ON THE COEFFICIENTS OF A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

BIN ZHANG

Qufu Normal University, P. R. China

ABSTRACT. A cyclotomic polynomial $\Phi_n(x)$ is said to be flat if its nonzero coefficients involve only ± 1 . In this paper, for odd primes p < q < rr with $q \equiv 1 \pmod{p}$ and $9r \equiv \pm 1 \pmod{pq}$, we prove that $\Phi_{pqr}(x)$ is flat if and only if p = 5, $q \geq 41$, and $q \equiv 1 \pmod{5}$.

1. INTRODUCTION

Let

$$\Phi_n(x) = \prod_{\substack{(m,n)=1\\1\le m\le n}} (x-\zeta_n^m),$$

where $\zeta_n = e^{2\pi i/n}$. This polynomial is called the *n*th cyclotomic polynomial. It is a classical and neoteric problem in number theory to investigate the arithmetic properties of cyclotomic polynomials. Since $\deg(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = \phi(n) = \deg \Phi_n(x)$, it follows that $\Phi_n(x)$ is the irreducible polynomial for ζ_n . Also, $\Phi_n(x) \in \mathbb{Z}[x]$ since the coefficients are rational and also are algebraic integers.

The first few cyclotomic polynomials are

$$\Phi_1(x) = x - 1, \quad \Phi_2(x) = x + 1,$$

 $\Phi_3(x) = x^2 + x + 1, \quad \Phi_4(x) = x^2 + 1.$

2020 Mathematics Subject Classification. 11B83, 11C08, 11N56.

Key words and phrases. Cyclotomic polynomial, Coefficients of cyclotomic polynomial, Flat ternary cyclotomic polynomial, Non-flat ternary cyclotomic polynomial.

This work was supported by Shandong Provincial Natural Science Foundation, Taishan Scholar Project of Shandong Province and the Young Talents Invitation Program of Shandong Province.

¹⁷

All these have coefficients ± 1 and 0; however, this is not true in general. By choosing n with many prime factors one can obtain arbitrarily large coefficients.

Let a(n, j) denote the coefficient of x^j in the *n*th cyclotomic polynomial $\Phi_n(x)$ and $A(n) = \max\{|a(n, j)| : 0 \le j \le \phi(n)\}$ be the height of $\Phi_n(x)$. Cyclotomic polynomials of unit height are called *flat*. Since

$$\Phi_n(x) = \Phi_{\text{radical}(n)}(x^{n/\text{radical}(n)}) \text{ and } \Phi_{2n}(x) = \pm \Phi_n(-x)$$

we can restrict the study of A(n) to the case $n = pqr \cdots$, where $3 \le p < q < r < \cdots$ are primes. It is clear that

$$a(p,j) = \begin{cases} 1 & \text{if } 0 \le j \le p-1; \\ 0 & \text{otherwise,} \end{cases}$$

$$a(pq,j) = \begin{cases} 1 & \text{if } j = up + vq \text{ for } 0 \le u \le s - 1, 0 \le v \le t - 1; \\ -1 & \text{if } j = up + vq + 1 \text{ for } 0 \le u \le q - s - 1, 0 \le v \le p - t - 1; \\ 0 & \text{otherwise,} \end{cases}$$

where s and t are unique positive integers $1 \leq s < q$, $1 \leq t < p$ such that pq + 1 = ps + qt, see e.g. Lam and Leung [8] or Thangadurai [10]. Thus all the prime cyclotomic polynomials $\Phi_p(x)$ and binary cyclotomic polynomials $\Phi_{pq}(x)$ are flat.

The problem of flat ternary cyclotomic polynomials—flat polynomials of the form $\Phi_{pqr}(x)$, where p, q, and r are distinct odd primes—seems tantalizingly accessible but remains open. In 2009, Broadhurst proposed some conjectures about flat ternary cyclotomic polynomials, see [7, Conjecture] or [4, Conjecture 4.4.3]. Let p < q < r be odd primes such that $zr \equiv \pm 1 \pmod{pq}$, where z is a positive integer. At present, the flatness of $\Phi_{pqr}(x)$ in special cases $1 \le z \le 8$ has been considered, see [1, 2, 3, 5, 6, 9, 11, 12, 13, 14, 15, 16]. In this paper, we study the flatness of $\Phi_{pqr}(x)$ in the special case when $q \equiv 1$ (mod p) and z = 9, and establish the following result.

THEOREM 1.1. Let p < q < r be odd primes such that $q \equiv 1 \pmod{p}$ and $9r \equiv \pm 1 \pmod{pq}$. Then $\Phi_{pqr}(x)$ is flat if and only if p = 5, $q \geq 41$, and $q \equiv 1 \pmod{5}$.

