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Bianchi type V bulk viscous fluid cosmological models are investigated with dy-
namic cosmological term Λ(t). Using a generation technique (Camci et al., 2001),
it is shown that the Einstein’s field equations are solvable for any arbitrary cos-
mic scale function. Solutions for particular forms of cosmic scale functions are also
obtained. The cosmological constant is found to be a decreasing function of time,
which is supported by results from recent type Ia supernovae observations. Some
physical and geometrical aspects of the models are also discussed.
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1. Introduction

The study of Bianchi type V cosmological models creates increasing interest as
these models contain special isotropic cases and permit arbitrarily small anisotropy
levels at some instant of cosmic time. This property makes them suitable as mod-
els of our universe. The homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) [1, 2] cosmological models, which are used to describe standard cosmological
models, are particular cases of the Bianchi type I, V and IX universes, according to
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whether the constant curvature of the physical three-space, t = constant, is zero,
negative or positive. These models will be interesting to construct cosmological
models of the types which are of class one. Present cosmology is based on the
FRW model which is completely homogeneous and isotropic. This is in agreement
with observational data about the large-scale structure of the universe. However,
although homogeneous but anisotropic models are more restricted than the inhomo-
geneous models, they explain a number of observed phenomena quite satisfactorily.
This stimulates the research for obtaining exact anisotropic solutions of the Ein-
stein’s field equations (EFEs) as cosmologically accepted physical models for the
universe (at least in the early stages). Roy and Prasad [3] have investigated Bianchi
type V universes which are locally rotationally symmetric and are of embedding
class one, filled with perfect fluid, with heat conduction and radiation. Bianchi
type V cosmological models have been studied by other researchers (Farnsworth
[4], Maartens and Nel [5], Wainwright et al. [6], Collins [7], Meena and Bali [8] and
Pradhan et al. [9, 10]) in different contexts.

Models with a dynamic cosmological term Λ(t) are becoming popular as they
solve the cosmological-constant problem in a natural way. There is a significant
observational evidence for the detection of Einstein’s cosmological constant, Λ, or
a component of material content of the universe, that varies slowly with time and
space and so acts like Λ. Recent cosmological observations by High-z Supernova
Team and Supernova Cosmological Project (Garnavich et al. [11], Perlmutter et al.
[12], Riess et al. [13], Schmidt et al. [14]) strongly favour a significant and positive
Λ with the magnitude Λ(Gh̄/c3) ≈ 10−123. These observations on magnitudes and
red-shift of type Ia supernova suggest that our universe may be an accelerating
one with a large fraction of the cosmological density in the form of cosmological Λ-
term. Earlier researches on this topic, are contained in Lodovico [15], Weinberg [16],
Dolgov [17 – 19], Bertolami [20], Ratra and Peebles [21], Carrol, Press and Turner
[22]. Some of the recent discussions on the cosmological-constant “problem” and
consequence on cosmology with a time-varying cosmological-constant have been
discussed by Tsagas and Maartens [23], Sahni and Starobinsky [24], Peeble [25],
Padmanabhan [26], Vishwakarma [27] and Pradhan et al. [28]. This motivates us
to study the cosmological models with Λ varying with time.

The distribution of matter can be satisfactorily described by a perfect fluid due
to the large-scale distribution of galaxies in our universe. However, observed phys-
ical phenomena, such as the large entropy per baryon and the remarkable degree
of isotropy of the cosmic microwave background radiation, suggest an analysis of
dissipative effects in cosmology. Furthermore, there are several processes which are
expected to give rise to viscous effects. These are the decoupling of neutrinos during
the radiation era and the decoupling of radiation and matter during the recombi-
nation era. Bulk viscosity is associated with the GUT phase transition and string
creation. Misner [29] has studied the effect of viscosity on the evolution of cosmolog-
ical models. The role of viscosity in cosmology has been investigated by Weinberg
[30]. Nightingale [31]. Heller and Klimek [32] have obtained viscous universes with-
out initial singularity. The model studied by Murphy [33] possesses an interesting
feature in which the big-bang type singularity of infinite space-time curvature does
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not occur at a finite past. However, the relationship assumed by Murphy between
the viscosity coefficient and the matter density is not acceptable at large density.
Thus, we should consider the presence of material distribution other than a perfect
fluid to obtain realistic cosmological models (see Grøn [34] for a review on cosmo-
logical models with bulk viscosity). The effect of bulk viscosity on the cosmological
evolution has been investigated by a number of authors in the framework of general
theory of relativity. This motivates us to study the cosmological bulk viscous fluid
model.

