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We consider the massless Duffin–Kemmer–Petiau equation for the general rotat-
ing space-times, then find its second-order form for a given geometry. Using this
second-order differential equation for two well-known cosmological models, the ex-
act solutions of the massless Duffin–Kemmer–Petiau equation were obtained. On
the other hand, by using spinor form of the Maxwell equations, the propagation
problem is reduced to the solution of the second-order differential equation of a
complex combination of the electric and magnetic fields. For these two different
approaches, we obtain the spinors in terms of the field-strength tensor.
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1. Introduction

To understand our real physical Universe, it is necessary to know solutions
of both the Einstein and the quantum field equations to discuss the dynamics of
the Universe and its particles. The passage from the field equations of relativistic
quantum mechanics in space-time to the general relativistic quantum field equations
can be done by using the principle of covariance and the tetrad formalism according
to the Tetrode–Weyl–Fock–Ivanenko procedure [1 – 9], expanded to include spin
transformation quantities. Since the gravitational effects are weak, it seems that
general relativistic wave equations are not important on the atomic scale, but for
many astrophysical situations, one has to take into account gravitational effects
due to their dominant role. One of the most fascinating aspects of the gravitational
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effects is their evident role in particle creation. To construct a steady theory of
quantum field theory in curved space-time, it is necessary to analyze the single-
particle states, since these states are examined to get the dynamics of the particles
in a given background. The curved space-time quantum field theory provides a
strong motivation for a unified theory of gravitation and quantum mechanics.

Electromagnetic fields are described by the Maxwell equations. Following a min-
imal coupling procedure, the scalar products are performed with the Riemannian
metric gµν , and the partial derivatives are replaced by covariant ones, then Maxwell
equations can be written in general relativity [10]. In the literature, however, there
exist many attempts to pass down from the classical wave theory of light to quan-
tum mechanics [11]. If complex combinations of the electric and magnetic fields are
taken as the elements of a three-component spinor, the Maxwell curl equations can
be synthesized into a form similar to that of the Weyl equation for the neutrino.
In these three-component formulations, the divergence equations are imposed as
constraint equations. Furthermore, these are valid only in free space in the absence
of any source. These two deficiencies have been put right in the work of Moses [12],
who found a four-component spinor formulation which casts the Maxwell equations
in the form of a massless Dirac equation. He united the source in the form of a
four-component spinor and combined the four Maxwell equations in the presence
of a source.

Much earlier than the above attempts, Duffin, Kemmer and Petiau had formu-
lated the wave equation (the DKP equation) for massive spin-1 particles [13, 14].
They showed that the first-order form of the Klein–Gordon and Proca field equa-
tions can be represented in the Dirac-like matrix form

(
iβ(k)∂(k) − m

)
Ψ = 0 , (1)

where β matrices satisfy the following relation

β(a)β(b)β(c) + β(c)β(b)β(a) = β(a)δ(b)(c) + β(c)δ(b)(a). (2)

Equation (1) is a first-order equation for spin-0 and spin-1 bosons, in contrast to
the other relativistic wave equations for bosons. Lately, the applications of the
Duffin–Kemmer–Petiau (DKP) theory to quantum chromo-dynamics (QCD) have
been considered by Gribov [15]. Additionally, it has been used to find covariant
Hamiltonian dynamics by Kanatchikov [16]. Within the framework of general rela-
tivity, the DKP equation has been conformed to curved space-time by Red’kov [17]
and Lunardi et al. [18]. With the generalization of DKP equation to the curved
space-time, it has become important to investigate the behavior of bosons in curved
backgrounds. The covariant form of DKP equation is given by

(
iβµ∇µ − m)Ψ = 0 , (3)

where βµ(x) = γµ(x) ⊗ I + I ⊗ γµ(x) (4)

are the Kemmer matrices in curved space-time and they are related to flat

Minkowski space-time as βµ(x) = bµ
(i)β̃

(i) with a tetrad frame that satisfies
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gµν = b
(i)
µ b

(j)
ν η(i)(j). The covariant derivative in Eq. (3) is ∇µ = ∂µ − Ωµ with

spinorial connections which can be written as

Ωµ = Γµ ⊗ I + I ⊗ Γµ , (5)

where

4Γλ = gµα

[(
∂λa(k)