2. Preliminaries

Before starting our proof of the theorem, the following lemmas will be useful. Let p < q be odd primes such that q = kp+1. Then, for pq+1 = ps+qt, we have s = q - k, t = 1. Hence it follows immediately from (1.1) that the following holds.

LEMMA 2.1. Let p < q be odd primes such that q = kp + 1. Then

$$a(pq, j) = \begin{cases} 1 & \text{if } j = up \text{ for some } 0 \le u \le q - k - 1; \\ -1 & \text{if } j = up + vq + 1 \text{ for some } 0 \le u \le k - 1, 0 \le v \le p - 2; \\ 0 & \text{otherwise.} \end{cases}$$

Our main tool is the following technical lemma due to Kaplan [6, Lemma 1], which reduces the computation of the ternary cyclotomic coefficients to that of the binary cyclotomic coefficients.

LEMMA 2.2. Let p < q < r be odd primes. Let $n \ge 0$ be an integer and f(i) be the unique value $0 \le f(i) \le pq - 1$ such that

(2.1)
$$rf(i) + i \equiv n \pmod{pq}.$$

(1) Then

$$\sum_{i=0}^{p-1} a(pq, f(i)) = \sum_{i=q}^{q+p-1} a(pq, f(i)).$$

(2) Put

(2.2)
$$a^*(pq, f(i)) = \begin{cases} a(pq, f(i)) & \text{if } f(i) \le \frac{n}{r}; \\ 0 & \text{otherwise.} \end{cases}$$

Then

(2.3)
$$a(pqr,n) = \sum_{i=0}^{p-1} a^*(pq,f(i)) - \sum_{i=q}^{q+p-1} a^*(pq,f(i))$$

We also need the periodicity of A(pqr), which implies that the height A(pqr) is determined by $\pm r \pmod{pq}$, see [6].

LEMMA 2.3. Let $3 \le p < q < r$ be primes. Then for any prime s > q such that $s \equiv \pm r \pmod{pq}$, A(pqr) = A(pqs).

3. Proof of Theorem 1.1

Note that $9r \equiv \pm 1 \pmod{pq}$ implies that $p \neq 3$. In view of Lemma 2.3, it is enough to consider primes p < q < r such that

$$p \ge 5, q \equiv 1 \pmod{p}$$
, and $9r \equiv 1 \pmod{pq}$.

The proof will be split into the following three parts according to the value of p.

3.1. The case when p = 5. (i) By using the PARI/GP system, we have $A(5 \cdot 11 \cdot 269) = A(5 \cdot 31 \cdot 379) = 2$. On noting that $9 \cdot 269 \equiv 1 \pmod{5 \cdot 11}$ and $9 \cdot 379 \equiv 1 \pmod{5 \cdot 31}$, we obtain from Lemma 2.3 that

$$A(5qr) = 2$$
 if $q = 11, 31$, and $9r \equiv 1 \pmod{5q}$

(ii) Next, we will show that

A(5qr) = 1 if $q \ge 41$, $q \equiv 1 \pmod{5}$, and $9r \equiv 1 \pmod{5q}$.

Let q = 5k + 1. Then k is even and $k \ge 8$. For 5q + 1 = 5s + qt, we have s = 4k + 1, t = 1. Thus, in this case, we may rewrite the conclusion of Lemma 2.1 in the following form:

$$(3.1) a(5q, j) = \begin{cases} 1 & \text{if } j \equiv 0 \pmod{5} \text{ and } 0 \leq j \leq 20k; \\ -1 & \text{if } j \equiv 1 \pmod{5} \text{ and } 1 \leq j \leq 5k - 4; \\ -1 & \text{if } j \equiv 2 \pmod{5} \text{ and } 5k + 2 \leq j \leq 10k - 3; \\ -1 & \text{if } j \equiv 3 \pmod{5} \text{ and } 10k + 3 \leq j \leq 15k - 2; \\ -1 & \text{if } j \equiv 4 \pmod{5} \text{ and } 15k + 4 \leq j \leq 20k - 1; \\ 0 & \text{otherwise.} \end{cases}$$

For any given $n \in [0, \phi(5qr)]$, it follows from $rf(i) + i \equiv n \pmod{5q}$ that (3.2) $f(i+1) + 9 \equiv f(i) \pmod{5q}$.

Therefore, the quantity f(i) can be regarded as uniquely determined by f(0), where $1 \le i \le 4$ and $q \le i \le q+4$. Now we give the following tables according to the value of f(0). For simplicity, we may put

$$a_{f(i)} = a(5q, f(i))$$

in the rest of this section. The first row in each table is the inequality about f(i) for $i \in [0, 4] \cup [q, q + 4]$. The values of $a_{f(i)}$ in the following tables are obtained by using (3.1) and (3.2). We will let $\overline{f(0)}$ denote the unique integer satisfying $\overline{f(0)} \equiv f(0) \pmod{5}$ and $0 \leq \overline{f(0)} \leq 4$ in Tables 5, 7, 9, 11, and 16 below.