In recent years, several authors (Hajj-Boutros [35], Hajj-Boutros and Sfeila
[36], Ram [37], Mazumder [38] and Pradhan and Kumar [39]) have investigated
the solutions of EFEs for homogeneous but anisotropic models by using different
generation techniques. Bianchi spaces I-IX are useful tools in constructing models
of spatially homogeneous cosmologies (Ellis and MacCallum [40], Ryan and Shepley
[41]). From these models, homogeneous Bianchi type V universes are the natural
generalization of the open FRW model which eventually isotropize. Recently, Camci
et al. [42] derived a new technique for generating exact solutions of EFEs with
perfect fluid for Bianchi type V space-time. Very recently, Pradhan et al. [43] have
obtained Bianchi type V perfect fluid cosmological models with time dependent
Λ-term.

In this paper, in what follows, we will discuss Bianchi type V cosmological
models obtained by augmenting the energy–momentum tensor of a bulk viscous
fluid by a term that represents the cosmological constant varying with time, and
later generalize the solutions of Refs. [37, 42, 43]. This paper is organized as follows:
The field equations and the generation technique are presented in Section 2. We
relate three of the metric variables by solving the off-diagonal component of EFEs,
and find a second integral which is used to relate the remaining two metric variables.
In Section 3, for the particular form of each metric variables, some solutions are
presented separately and solutions of Camci et al. [42], Ram [37] and Pradhan et al.
[43] are shown to be particular cases of these solutions. Kinematical and dynamical
properties of all solutions are also studied in this section. In Section 4, we give the
concluding remarks.

2. Field equations and generation technique

In this section, we review the solutions obtained by Pradhan et al. [43]. The
usual energy-momentum tensor is modified by addition of the term

T
(vac)
ij = −Λ(t)gij , (1)

where Λ(t) is the cosmological term and gij is the metric tensor. Thus the new
stress energy-momentum tensor in the presence of bulk stress is given by

Tij = (p̄ + ρ)uiuj − p̄gij − Λ(t)gij , (2)
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where

p̄ = p + ξui
;i . (3)

Here, ρ, p, p̄, ξ and u are, respectively, the energy density, isotropic pressure,
effective pressure, bulk viscous coefficient and the fluid four-velocity vector of dis-
tribution such that uiui = 1. In general, ξ is a function of time.

We consider the space-time metric of the spatially homogeneous Bianchi type
V of the form

ds2 = dt2 − A2(t)dx2 − e2αx
[

B2(t)dy2 + C2(t)dz2
]

, (4)

where α is a constant. For the energy momentum tensor (2) and Bianchi type V
space-time (4), Einstein’s field equations

Rij −
1

2
Rgij = −8πTij (5)

yield the following five independent equations

A44

A
+

B44

B
+

A4B4

AB
− α2

A2
= −8π(p̄ + Λ) , (6)

A44

A
+

C44

C
+

A4C4

AC
− α2

A2
= −8π(p̄ + Λ) , (7)

B44

B
+

C44

C
+

B4C4

BC
− α2

A2
= −8π(p̄ + Λ) , (8)

A4B4

AB
+

A4C4

AC
+

B4C4

BC
− 3α2

A2
= 8π(ρ − Λ) , (9)

2A4

A
− B4

B
− C4

C
= 0 . (10)

Here and in what follows the suffix 4 by the symbols A, B, C and ρ denote differ-
entiation with respect to t. The Bianchi identity (T ij

;j = 0) takes the form

ρ4 + (ρ + p)θ = 0 . (11)

It is worth noting here that our approach suffers from a lack of Lagrangian approach.
There is no known way to present a consistent Lagrangian model satisfying the
necessary conditions discussed in this paper.

The physical quantities expansion scalar θ and shear scalar σ2 have the following
expressions:

θ = ui
;i =

A4

A
+

B4

B
+

C4

C
, (12)
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σ2 =
1

2
σijσ

ij =
1

3

[

θ2 − A4B4

AB
− A4C4

AC
− B4C4

BC

]

. (13)

Integrating Eq. (10) and absorbing the integration constant into B or C, we obtain

A2 = BC , (14)

without any loss of generality. Thus, elimination of p̄ from Eqs. (6) - (8) gives the
condition of isotropy of pressures

2
B44

B
+

(

B4

B

)2

= 2
C44

C
+

(

C4

C

)2

, (15)

which on integration yields

B4

B
− C4

C
=

k

(BC)3/2
, (16)

where k is a constant of integration. Hence for the metric function B or C from
the above first order differential Eq. (16), some scale transformations permit us to
obtain new metric function B or C.

Firstly, under the scale transformation dt = B1/2dτ , Eq. (16) takes the form

CBτ − BCτ = kC−1/2 , (17)

where subscript represents derivative with respect to τ . Considering Eq. (17) as a
linear differential equation for B, where C is an arbitrary function, we obtain

(i) B = k1C + kC

∫

dτ

C5/2
, (18)

where k1 is an integrating constant. Similarly, using the transformations dt =
B3/2dτ̃ , dt = C1/2dT and dt = C3/2dT̃ in Eq. (16), after some algebra we obtain,
respectively,

(ii) B(τ̃ ; k2, k) = k2C exp

(

k

∫

dτ̃

C3/2

)

, (19)