ν

)
bα
(k) − Γα

νλ

]
Sµν . (6)

The Christoffel symbols and spin tensor can be written as

Γα
µν =

1

2
gαβ

(
∂µgβν + ∂νgβµ − ∂βgµν

)
, Sµν =

[
γµ, γν

]
, (7)

where Γµν = Γνµ and γµ are the Dirac matrices in curved space-time and they are
related to at Minkowski space-time as

γµ(x) = bµ
(i)γ̃

(i). (8)

The Dirac-like equation (3) can be solved by using standard techniques used for
the Dirac equation.

The counterpart of the Maxwell equations in general relativistic quantum me-
chanics can be obtained as the zero-mass limit of the DKP equation with appropri-
ate identification of the components of the DKP spinor with electromagnetic field
strengths. In 1997 Ünal showed that the wave equation of massless spin-1 particle
in at space-time is equivalent to free-space Maxwell equations [19]. Then Ünal and
Sucu solved the general relativistic massless DKP equations (hereafter referred to
as the mDKP equation) in Robertson–Walker space-time written in spherical coor-
dinates [20]. By using the same technique, the mDKP equation had been solved for
the stationary Gödel and the Gödel-type space-time and also the non-stationary
Gödel-type cosmological universes [21, 22]. In this technique, the Kemmer matrices
are written as a direct product of Pauli spin matrices with unit matrix resulting in
(4×4) matrices. This representation leads to a spinor which is related to a complex
combination of the electric and magnetic fields. Among of the advantages to use
the mDKP equation is that its a simple (4× 4) matrix form simplifing the solution
procedure in comparison with the Maxwell equations. The quantum-mechanical
solution is also important in the discussion of the wave-particle duality of elec-
tromagnetic fields, since the particle nature of the electromagnetic field can be
analyzed only by a quantum-mechanical equation. Furthermore, the mDKP equa-
tion removes the unavoidable usage of (3 + 1) space-time splitting formalism for
the Maxwell equations mentioned by Saibatalov [23]. The mDKP equation is given
as follows

βµ∇µΨ = 0 , (9)

where βµ are now

βµ(x) = σµ(x) ⊗ I + I ⊗ σµ(x) , (10)
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with

σµ(x) =
(
I, ~σ(x)

)
. (11)

The covariant derivative ∇µ with spinorial connections Ξµ are given with the limit
γµ → σµ as

∇µ = ∂µ − Ξµ = ∂µ − lim
γ→σ

Γµ ⊗ I + I ⊗ Γµ . (12)

In this paper, we investigate the relationship between the classical and quantum
theory of light by examining mDKP equation and the Maxwell equations in the
general space-times. In that manner we show quantum-mechanical wave function
in terms of the Maxwell-field strength-tensor components. Since 4 × 4 Kemmer
matrices have been used, this correspondence can be shown only if a complex com-
bination of the field-strength tensors are used. This paper is organized as follows: in
the next section, we define a general metric. In Sec. 3, we give the mDKP equation
explicitly and we obtain its second-order form. In Sec. 4 we find the components
of the Maxwell field strengths and use them to get second-order differential equa-
tion by using spinor formalism. In Sec. V, we obtain exact solution of the mDKP
equation in two different cosmological models, and in the last section, we give and
discuss some results.

2. A general rotating cosmological model

The general spacetime’s line element which we choose is given by

ds2 = −(dx0)2 + (dx1)2 + R2(dx2)2 + (dx3)2 − 2Gdx0dx2, (13)

where the functions R and G depend on x1. This metric describes spatially-
homogenous universes with rotation. The line element (13) can be reduced to the
known spacetime models under some conditions. We give some space-times which
are special cases in Table 1.

TABLE 1. (3+1)-dimensional cosmological models and their line elements.