	C(1)	> f(0)	> ((2)	> 6(4)	> 6() >		f(1 0) >	C(1 0) >	<i>C</i> (1 4) >	£(0)
	J(1)	> f(2)	> f(3)	> J(4)	> J(q)	> J(q + 1)	> J(q + 2) >	> J(q + 3) >	> $J(q + 4) >$	f(0)
f(0)	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$
0	0	0	0	0	0	0	0	0	-1	1
1	0	0	0	0	1	0	0	-1	1	-1
2	0	0	0	0	0	0	-1	1	0	0
3	0	0	0	0	0	-1	1	0	0	0
4	0	0	0	0	-1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	-1	1
6	0	0	0	0	1	0	0	-1	1	-1
7	0	0	0	0	0	0	-1	1	0	0
8	0	0	0	0	0	-1	1	0	0	0

TABLE 1. $0 \le f(0) \le 8$

TERNARY CYCLOTOMIC POLYNOMIALS

	f(2)	> f(3)	> f(4)	> f(q) >	> f(q+1) >	f(q+2) >	f(q+3) >	f(q+4) >	f(0) >	$\rightarrow f(1)$
f(0)	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$
9	0	0	0	-1	0	0	0	0	0	1
10	0	0	0	0	1	0	0	-1	1	-1
11	0	0	0	1	0	0	-1	1	-1	0
12	0	0	0	0	0	-1	1	0	0	0
13	0	0	0	0	-1	1	0	0	0	0
14	0	0	0	-1	0	0	0	0	0	1
15	0	0	0	0	1	0	0	-1	1	-1
16	0	0	0	1	0	0	-1	1	-1	0
17	0	0	0	0	0	-1	1	0	0	0

TABLE 2. $9 \le f(0) \le 17$

	f(3)	> f(4)	> f(q) >	f(q+1) >	f(q+2) >	f(q + 3) >	f(q + 4) >	f(0) >	f(1) >	f(2)
f(0)	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$
18	0	0	0	-1	0	0	0	0	0	1
19	0	0	-1	0	1	0	0	0	1	-1
20	0	0	0	1	0	0	-1	1	-1	0
21	0	0	1	0	0	-1	1	-1	0	0
22	0	0	0	0	-1	1	0	0	0	0
23	0	0	0	-1	0	0	0	0	0	1
24	0	0	-1	0	1	0	0	0	1	-1
25	0	0	0	1	0	0	-1	1	-1	0
26	0	0	1	0	0	-1	1	-1	0	0

TABLE 3.	$18 \le f(0)$	≤ 26
----------	---------------	-----------

	f(4)	> f(q) >	f(q + 1) >	f(q + 2) >	f(q + 3) >	f(q + 4) >	f(0) >	f(1) >	f(2) >	f(3)
f(0)	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$
27	0	0	0	-1	0	0	0	0	0	1
28	0	0	-1	0	1	0	0	0	1	-1
29	0	-1	0	1	0	0	0	1	-1	0
30	0	0	1	0	0	-1	1	-1	0	0
31	0	1	0	0	-1	1	-1	0	0	0
32	0	0	0	-1	0	0	0	0	0	1
33	0	0	-1	0	1	0	0	0	1	-1
34	0	-1	0	1	0	0	0	1	-1	0
35	0	0	1	0	0	-1	1	-1	0	0
			Т	ABLE /	27 < f(0))) < 35				

Table 4. 27	$T \leq f(0)$	$)) \le 35$
---------------	---------------	-------------

	f(q) >	f(q + 1) >	f(q+2) >	f(q+3) >	f(q+4) > 1	f(0) >	f(1) >	f(2) >	f(3) >	$\rightarrow f(4)$		
$\overline{f(0)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$		
0	0	1	0	0	-1	1	-1	0	0	0		
1	1	0	0	-1	0	-1	0	0	0	1		
2	0	0	-1	0	1	0	0	0	1	-1		
3	0	-1	0	1	0	0	0	1	-1	0		
4	-1	0	1	0	0	0	1	-1	0	0		
	TABLE 5. $36 \le f(0) \le q - 1$											