(iii) C(T ; k3, k) = k3B − kB

∫

dT

B5/2
, (20)

and

(iv) C(T̃ ; k4, k) = k4B exp

(

k

∫

dT̃

B3/2

)

, (21)

where k2, k3 and k4 are constants of integration. Thus choosing any given function
B or C in cases (i), (ii), (iii) and (iv), one can obtain B or C and hence A from
(14).
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3. Generation of new solutions

We consider the following four cases:

3.1. Case (I): Let C = τn (n is a real number satisfying n =/
2

3
)

In this case, Eq. (18) gives

B = k1τ
n +

2k

2 − 5n
τ1−3n/2 , (22)

and then from (14), we obtain

A2 = k1τ
2n +

2k

2 − 5n
τ1−n/2. (23)

Hence the metric (4) reduces to the new form

ds2 =
(

k1τ
n + 2ℓτ ℓ1

)

[dτ2 − τndx2] − e2αx
[

(

k1τ
n + 2ℓτ ℓ1

)2
dy2 + τ2ndz2

]

, (24)

where

ℓ =
k

2 − 5n
and ℓ1 = 1 − 3n

2
.

For this derived model, Eq. (24), the effective pressure, energy density and cosmo-
logical constant are given by

8π(p̄ + Λ) =
(

k1τ
n + 2ℓτ ℓ1

)

−3
[

−2k2
1n(n − 1)τ2n−2 − k1ℓn(10 − 13n)τ−(ℓ1+2n)

−ℓ2(4 + 4n − 11n2)

2
τ−3n

]

+ α2τ−n
(

k1τ
n + 2ℓτ ℓ1

)

−1
, (25)

8π(ρ − Λ) =
(

k1τ
n + 2ℓτ ℓ1

)

−3
[

3k2
1n

2τ2n−2 + 3k1ℓn(2 − n)τ−(ℓ1+2n)

+
ℓ2(4 + 4n − 11n2)

2
τ−3n

]

− 3α2τ−n
(

k1τ
n + 2ℓτ ℓ1

)

−1
. (26)

We assume for the specification of ξ that the fluid obeys an equation of state of the
form

p = γρ , (27)

where γ (0 ≤ γ ≤ 1) is a constant.
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Thus, given ξ(t), we can solve the system for the physical quantities. In most of
investigations involving bulk viscosity, it is assumed to be a simple power function
of the energy density (Pavon et al. [44]; Maartens [45]; Zimdahl [46]; Santos et al.
[47]),

ξ(t) = ξ0ρ
w, (28)

where ξ0 and w are real constants. For small density, w may even be equal to unity
as used in Murphy’s work [48] for simplicity. If w = 1, Eq. (28) may correspond to a
radiative fluid (Weinberg [16]). Near the big bang, 0 ≤ w ≤ 1

2 is a more appropriate
assumption (Belinskii and Khalatnikov [49]) to obtain realistic models.

For simplicity and realistic models of physical importance, we consider the fol-
lowing two cases (w = 0, 1).

3.1.1. Model I: Solution for w = 0

When w = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case, with the
use of (26), (27) and (28), Eq. (25) leads to

8π(1 + γ)ρ = D1
−3
[

n(n + 2)k2
1τ

2(n−1) + 2(5n − 2)k1ℓnτ−(ℓ1+2n)
]

+

D1
−1
[

− 2α2τ−n + 24πξ0

(

k1nτn−1 +
1

2
ℓ(2 − n)τ−

3n

2

)

D1
−

1

2

]

, (29)

where

D1 = k1τ
n + 2ℓτ ℓ1 .

Eliminating ρ(t) from Eqs. (26) and (29), we obtain

8π(1+γ)Λ = D1
−3
[

(1−2n−3nγ)nk2
1τ2(n−1)−{(10−13n)+3(2−n)γ}k1ℓnτ−(ℓ1+2n)

−1

2
(4 + 4n − 11n2)(1 + γ)ℓ2τ−3n

]

+

(1 + 3γ)α2τ−nD1
−1 + 24πξ0

[

nk1τ
n−1 +

1

2
ℓ(2 − n)τ−

3n

2

]

D1
−

3

2 . (30)

3.1.2. Model II: Solution for w = 1

When w = 1, Eq. (28) reduces to ξ = ξ0ρ. Hence in this case, with the use of (26),
(27) and (28), Eq. (25) leads to

8πρ =

[

n(n + 2)k2
1τ

2(n−1) + 2n(5n − 2)k1ℓτ
−(ℓ1+2n) − 2α2τ−nD1

2
]

D1
3
[

(1 + γ) − 3ξ0{nk1τn−1 + 1
2 (2 − n)ℓτ−

3n

2 }D1
−

3

2

] . (31)
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Eliminating ρ(t) between (26) and (31), we obtain

8πΛ =

[

n(n + 2)k2
1τ

2(n−1) + 2n(5n − 2)k1ℓτ
−(ℓ1+2n) − 2α2τ−nD1

2
]

D1
3
[

(1 + γ) − 3ξ0{nk1τn−1 + 1
2 (2 − n)ℓτ−

3n

2 }D1
−

3

2

]

− 1

D1
3

[

3n2k2
1τ

2(n−1)+3n(2−n)k1ℓτ
−(ℓ1+2n)+

1

2
(4+4n−11n2)ℓ2τ−3n−3α2τ−nD1

2

]

.