Space-time Line-element (ds2)

Gödel [21] −(dt + eαrdθ)2 + dr2 + 1
2 (eαrdθ)2 + dz2

Reboucas [24] dr2−(1+3 cosh2 2r)dφ2+dz2+4 cosh 2rdtdφ−dt2

Som–Raychaudhuri [24] dr2 + r2(1 − r2)dφ2 + dz2 − 2r2dtdφ − dt2

Minkowski [24] dx2 + dy2 + dz2 − dt2

Kantowski–Sachs [25] dx2 + sin 2xdy2 + dz2 − dt2

Soleng [26] dr2−2adtdφ+(B2(r+r0)
2−a2)dφ2+dz2−dt2

Cyl. S. Minkowski [27] dr2 + r2dφ2 + dz2 − dt2
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The matrices of the gµν and gµν are defined by




−1 0 −G 0

0 1 0 0

−G 0 R2 0

0 0 0 1




,




−R2

Λ2
0 − G

Λ2
0

0 1 0 0

− G

Λ2
0

1

Λ2
0

0 0 0 1




, (14)

where Λ2 = G2 + R2. For the line element given in Eq. (13), the suitably selected
tetrads are

a(0)
µ = δ0

µ , a(1)
µ = δ1

µ , a(2)
µ = Gδ0

µ + Λδ2
µ , a(3)

µ = δ3
µ , (15)

bµ
(0) = δµ

0 , bµ
(1) = δµ

1 , bµ
(2) =

1

Λ
(δµ

2 − Gδµ
0 ) , bµ

(3) = δµ
3 , (16)

where aµ
(i) = gµνη(i)(j)b

(j)
ν . The curved Dirac matrices, which satisfy {γµ, γν} =

2gµν , are given by

γ0 = γ̃0 − G

Λ
γ̃2, γ1 = γ̃1, γ2 =

1

Λ
γ̃2, γ3 = γ̃3. (17)

The non-vanishing Christoffel symbols are

Λ2Γ0
µν = R2

[
δ11
µν + R2δ22

µν + δ33
µν − G(δ02

µν + δ20
µν)

]
+

GG′

2
(δ01

µν + δ10
µν)

+
R

2

(
RG′ − 2GR′

)
(δ12

µν + δ21
µν) , (18)

Λ2Γ2
µν = R2

(
δ02
µν + δ20

µν

)
+

1

2
(GG′ + 2RR′)(δ12

µν + δ21
µν)

−G′

2
(δ01

µν + δ10
µν) , (19)

Γ1
µν =

G′

2
(δ02

µν + δ20
µν) − RR′δ22

µν , (20)

where prime indicates derivative with respect to x1 and δαβ
µν = δα

µδβ
ν . The spinorial

connections are

Γ0 = −G′

4Λ
γ̃12, Γ1 =

G′

4Λ
γ̃20, Γ2 = −G′

4
γ̃10 +

GG′ + 2RR′

4Λ
γ̃12 (21)

where we have defined that γ̃ij = γ̃iγ̃j .
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3. The massless spin-1 wave equation

Using standard representation of the Dirac matrices, we obtain the mDKP
equation as

(
β̃0 − G

Λ
β̃2

)
∂0Ψ + β̃1∂1Ψ +

1

Λ
β̃2∂2Ψ + β̃3∂3Ψ +

iG′

4Λ
β̃03Ψ

− iΛ′

2Λ
β̃23Ψ − G′

4Λ

(
β̃12 − β̃21

)
Ψ = 0 , (22)

where β̃ij = β̃iβ̃j . If the following spinor definition is used

Ψ =




Ψ0

Ψ1

Ψ2

Ψ3


 , (23)

Eq. (22) gives four coupled first-order differential equations in terms of the compo-
nents of the spinor as

2
(
∂0 + ∂3

)
Ψ0 +

(
iG

Λ
∂0 + ∂1 −

i

Λ
∂2

)(
Ψ1 + Ψ2

)
= 0 , (24)

(−iG

Λ
∂0 +

i

Λ
∂2

)(
Ψ0 − Ψ3

)
+ 2∂0Ψ1 +

(
∂1 +

Λ′

Λ

)(
Ψ0 + Ψ3

)
= 0 , (25)

(−iG

Λ
∂0 +

i

Λ
∂2

)(
Ψ0 − Ψ3

)
+ 2∂0Ψ2 +

(
∂1 +

Λ′

Λ

)(
Ψ0 + Ψ3

)
= 0 , (26)

