspond to a
radiative fluid [53]. Near the big bang, 0 ≤ n ≤ 1

2 is a more appropriate assumption
[54] to obtain realistic models.

For simplicity and realistic models of physical importance, we consider the fol-
lowing two cases (n = 0, 1).

3.1.1. Model I: solution for ξ = ξ0

When n = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case Eq. (26),
with the use of (27), leads to

32πp =
32πξ0e

−A/2

(m − 1)

(

T3

T1

)

+ e−A

[

a(1 + m)

(

Z1

Z2

)2

+
4b(2 − m)

(1 − m)

+
b(2 − m)(2m2 − 7m + 2)

(1 − m)2

(

T2

T1

)2

− 3β0

]

. (29)

3.1.2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (28) reduces to ξ = ξ0ρ and hence Eq. (26), with the use of (27),
leads to

32πp = e−A

[

a(1 + m)(1 + T4) + 4aT4 +
4b(2 − m)

(1 − m)
+

b(2 − m)

(1 − m)2

(

T2

T1

)2

×

{

(2 − m)(3 − m)T4 + 2m2 − 7m + 2
}

− 3(T4 + 1)β0
2

]

, (30)

where T4 =
32πξ0e

−a/2

(m − 1)

(

T3

T1

)

.
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From the above results of both models, it is evident that at any instant the
domain wall density ρ and pressure p in the perpendicular direction decrease on
both sides of the wall away from the symmetry plane, and both vanish as z −→ ±∞.
The space times in both cases are reflection symmetrical with respect to the wall.
All these properties are very much expected for a domain wall. It can be also seen
that the viscosity, as well as the displacement field β, exhibit essential influence on
the character of the solutions.

3.2. Case II: Time-varying displacement field (β = β0t
α)

Using the aforesaid power law relation between the time coordinate and the
displacement field, Eq. (19) may be written as

ẅ −
[3(1 − m)β2

0

4(2 − m)2
t2α − k(1 − m)

(2 − m)2

]

w = 0 , (31)

where
w = e−(1−m)/(2−m) B2 . (32)

Now, it is difficult to find a general solution of Eq. (31). Hence we consider a
particular case of physical interest. It is believed that β2 appears to play the role of
a variable cosmological term Λ(t) in Einstein’s equation. Considering α = −1 and
β = β0/t, Eq. (31) reduces to

t2ẅ +
[k(1 − m)

(2 − m)2
t2 − 3

4

(1 − m)

(2 − m)2
β2

0

]

w = 0 . (33)

Eq. (33) yields the general solution

wtr+1 = (t3D)r

[

c1e
ht + c2e

−ht

t2r−1

]

, (34)

where
D ≡ d

dt
,

r =
1

2
[{1 +

3(1 − m)

(2 − m)2
β2

0}
1

2 − 1] ,

h2 =
k(1 − m)

(2 − m)2
.

For r = 1, β2
0 =

8(2 − m)2

3(1 − m)
, Eq. (34) suggests

w =

(

h − 1

t

)

c3e
ht −

(

h +
1

t

)

c4e
−ht, (35)

where c3 and c4 are integrating constants.
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Hence the metric coefficients have the explicit forms when a > 0 as

eA =
[

c1 sin(z
√

a) + c2 cos(z
√

a)
]m×

[(

h− 1

t

)

c3e
ht−

(

h+
1

t

)

c4e
−ht

](m−1)

, (36)

eB =
[

c1 sin(z
√

a) + c2 cos(z
√

a)
]

×
[(

h− 1

t

)

c3e
ht−

(

h+
1

t

)

c4e
−ht

]

−(2−m)/(1−m)

.

(37)

With the help of Eqs. (36) and (37), the energy density and pressure can be
obtained from Eqs. (7) and (8)

32πρ=e−A

[

4a+a(1+m)

(

Z1

Z2

)2

+
(3−m)(2−m)2

(1 − m)2

(

c3h
2t

T6
− 1

t

)2

− 3β2
0

t2

]

, (38)

32π(p − ξθ) = e−A

[

a(1 + m)

(

Z1

Z2

)2

− (1 + 2m)(2 − m)2

(1 − m)2

(

c3h
2t

T6
− 1

t

)2

−4(2 − m)

(1 − m)

{

1

t2
− 4c4h

3te−2ht

T6
+ h2

(

T5

T6

)2
}

− 3β2
0

t2

]

, (39)

where
T5 = c3 + c4(1 + 2ht)e−2ht ,
T6 = c3(ht − 1) − c4(1 + ht)e−2ht .

The expression for the kinematical parameter expansion θ is given by

θ =
(hT7 + T8)(m

2 − 4m + 5)

2(m − 1)
e−A/2, (40)

where
T7 = (ht − 1)c3 + (ht + 1)c4e

−2ht ,
T8 = c3 + c4e

−2ht .

In this case we again consider the following two cases (n = 0, 1).