(32)

From Eqs. (29) and (30), we observe that at the time of early universe, the the
energy density ρ(t) and cosmological constant (Λ(t)) decrease when time increases
(see Fig. 1). We also observe that the value of Λ is small and positive at late
times, which is supported by recent type Ia supernovae observations [11 – 14]. In
Model II, from Eqs. (31) and (32), we find that for a large range of parameters
the energy density decreases with time very sharply and becomes negative (even
if it is positive initially) and then remains negative throughout the evolution. The
cosmological constant shows singular behaviour closer to the origin. Then it shows
an eratic behaviour and at later stage it remains a negative constant value. It seems
that Model II may not be a physical model of the universe.

Fig. 1. (Top) Plot of ρ → τ and (bottom) Λ → τ for parameters n = 1/4, k1 = 1,
γ = 0.5, α = 1, ξ0 = 1 and rest of the constants are set to 1.

The metric (24) is a four-parameter family of solutions to EFEs with a bulk

viscous fluid. Using the scale transformation dt = B
1

2 dτ in Eqs. (12) and (13) for
this case, one obtains the scalar expansion θ and the shear σ

θ = 3

[

k1nτn−1 +
ℓ(2 − n)

2
τ−3n/2

]

(

k1τ
n + 2ℓτ ℓ1

)

−3/2
, (33)
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σ =
1

2
kτ−3n/2

(

k1τ
n + 2ℓτ ℓ1

)

−3/2
. (34)

Eqs. (33) and (34) lead to

σ

θ
=

k

6

[

k1nτn−ℓ1 +
ℓ(2 − n)

2

]

−1

. (35)

Now, we consider four subcases for the parameters Λ, n, k and k1.

In the subcase Λ = 0 and ξ0 = 0, the metric (24) with expressions p, ρ, θ and σ
for this model are the same as those of solution (18) of Camci et al. [42]. If we set
ξ0 = 0, the metric (24) gives the solution obtained by Pradhan et al. [43].

In the subcase Λ = 0, n = 0, after a suitable inverse time transformation, we
find that

ds2 = dt2 − K1(t + t0)
2/3dx2 − e2αx

[

K1(t + t0)
4/3dy2 + dz2

]

, (36)

where t0 is a constant of integration and K1 = (3k/2)2/3. The expressions p, ρ,
θ and σ for this model are not given here, since it is observed that the physical
properties of this one are same as that of the solution (24) of Ram [37].

In the subcase Λ = 0, k = 0, after inverse time transformation and rescaling,
the metric (24) reduces to

ds2 = dt2 − K2(t + t1)
4n/(n+2)

[

dx2 + e2αx(dy2 + dz2)
]

, (37)

where t1 is a constant of integration and K2 =
(

(n+2)/2
)4n/(n+2)

. For this solution,
when n = 1 and α = 0, we obtain Einstein and de Sitter [50] dust-filled universe.
For K2 = 1, t1 = 0 and n = 2m/(2 − m), where m is a parameter in Ram’s paper
[37], the solution (37) reduces to the metric (14) of Ram [37]. In latter case, if also
α = 0, then we get the Minkowski space-time.

Now, in subcase Λ = 0 and k1 = 0, after some algebra, the metric (24) takes
the form

ds2 = dt2 − 2ℓK3(t + t2)
2/3
[

dx2 + e2αx
(

atm1dy2 + a−1t−m1dz2
)]

, (38)

where t2 is a constant, atm1 = 2ℓK
(2−5n)/(2−n)
3 (t + t2)

(2(2−5n))/(3(2−n) and

K3 =
[

(

3(2 − n)
)

/
(

4
√

2ℓ
)

]2/3

. For t2 = 0, k = 2
3 and n = 0 from (38), we ob-

tain that the solution (24) of Ram [37].

Some physical aspects of model

The model (24) has the barrel singularity at τ = τ0 given by

τ0 =

[

k1(5n − 2)

2k

]2/((2−5n))

,
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which corresponds to t = 0. For n /= 2/5 from (24), it is observed that at the
singularity state τ = τ0, p, ρ, Λ, θ and σ are infinitely large. At t → ∞, which
corresponds to τ → ∞ for n < 2/5 and k > 0, or τ → 0 for n > 2/5 and k < 0, p, ρ,
Λ, θ and σ vanish. Therefore, for n /= 2/5, the solution (24) represents an anisotropic
universe exploding from τ = τ0, i.e. t = 0, which expands for 0 < t < ∞. We also
find that the ratio σ/θ tends to a finite limit as t → ∞, which means that the shear
scalar does not tend to zero faster than the expansion. Hence, the model does not
approach isotropy for large values of t.