(−iG

Λ
∂0 + ∂1 +

i

Λ
∂2

)(
Ψ1 + Ψ2

)
+

(
2∂0 − 2∂3

)
Ψ3 = 0 . (27)

From Eqs. (25) and (26), it is seen that Ψ1 = Ψ2. If we use this result, then these
four coupled equations reduce to the following three coupled equations

2
(
∂0 + ∂3

)
Ψ0 +

(
iG

Λ
∂0 + ∂1 −

i

Λ
∂2

)
Ψ1 = 0 , (28)

(−iG

Λ
∂0 +

i

Λ
∂2

)(
Ψ0 − Ψ3

)
+ 2∂0Ψ1 +

(
∂1 +

Λ′

Λ

)(
Ψ0 + Ψ3

)
= 0 , (29)

(−iG

Λ
∂0 + ∂1 +

i

Λ
∂2

)
Ψ1 +

(
∂0 − ∂3

)
Ψ3 = 0 . (30)

For these three coupled equations, we can choose the spinor as

Ψ(x1) = exp{i(k2x
2 + k3x

3 − k0x
0)}ϕ(x1) . (31)
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Thus we have

−i
(
k0 − k3)ϕ0 +

(
k2 + k0G

Λ
+ ∂1

)
ϕ1 = 0 , (32)

(
∂1−

k2+k0G

Λ
+

Λ′

Λ

)
ϕ0−2ik0ϕ1+

(
∂1+

k2+k0G

Λ
+

Λ′

Λ

)
ϕ3 = 0 , (33)

(
∂1 −

k2 + k0G

Λ

)
ϕ1 − i

(
k0 + k3

)
ϕ3 = 0 . (34)

The components ϕ0 and ϕ3 can be expressed in terms of ϕ1 by

ϕ0 =
i

k3 − k0

(
∂1 +

k2 + k0G

M

)
ϕ1 , (35)

ϕ3 =
i

k3 + k0

(
k2 + k0G

M
− ∂1

)
ϕ1 . (36)

From the set of above equations, it is found that the second-order differential equa-
tion for ϕ1 is

{
∂2
1 +

Λ′

Λ
∂1 +

k3G
′

Λ
−

(
k2 + k0G

Λ

)2

+ k2
0 − k2

3

}
ϕ1(x

1) = 0 . (37)

It is easy to find the other components of the spinor from the differential relations
given above.

4. The Maxwell equations

The propagation of electromagnetic fields has been studied for several reasons.
There are many astrophysical situations (light deflection in gravitational lensing,
pulsars, quasars, black holes) that involve strong electromagnetic and gravitational
fields in interaction. The interaction of electromagnetic and gravitational fields is
described by the Maxwell equations in a given curved background. In the absence
of electromagnetic source these equations are

1√−g

(√−gFµν
)
,ν

= 0 , (38)

Fµν,σ + Fσµ,ν + Fνσ,µ = 0 , (39)

where Fµν = ∂µAν − ∂νAµ, Aµ = (A0, ~A), ~A = ~A(x). Here we solve the Maxwell
equations for the line element given in (22) to show the correspondence between
the mDKP equation and the Maxwell equations. For the particular choice of the
functions R and G, the solution of the Maxwell equations has been well done
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by Saibatalov [23] using similar technique. The contra-variant and covariant field
strengths Fµν and Fµν in the general coordinates are

F 01 = E(1) + G(Λ)−1B(3), F01 = −E(1),

F 02 = (Λ)−1E(2), F02 = −ΛE(2),

F 03 = E(3) − G(Λ)−1B(1), F03 = E(3),

F 12 = Λ−1B(3), F12 = GE(1) + ΛB(3),

F 13 = −B(2), F13 = −B(2),

F 23 = Λ−1B(1), F23 = −GE(3) + ΛB(1). (40)

Here E(i) and B(i) are the components of the electric and magnetic fields in the
local Lorentz frame.