3.2.1. Model I: solution for ξ = ξ0

When n = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case Eq. (39),
with the use of (40), leads to

32πp =
32πξ0(hT7 + T8)(m

2 − 4m + 5)

2(m − 1)T6
e−A/2 + e−A

[

a(1 + m)

(

Z1

Z2

)2

−

(1 + 2m)(2 − m)2

(1 − m)2

(

c3h
2t

T6
− 1

t

)2

− 4(2 − m)

(1 − m)
×

{

1

t2
− 4c4h

3te−2ht

T6
+ h2

(

T5

T6

)2
}

− 3β2
0

t2

]

. (41)
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3.2.2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (28) reduces to ξ = ξ0ρ. Hence in this case, Eq. (39) with the use
of (40), leads to

32πp = e−A

[

4a + a(1+m)

(

Z1

Z2

)2

+
(3−m)(2−m)2

(1 − m)2

(

c3h
2t

T6
− 1

t

)2

− 3β2
0

t2

]

T9

+e−A

[

a(1 + m)

(

Z1

Z2

)2

− (1 + 2m)(2 − m)2

(1 − m)2

(

c3h
2t

T6
− 1

t

)2

− 4(2 − m)

(1 − m)
×

{

1

t2
− 4c4h

3te−2ht

T6
+ h2

(

T5

T6

)2
}

− 3β2
0

t2

]

, (42)

where

T9 =
16πξ0(hT7 + T8)(m

2 − 4m + 5)

(m − 1)T6
e−A/2.

From the above results, it is evident in both cases that at any instant the domain
wall density ρ and pressure p in the perpendicular direction decrease on both sides
of the wall away from the symmetry plane and both vanish as z −→ ±∞. The
space times in both cases are reflection symmetrical with respect to the wall. All
these properties are very much expected for a domain wall. It can be also seen that
the viscosity, as well as the displacement field β exhibit essential influence on the
character of the solutions.

4. Study of geodesics

The trajectory of the test particle xi{t(λ), x(λ), y(λ), z(λ)} in the gravitational
field of the domain wall can be determined by integrating the geodesic equations

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 , (43)

for the metric (6). It has been already mentioned in Ref. [37], the acceleration of
the test particle in the direction perpendicular to the domain wall ( i.e. in the
z-direction) may be expressed as

z̈ =
eB−A

2

∂B

∂z
(ẋ2 + ẏ2) − 1

2

∂A

∂z
(ṫ2 + ż2) − ∂A

∂z
ṫż . (44)

By simple but lengthy calculation, one can get an expression for the acceleration
which may be positive, negative, or zero, depending on suitable choice of the con-
stants. This implies that the gravitational field of the domain wall may be repulsive,
or attractive in nature, or without a gravitational effect.
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5. Conclusions

The present study deals with plane-symmetric domain wall within the frame-
work of Lyra geometry, in the presence of bulk viscous fluid. The essential difference
between the cosmological theories based on Lyra geometry and Riemannian geom-
etry lies in the fact that the constant vector displacement field β arises naturally
from the concept of gauge in Lyra geometry, whereas the cosmological constant
Λ was introduced in ad hoc fashion in the usual treatment. Currently the study
of domain walls and cosmological constant have gained renewed interest due to
their application in structure formation in the Universe. Recently Rahaman et al.

[37] presented a cosmological model for domain wall in Lyra geometry under a spe-
cific condition by taking displacement fields β as constant. The cosmological models
based on varying displacement vector field β have widely been considered in the lit-
erature in different contexts [32] – [36]. Motivated by these studies, it is worthwhile
to consider domain walls with a time varying β in Lyra geometry. In this paper
both cases viz., constant and time-varying displacement field β, are discussed in
the context of domain walls within the framework of Lyra geometry.

The study on domain walls in this article successfully describes various features
of the Universe. A network of domain walls would accelerate the expansion of the
Universe, but it would also exert a repulsive force expected to help the formation
of large-scale structures. An interesting result that emerged in this work is that the
pressure perpendicular to the wall is non-zero.

The effect of bulk viscosity is to produce a change in perfect fluid and hence
exhibit essential influence on the character of the solution. We observe here that
Murphy’s conclusion [24] about the absence of a big bang type singularity in the
infinite past in models with bulk viscous fluid, in general, is not true. The results
obtained in [20] also show that, it is, in general, not valid, since for some cases big
bang singularity occurs in finite past.
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RAVNINSKI SIMETRIČAN NEHOMOGEN VOLUMNO VISKOZAN
DOMENSKI ZID U LYRINOJ GEOMETRIJI

Našli smo neka opća rješenja za domenske zidove u Lyrinoj geometriji za volumno
viskozan nehomogen prostor-vrijeme i ravninsku simetriju. Izveli smo izraze za
gustoću energije i tlak domenskih zidova za stalno i za vremenski promjenljivo
posmačno polje β. Pretpostavljamo da je koeficijent viskoznosti volumne viskozne
tekućine dan s potencijom gustoće mase. Opisujemo neke izvode modela. Na kraju,
raspravljamo geodetske jednadžbe i ubrzanje ispitne čestice.
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