In the subcase Λ = 0, k = 0, the ratio (35) tends to zero, then the model
approaches isotropy, i.e. shear scalar σ goes to zero. For the model (37), p and ρ
tend to zero as t → ∞; the model would give an essentially empty universe at large
time. The dominant energy condition given by Hawking and Ellis [51] requires that

ρ + p ≥ 0, ρ + 3p ≥ 0 . (39)

Thus, we find for the model (37) that n(2−n) ≥ 0. Hence for the values 0 ≤ n ≤ 2,
the universe (37) satisfies the strong energy condition, i.e. ρ + 3p ≥ 0. Also this
model is sheer-free and expanding.

In the subcase Λ = 0, k1 = 0, for n /= 2/5, 2, it is observed from relations (29)
- (34) that p, ρ, θ and σ are infinitely large at the singularity state t = −t2. When
t → ∞, these quantities vanish. We also find that the ratio σ/θ is a constant.
This shows that the cosmological model (38) does not approach isotropy for large
value of t. In this model, the dominant energy conditions (39) are then verified
for 6 − 5n − 25n2 ≥ 0. Since n /= 2/5, the model (38) satisfies the strong energy
condition for −3/5 ≤ n ≤ 2/5.

In each of the subcases, all obtained solutions (36), (37) and (38) satisfy the
Bianchi identity given in Eq. (10).

3.2. Case (II): Let C = τ̃ n (n is a real number satisfying n =/
2

3
)

In this case Eq. (19) gives

B = k2τ̃
n exp

(

Mτ̃ ℓ1
)

, (40)

and from (14), we obtain

A2 = k2τ̃
2n exp

(

Mτ̃ ℓ1
)

, (41)

where M = k/ℓ1. Hence the metric (4) reduces to the form

ds2 = τ̃4(1−ℓ1)/3

[

τ̃2(1−ℓ1)/3e3Mτ̃ℓ1

dτ̃2 − eMτ̃ℓ1

dx2

−e2αx
(

e2Mτ̃ℓ1

dy2 + dz2
)

]

, (42)
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where the constant k2 is taken, without any loss of generality, equal to 1. This
metric is a three-parameter family of solutions to EFEs with a perfect fluid.

For the above model, the distribution of matter and nonzero kinematical para-
meters are obtained as

8π(p̄ + Λ) = 2nτ̃2(ℓ1−2) + 3nkτ̃3ℓ1−4

+
k2

2
τ̃4(ℓ1−1) + α2τ̃4(ℓ1−1)/3e−3Mτ̃ℓ1

, (43)

8π(ρ − Λ) = 3n2τ̃2(ℓ1−2) + 3nkτ̃3ℓ1−4

+
k2

2
τ̃4(ℓ1−1) − 3α2τ̃4(ℓ1−1)/3e−3Mτ̃ℓ1

. (44)

For simplicity and realistic models of physical importance, we consider the fol-
lowing two cases (w = 0, 1).

3.2.1. Model I: Solution for w = 0

When w = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case, Eq. (43),
with the use of (44), (27) and (28), leads to

8π(1 + γ)ρ = n(2 + 3n)τ̃2(ℓ1−2) + 6nkτ̃ (3ℓ1−4) + k2τ̃4(ℓ1−1) − 2D3 + 24πξ0D2, (45)

where

D2 = nτ̃ (ℓ1−2) +
1

2
kτ̃2(ℓ1−1),

D3 = α2τ̃
4

3
(ℓ1−1)e−3Mτ̃ℓ1

.

Eliminating ρ(t) from Eqs. (44) and (45), we obtain

8π(1 + γ)Λ = n(2 − 3nγ)τ̃2(ℓ1−2) + 3nk(1 − γ)τ̃ (3ℓ1−4)

+
1

2
k2(1 − γ)τ̃4(ℓ1−1) + (1 − 3γ)D3 + 24πξ0D2 . (46)
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3.2.2. Model II: Solution for w = 1

When w = 1, Eq. (28) reduces to ξ = ξ0ρ . Hence in this case, Eq. (43), with the
use of (44), (27) and (28), leads to

8πρ =
n(2 + 3n)τ̃2(ℓ1−2) + 6nkτ̃ (3ℓ1−4) + k2τ̃4(ℓ1−1) − 2D3

(1 + γ) − 3ξ0D2
. (47)

Eliminating ρ(t) from Eqs. (44) and (47), we obtain

8πΛ =
n(2 + 3n)τ̃2(ℓ1−2) + 6nkτ̃ (3ℓ1−4) + k2τ̃4(ℓ1−1) − 2D3

(1 + γ) − 3ξ0D2

−3n(2)τ̃2(ℓ1−2) − 3nkτ̃ (3ℓ1−4) − 1

2
k2τ̃4(ℓ1−1) + 3D3 . (48)

In Model I, from Eqs. (45) and (46), we observe that the energy density ρ(t)
and cosmological constant (Λ(t)) decrease when time increases (see Fig. 2). Here
we find the energy density always positive. We also observe that the value of Λ is
small and positive at late times which is supported by recent type Ia supernovae
observations [11 – 14]. From Eqs. (47) and (48), we observe that Model II has a
similar behaviour as Model I, so it is not reproduced here.