From Eq. (38), we find the following coupled equations

(Λ∂1 + Λ′)E(1) + ∂2E
(2) + Λ∂3E

(3) − G∂3B
(1) + (G∂1 + G′)B(3) = 0 , (41)

Λ∂0E
(1) + Λ∂3B

(2) + (G∂0 − ∂2)B
(3) = 0 , (42)

∂0E
(2) − ∂3B

(1) + ∂1B
(3) = 0 , (43)

−Λ∂0E
(3) + (G∂0 − ∂2)B

(1) + (Λ∂1 + Λ′)B(2) = 0 , (44)

and using Eq. (39) we have

(G∂0 − ∂2)E
(1) + (Λ∂1 + Λ′)E(2) + (Λ∂0)B

(3) = 0 , (45)

∂3E
(1) − ∂1E

(3) + ∂0B
(2) = 0 , (46)

G∂3E
(1) − (G∂1 + G′)E(3) + (Λ∂1 + Λ′)B(1) + ∂2B

(2) + Λ∂3B
(3) = 0 , (47)

−Λ∂3E
(2) − (G∂0 − ∂2)E

(3) + Λ∂0B
(1) = 0 . (48)

In terms of the components, these can be written as

(
∂1 +

Λ′

Λ

)(
E(1)

B(1)

)
+

1

Λ
∂2

(
E(2)

B(2)

)
+

G

Λ
∂3

(
−B(1)

E(1)

)

−
(

G

Λ
∂1 +

G′

Λ

)(
−B(3)

E(3)

)
+ ∂3

(
E(3)

B(3)

)
= 0 , (49)

∂0

(
−B(1)

E(1)

)
+

(
G

Λ
∂0 −

1

Λ
∂2

)(
E(3)

B(3)

)
+ ∂3

(
E(2)

B(2)

)
= 0 , (50)

−∂0

(
−B(2)

E(2)

)
+ ∂3

(
E(1)

B(1)

)
− ∂1

(
E(3)

B(3)

)
= 0 , (51)
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−∂0

(
−B(3)

E(3)

)
+

(
G

Λ
∂0 −

1

Λ
∂2

) (
E(1)

B(1)

)

+

(
∂1 +

Λ′

Λ

)(
E(2)

B(2)

)
= 0 . (52)

If we define the complex spinor as

H =




H1

H2

H3


 =




E(1) + iB(1)

E(2) + iB(2)

E(3) + iB(3)


 , (53)

the spinor form of the Maxwell equations are found as

(
∂1 +

Λ′

Λ
+

iG

Λ
∂3

)
H1 +

1

Λ
∂2H

2 − i

(
G

Λ
∂1 +

G′

Λ
+ i∂3

)
H3 = 0 , (54)

i∂0H
1 + ∂3H

2 +
1

Λ

(
G∂0 − ∂2

)
H3 = 0 , (55)

∂3H
1 − i∂0H

2 − ∂1H
3 = 0 , (56)

1

Λ

(
G∂0 − ∂2

)
H1 +

(
∂1 +

Λ′

Λ

)
H2 − i∂0H

3 = 0 . (57)

If the following form of the spinor is used

Hi(x0, xi) = exp{i(k2x
2 + k3x

3 − k0x
0)}Πi(x1) , (i = 1, 2, 3) , (58)

then we find

(
∂1 +

Λ′

Λ
+

k3G

Λ

)
Π1 +

ik2

Λ
Π2 − i

(
G

Λ
∂1 +

G′

Λ
− k3

)
Π3 = 0 , (59)

k0Π
1 + ik3Π

2 − i
k2 + k0G

Λ
Π3 = 0 , (60)

ik3Π
1 − k0Π

2 − ∂1Π
3 = 0 , (61)

−k2 + k0G

Λ
Π1 +

(
∂1 +

Λ′

Λ

)
Π2 − k0Π

3 = 0 . (62)

The components Π1 and Π2 can be expressed in terms of N3

Π1 =
i

k2
0 − k2

3

[
k3∂1 +

k0(k2 + k0G)

Λ

]
Π3, (63)

Π2 =
1

k2
3 − k2

0

[
k0∂1 +

k3(k2 + k0G)

Λ

]
Π3 . (64)
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From the set of above equations, it is found that the second-order differential equa-
tion for Π3 is

{
∂2
1 +

Λ′

Λ
∂1 +

k3G
′

Λ
−

(
k2 + k0G

Λ

)2

+ k2
0 − k2

3

}
Π3(x1) = 0 . (65)

This is the same as Eq. (37), and their solution is exactly the same. By com-
paring Eqs. (35)–(36) and (63)–(64), one can obtain the relations between spinor
components of the mDKP equation and the Maxwell equations as follows

ϕ0 = −Π1 + iΠ2, ϕ1 = ϕ2 = Π3, ϕ3 = Π1 + iΠ2. (66)

In terms of the electric and magnetic fields, which are given as

E(i) = b(0)
µ b(i)

ν Fµν , B(i) = b(i)
µ b(0)

ν F̃µν =
1

2
√−g

b(i)
µ b(0)

ν εµναβFαβ , (67)

the components of the spinor of the mDKP equation are found that

ϕ0 = iΛ(F 02 + iF̃ 20) − F 01 − iF̃ 10 − G(F 21 + iF̃ 12) ,

ϕ1 = ϕ2 = F 03 + iF̃ 30 + G(F 23 + iF̃ 32) ,

ϕ3 = iΛ(F 02 + iF̃ 20) + F 01 + iF̃ 10 + G(F 21 + iF̃ 12) . (68)

5. Exact solution of the mDKP equation

5.1. Solution in the Soleng space-time

Using Eq. (37), second-order form of the mDKP equation in this space-time
becomes

{
∂2

r +
1

r + r0
∂r −

(
k2 + ak0

B(r + r0)

)2

+ k2
0 − k2

3

}
ϕ1(r) = 0 , (69)

where a, r0 and B are constants. For this second-order differential equation, if we
use (r + r0)α

1/2 = ν coordinate transformation (where α = k2
0 − k2

3) and define
[(k2 + ak0)/B]2 = β2, than the mDKP equation takes the form

{
∂2

r +
1

ν
∂r + 1 − β2

ν2

}
ϕ1(r) = 0 . (70)

This is the well-known Bessel equation, and from this point of view the exact
solution is becomes

Ψ1 = exp{i(k2φ + k3z − k0t)}
[
Ajβ(ν) + BNβ(ν)

]
. (71)
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From Eqs. (68), the components of the spinor of the mDKP equation in the Soleng
space-time are found as

ϕ0 = iB(r + r0)(F
02 + iF̃ 20) − F 01 − iF̃ 10 − a(F 21 + iF̃ 12) ,

ϕ1 = ϕ2 = F 03 + iF̃ 30 + a(F 23 + iF̃ 32) ,

ϕ3 = iB(r + r0)(F
02 + iF̃ 20) + F 01 + iF̃ 10 + a(F 21 + iF̃ 12) . (72)

5.2. Solution in the cylindrically symmetric Minkowski space-time

Considering Eq. (37), the second-order form of the mDKP equation in this
space-time takes the following form

{
∂2

r +
1

r
∂r −

k2
2

r2
+ k2

0 − k2
3

}
ϕ1(r) = 0 . (73)

If we use the coordinate transformation ν = α1/2r with α = k2
0−k2

3, than we obtain
following well-known equation

{
∂2

r +
1

ν
∂r + 1 − k2

2

ν2

}
ϕ1(r) = 0. (74)

This is the Bessel equation, and the solutions are

Ψ1 = exp{i(k2φ + k3z − k0t)}
[
Aj∓k2

(ν) + BN∓k2
(ν)

]
. (75)

Using Eq. (68), the corresponding components of the spinor of the mDKP equation
in the cylindrically symmetric Minkowski space-time are

ϕ0 = ir(F 02 + iF̃ 20) − F 01 − iF̃ 10,

ϕ1 = ϕ2 = F 03 + iF̃ 30,

ϕ3 = ir(F 02 + iF̃ 20) + F 01 + iF̃ 10. (76)

6. Oscillating regions of the massless spin-1 particles

Since it is not aimed here to solve Eq. (37) exactly for the given spacetimes in
introduction, we will restrict ourselves to discuss how one can obtain the frequency
spectrum of the photon by using some models of our general spacetimes. A general
method to find the frequency spectrum is to impose the condition on functions
which are the solutions of the differential equation. The functions obtained must
be bounded for all values as is usually done in quantum mechanics. This procedure
gives the quantization of frequency. If the function G vanishes, the line element
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(22) reduces an expanding model, and one might expect to obtain the gravitational
red shift in frequency. But G is not zero, and this model represents both expansion
and rotation.