Fig. 2. (Top) Plot of ρ → τ̃ and (bottom) Λ → τ̃ for parameters n = 0.45, K = 2.0,
k1 = 2, γ = 0.5, α = 1, ξ0 = 1, M = 1 and rest of the constants are set to 1.

The scalar of expansion θ and the shear σ are obtained as

θ = 3

[

nτ̃ ℓ1−2 +
k

2
τ̃2(ℓ1−1)

]

, (49)
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σ =
k

2
τ̃2(ℓ1−1)e−3Mτ̃ℓ1

, (50)

From Eqs. (49) and (50), we have

σ

θ
=

k

6 (nτ̃−ℓ1 + k/2)
. (51)

In the subcase Λ = 0 and ξ0 = 0, the metric (42) with expressions p, ρ, θ and
σ for this model are same as that of the solution (27) of Camci et al. [42].

In the subcase Λ = 0, ξ0 = 0, ℓ1 = 1 (i.e. n = 0), we find a similar solution to
(36), and hence this subclass is omitted. For k = 0, the ratio (51) is zero and hence
there is no anisotropy.

After a suitable coordinate transformation, the metric (42) can be written as

ds2 = dt2 − K4(t + t3)
2ℓ1
[

dx2 + e2αx(dy2 + dz2)
]

, (52)

where t3 is a constant and K4 =
[

2/(2 − 3M1)
]2M1

, M1 = 2n/(2 + 3n) /= 2
3 , where

M1 is a new parameter. When M1 = 0 and ℓ1 = 0, from (52), we get the solution
(12) of Ram [37].

Some physical aspects of model

The models have a singularity at τ̃ → −∞ for ℓ1 > 0 or τ̃ → 0 for ℓ1 < 0,
which corresponds to t → 0. It is a point-type singularity for ℓ1 > 0, whereas it is
a cigar or a barrel singularity when ℓ1 < 0. At t → ∞, which correspond to τ̃ → ∞
for ℓ1 > 0 or τ̃ → 0 for ℓ1 < 0, from Eqs. (45) - (50), we obtain that for ℓ1 > 0,
p, ρ → 0, and σ, θ → 0 (k > 0), - ∞ (k < 0); for ℓ1 < 0, similar to the above ones.
Then, clearly, for a realistic universe, it must be that as τ̃ → −∞, n and k are
positive and ℓ1 is an odd positive number; as τ̃ → 0, k is positive, and ℓ1 an even
negative number. Also, since limτ̃→∞

σ
θ /= 0, these models do not approach isotropy

for large values of τ̃ .

In the subcase k = 0 for the metric (52), the effective pressure, density and
cosmological constant are given by

8π(p̄ + Λ) =
ℓ1(2 − 3ℓ1)

(t + t3)2
+

α2

K4(t + t3)2ℓ1
, (53)

8π(ρ − Λ) =
3ℓ1

(t + t3)2
− 3α2

K4(t + t3)2ℓ1
. (54)

When Λ = 0 and ξ0 = 0, the pressure and energy density are the same as that
given in Eq. (44) of paper Camci et al. [42]. In this case, the weak and strong
energy conditions (39) for this solution are identically satisfied when ℓ1(1−ℓ1) ≥ 0,
i.e. 0 ≤ ℓ1 ≤ 1. This model is shear-free and expanding with θ = 3ℓ1/(t + t3).

FIZIKA B (Zagreb) 15 (2006) 4, 163–182 175



pradhan et al.: Generation of Bianchi-type V bulk viscous cosmological . . .

3.3. Case (III) : Let B = T n (n is a real number).

In this case, Eq. (20) gives

C = k3T
n − 2ℓT ℓ1 , (55)

and then from (14), we obtain

A2 = k3T
2n − 2ℓT ℓ1+n . (56)

Hence the metric (4) takes the new form

ds2 =
(

k3T
n − 2ℓT ℓ1

)

[dt2 − Tndx2]−

e2αx
[

T 2ndy2 +
(

k3T
n − 2ℓT ℓ1

)2
dz2
]

. (57)

For the four-parameter family solution (57), the physical and kinematical quantities
are given by

8π(p̄ + Λ) =

[

−ℓ2

2
(11n2 − 4n − 4)T−3n + ℓk3n(13n − 10)T ℓ1+n−

2k2
3n(n − 1)T 2n−2

]

(

k3T
n − 2ℓT ℓ1

)

−3
+ α2T−n

(

k3T
n − 2ℓT ℓ1

)

−1
, (58)

8π(ρ − Λ) =

[

−ℓ2(11n2 − 4n − 14)

2
T−3n − 3ℓk3n(2 − n)T ℓ1+n+

3k2
3n

2T 2n−2

]

(

k3T
n − 2ℓT ℓ1

)

−3 − 3α2T−n
(

k3T
n − 2ℓT ℓ1

)

−1
. (59)

3.3.1. Model I: Solution for w = 0

When w = 0, Eq. (28) reduces to ξ = ξ0 = constant. Hence in this case, Eq. (58),
with the use of (59), (27) and (28), leads to

8π(1+γ)ρ=
[

n(n+2)k3
2T 2(n−1)+16n(n−1)k3ℓT

(ℓ1+n)−(11n2−4n−9)ℓ2T−3n
]

D4
−3

−2α2T−nD4
−1 + 24πξ0D5D4

−3/2, (60)

where

D4 = k3T
n − 2ℓT ℓ1 ,
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D5 = k3nTn−1 +
1

2
(n − 2)ℓT−3n/2.

Eliminating ρ(t) from Eqs. (59) and (60), we obtain

8π(1 + γ)Λ =
[

{−1

2
nℓ2(1 − γ)(11n − 4) − ℓ2(7γ − 2)}T−3n

+nℓk3{13n − 10 + 3γ(2 − n)}T ℓ1+n − nk3
2(2n − 2 + 3nγ)T 2(n−1)

]

D4
−3

+(1 + 3γ)α2T−nD4
−n + 24πξ0D5D4

−3/2. (61)

3.3.2. Model II: Solution for w = 1

When w = 1, Eq. (28) reduces to ξ = ξ0ρ. Hence in this case, Eq. (58), with the
use of (59), (27) and (28), leads to

8πρ =
1

[(1 + γ) − 3ξ0D5D4
−

3

2 ]

[

− ℓ2(11n2 − 4n − 9)T−3n + 16n(n − 1)ℓk3T
ℓ1+n

+n(n + 2)k3
2T 2(n−1)

]

D4
−3 − α2T−nD3

−1. (62)

Eliminating ρ(t) from Eqs. (59) and (62), we obtain

8πΛ =
1

[(1 + γ) − 3ξ0D5D4
−

3

2 ]

[

{−ℓ2(11n2 − 4n − 9)T−3n + 16n(n − 1)ℓk3T
ℓ1+n

+n(n + 2)k3
2T 2(n−1)}D4

−3 − α2T−nD3
−1
]

−

[

{−1

2
(11n2−4n−14)ℓ2T−3n−3n(2−n)ℓk3T

ℓ1+n+3n2k3
2T 2(n−1)}D4

−3+3α2TnD4
−1

]

.

(63)
In Model I, from Eqs. (60) and (61), we observe that the energy density ρ(t)
and cosmological constant (Λ(t)) are decreasing functions of time (see Fig. 3).
The energy density is always positive. We also observe that the value of Λ is
small and positive at late times which is supported by recent type Ia supernovae
observations [11 – 14]. From Eqs. (62) and (63), we observe that Model II has the
similar behaviour as Model I, so it is not reproduced here.

The scale of expansion and the shear are obtained as

θ = 3

[

ℓ(n − 2)

2
T−3n/2 + k3nTn−1

]

(

k3T
n − 2ℓT ℓ1

)

−3/2
, (64)
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Fig. 3. (Top) Plot of ρ → T and (bottom) Λ → T for parameters n = 0.45, K = 2.0,
k3 = 1, γ = 0.5, α = 1, ξ0 = 1 and rest of the constants are set to 1.

σ =
kT−3n/2

2

(

k3T
n − 2ℓT ℓ1

)

−3/2
. (65)

From (64) and (65), we get

σ

θ
=

k

6

[

k3nT−ℓ1+n +
ℓ(n − 2)

2

]

−1

. (66)

In the subcase Λ = 0 and ξ = 0, the metric (57) with expressions p, ρ, θ and σ for
this model are same as that of solution (34) of Camci et al. [42]. If we set ξ0 = 0,
this metric (57) represents the solution obtained by Pradhan et al. [43].

In the subcase Λ = 0, ξ = 0, n = 0, after an inverse transformation, the metric
(57) reduces to the form

ds2 = dt2 − K5(t + t4)
2/3dx2 − e2αx

[

dy2 + K2
5 (t + t4)

4/3dz2
]

, (67)

where t4 is an integrating constant. This model is different from the model (36) by
a change of scale.

In the subcase Λ = 0, k = 0, the same model as (37) is obtained.

Further, in the subcase Λ = 0, ξ = 0 k3 = 0, we see that the metric (57) takes
the form

ds2 = dt2 − 2ℓK6(t + t5)
2/3
[

dx2 + e2αx
(

btm2dy2 + b−1t−m2dz2
)]

, (68)
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where t5 is a constant, btm2 = 2ℓK
(2−5n)/(2−n)
6 (t + t5)

[2(2−5n)]/[3(2−n)] and

K6 =
[

(

3(2 − n)
)

/
(

4
√

2ℓ
)

]2/3

. This metric is only different from (37) by a change

of sign. Also, in each of the subcases, the physical and kinematical properties of
obtained metric are same as that of Case(I). Therefore, we do not consider them
here.