We introduce a new function of the form

ϕ1(x
1) = Λ1/2(x1)χ1(x

1) . (77)

Using this denition in Eq. (37), we get the following form

{
∂2
1 +

Λ′′

2Λ
+

(
Λ′

2Λ

)2

+
k3G

′

Λ
−

(
k2 + k0G

Λ

)2

+ k2
0 − k2

3

}
χ1(x

1) = 0 . (78)

From this equation we can write

ω2(ξ) =
Λ′′

2Λ
+

(
Λ′

2Λ

)2

+
k3G

′

Λ
−

(
k2 + k0G

Λ

)2

+ k2
0 − k2

3 . (79)

• Case(1).
In the limit x1 → ∞, if Λ(x1) = ∞, we find ω2 = k2

0 − k2
3, and from this

result, if ω2 > 0, we can write χ1(x
1) as

χ1(x
1) = exp

{
i
√

k2
0 − k2

3x
1

}
. (80)

• Case(2).
When x1 → ∞, if Λ(x1) = b = const, then we find ω2 = k2

0 − k2
3 − [(k2 +

ak0)/b]2, where a is a constant. From this result, if ω2 > 0, we can write

χ1(x
1) = exp

{
i

√

k2
0 − k2

3 −
(

k2 + ak0

b

)2

ξ

}
. (81)

• Case(3)
Assuming ξ → 0, than Λ(x1) = c = const, and we find ω2 = k2

0 − k2
3 − [(k2 +

dk0)/c]2, where d is a constant. From this result, if ω2 > 0, we can write

χ1(x
1) = exp

{
i

√

k2
0 − k2

3 −
(

k2 + dk0

c

)2

x1

}
. (82)

7. Results and discussion

In the present paper, we investigated the mDKP equation and the Maxwell
equations in the background of the general rotating space-time.
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(a) We showed that charge-less and massless spin-1 particle and free-space
Maxwell equation satisfy the same equations.

(b) For each component of the mDKP spinor, the corresponding Maxwell field-
strength tensor components are found.

(c) By using the mDKP equation, it is shown that the necessity of (3 + 1)
space-time splitting is not required for the electromagnetic fields.

(d) For two different well-known cosmological models, using our result, exact
solutions are easily obtained.

(e) We find the oscillating regions of the massless spin-1 particles in three dif-
ferent limits.

This features strongly motivates us to use the mDKP equation to investigate
the behaviour of the electromagnetic field. Another motivation is that the results
obtained can be used to study quantum field theory in curved rotating space-times.
Also, the wave functions obtained can be used to discuss the photon production
in some special space-times which are included in the general rotating space-time
that we defined in Sec. 2.
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[29] K. Gödel, Rev. Mod. Phys. 21 (1949) 447.

[30] O. Gron and H. H. Soleng, Acta Physica Polonica B 20 (1989) 550.

BEZMASENE ČESTICE SPINA 1 U ROTIRAJUĆEM PROSTORU-VREMENU

Razmatramo bezmasenu jednadžbu Duffin–Kemmer–Petiau-a za opći slučaj roti-
rajućeg prostora-vremena i nalazimo njen oblik drugog reda za pojedinu geome-
triju. Primjenom te jednadžbe drugog reda postigli smo egzaktna rješenja Duffin–
Kemmer–Petiau-ve jednadžbe za dva poznata kozmološka modela. Pored toga,
primjenom Maxwellovih jednadžbi u spinornom obliku, problem širenja valova svodi
se na rješavanje diferencijalne jednadžbe drugog reda za kompleksni slog električnih
i magnetskih polja. Tim dvama pristupima dobivamo spinore izražene preko tenzora
jakosti polja.
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