3.4. Case (IV) : Let B = τ̃n, where n is any real number.

In this case, Eq. (21) gives

C = k4τ̃
n exp

(

k

ℓ1
τ̃ ℓ1

)

, (69)

and then from (14), we obtain

A2 = k4τ̃
2n exp

(

k

ℓ1
τ̃ ℓ1

)

. (70)

Hence the metric (4) reduces to

ds2 = τ̃2n exp

(

k

ℓ1
τ̃ ℓ1

)[

τ̃n exp

(

2k

ℓ1
τ̃ ℓ1

)

− dx2

]

−e2αx

[

dy2 + exp

(

2k

ℓ1
τ̃ ℓ1

)

− dz2

]

, (71)

where, without any loss of generality, the constant k4 is taken equal to 1. Expres-
sions for physical and kinematical parameters for the model (71) are not given here,
but it is observed that the properties of the metric (71) are same as that of the
solution (42), i.e. the Case (II).

4. Concluding remarks

In this paper we have described new exact solutions of EFEs for Bianchi type
V spacetime with a bulk viscous fluid as the source of matter and cosmological
term Λ varying with time. Using a generation technique introduced by Camci et
al. [42], it is shown that the Einstein’s field equations are solvable for any arbitrary
cosmic scale function. Starting from particular cosmic functions, new classes of
spatially homogeneous and anisotropic cosmological models have been investigated
for which the fluids are acceleration- and rotation-free, but they do have expansion
and shear. For α = 0 in the metric (4), we obtained metrics as LRS Bianchi type I
model (Hajj-Boutros [35], Hajj-Boutros and Sfeila [36], Ram [37], Mazumder [38],
Pradhan and Kumar [39]) and Pradhan et al. [43]. It is also seen that the solutions
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obtained by Camci et al. [42], Ram [37], Pradhan and Kumar [39] and Bianchi type
V models studied by Pradhan et al. [43] are particular cases (except one) of our
solutions.

The cosmological constants in all models given in Section 3 are decreasing func-
tions of time (except one, Model II of Case (I)), and they all approach a small
positive value at late times, what is supported by the results from the supernova
observations recently obtained by the High-z Supernova Team and Supernova Cos-
mological Project (Garnavich et al. [11], Perlmutter et al. [12], Riess et al. [13],
Schmidt et al.[14]).

The features of these new solutions are that from our wide range of choices of
parameters for Model I of Cases (I), (II), and (III), it is apparent from figures that
energy density ρ(t) and dynamic cosmological term Λ(t) are decreasing function of
time, remain positive and small at later stage during evolution. These two quan-
tities remain finite and do not become zero at later stage. Hence this seem to be
physically viable to explore physical mechanism for further detail study depending
on relevance of the physical problem. These studies show that the bulk viscous
effect is apparent on Λ(t). In many astrophysical situations the viscosity calculated
using statistical consideration do not give satisfactory viscous number. Hence the
specific thing about bulk viscosity will depend on the details of the viscous nature
of the matter. We have explored Model II of Cases (I), (II) and (III). So we feel
that it is not necessary to display behaviour of ρ(t) and Λ(t). We have studied these
models and no anomaly has been observed.

Model II of Case (I) is explored for a variety of parameters. We find that in
many cases, energy density decreases sharply and becomes negative very fast and at
a later stage also remains negative, but there is a slight increase at later stage and
remains constant (negative constant), which we feel as an undesirable feature. So
it is not discussed in the paper. Also, in many cases it is initially oscillatory. In this
case, Λ(t) shows very peculiar behaviour. Only in a few cases, Λ is initially negative,
then becomes positive but in all cases during initial evolution Λ has singularities
when t is close to zero and a few at later finite times. The cause of this behaviour
is not very apparent from the model. Otherwise, for a wide range of parameters, Λ
shows eratic behaviour. In most of the cases, singular and eratic behaviour of Λ(t)
is persistent and the cause is not known. So, we do not discuss it further. This may
require a detailed separate study.
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IZVOD KOZMOLOŠKIH MODELA V BIANCHIJEVE VRSTE S VOLUMNIM
TRENJEM I VREMENSKI-OVISNIM ČLANOM Λ

Istražujemo kozmološke modele V-e Bianchijeve vrste s volumnim trenjem i di-
namičnim kozmološkim članom Λ(t). Primjenom metode izvod–enja (Camci et al.,
2001) pokazujemo da se Einsteinove jednadžbe polja mogu riješiti za proizvoljnu
funkciju kozmičke mjere. Postigli smo rješenja za posebne funkcije kozmičkih mjera.
Nalazimo da je kozmološka konstanta opadajuća funkcija vremena, što je u skladu
s nedavnim opažanjima supernova Ia. Raspravljamo takod–er neka fizička svojstva
modela.
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