TABLE 5.
$$36 \le f(0) \le q - 1$$

	f(q) >	f(q + 1) >	f(q+2) >	f(q+3) >	f(q+4) >	f(0) >	f(1) >	f(2) >	f(3) >	$\rightarrow f(4)$
f(0)	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
q	0	0	0	-1	0	0	0	0	0	1
q + 1	1	0	-1	0	1	-1	0	0	1	-1
q + 2	0	-1	0	1	0	0	0	1	-1	0
q + 3	-1	0	1	0	0	0	1	-1	0	0
q + 4	0	1	0	0	-1	1	-1	0	0	0
q + 5	0	0	0	-1	0	0	0	0	0	1
q + 6	1	0	-1	0	1	-1	0	0	1	-1
q + 7	0	-1	0	1	0	0	0	1	-1	0
q + 8	-1	0	1	0	0	0	1	-1	0	0
q + 9	0	0	0	0	-1	1	0	0	0	0
q + 10	0	1	0	-1	0	0	-1	0	0	1
q + 11	1	0	-1	0	1	-1	0	0	1	-1
q + 12	0	-1	0	1	0	0	0	1	-1	0
q + 13	-1	0	1	0	0	0	1	-1	0	0
q + 14	0	0	0	0	-1	1	0	0	0	0
q + 15	0	1	0	-1	0	0	-1	0	0	1
q + 16	1	0	-1	0	1	-1	0	0	1	-1
q + 17	0	-1	0	1	0	0	0	1	-1	0
q + 18	-1	0	0	0	0	0	1	0	0	0
q + 19	0	0	1	0	-1	1	0	-1	0	0
q + 20	0	1	0	-1	0	0	-1	0	0	1
q + 21	1	0	-1	0	1	-1	0	0	1	-1
q + 22	0	-1	0	1	0	0	0	1	-1	0
q + 23	-1	0	0	0	0	0	1	0	0	0
q + 24	0	0	1	0	-1	1	0	-1	0	0
q + 25	0	1	0	-1	0	0	-1	0	0	1
q + 26	1	0	-1	0	1	-1	0	0	1	-1
q + 27	0	-1	0	0	0	0	0	1	0	0
q + 28	-1	0	0	1	0	0	1	0	-1	0
q + 29	0	0	1	0	-1	1	0	-1	0	0
q + 30	0	1	0	-1	0	0	-1	0	0	1
q + 31	1	0	-1	0	1	-1	0	0	1	-1
q + 32	0	-1	0	0	0	0	0	1	0	0

TABLE 6. $q \le f(0) \le q + 32$

-													
	f(q) > f(q+1) > f(q+2) > f(q+3) > f(q+4) > f(0) > f(1) > f(2) > f(3) > f(4)												
$\overline{f(0)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$			
0	0	0	1	0	-1	1	0	-1	0	0			
1	0	1	0	-1	0	0	-1	0	0	1			
2	1	0	-1	0	0	-1	0	0	1	0			
3	0	-1	0	0	1	0	0	1	0	-1			
4	-1	0	0	1	0	0	1	0	-1	0			
					- / >								

TABLE 7. $q + 33 \le f(0) \le 2q - 1$

TERNARY CYCLOTOMIC POLYNOMIALS

	f(q) >	f(q+1) >	f(q+2) >	f(q+3) >	f(q+4) > 1	f(0) >	f(1) >	f(2) >	f(3) >	(4)
f(0)	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
2q	0	0	-1	0	0	0	0	0	1	0
2q + 1	1	-1	0	0	1	-1	0	1	0	-1
2q + 2	-1	0	0	1	0	0	1	0	-1	0
2q + 3	0	0	1	0	-1	1	0	-1	0	0
2q + 4	0	1	0	-1	0	0	-1	0	0	1
2q + 5	0	0	-1	0	0	0	0	0	1	0
2q + 6	1	-1	0	0	1	-1	0	1	0	-1
2q + 7	-1	0	0	1	0	0	1	0	-1	0
2q + 8	0	0	1	0	-1	1	0	-1	0	0
2q + 9	0	0	0	-1	0	0	0	0	0	1
2q + 10	0	1	-1	0	0	0	-1	0	1	0
2q + 11	1	-1	0	0	1	-1	0	1	0	-1
2q + 12	1	0	0	-1	0	0	-1	0	1	0
2q + 13	0	0	1	0	-1	1	0	-1	0	0
2q + 14	0	0	0	-1	0	0	0	0	0	1
2q + 15	0	1	-1	0	0	0	-1	0	1	0
2q + 16	1	-1	0	0	1	-1	0	1	0	-1
2q + 17	-1	0	0	1	0	0	1	0	-1	0
2q + 18	0	0	0	0	-1	1	0	0	0	0
2q + 19	0	0	1	-1	0	0	0	-1	0	1
2q + 20	0	1	-1	0	0	0	-1	0	1	0
2q + 21	1	-1	0	0	1	-1	0	1	0	-1
2q + 22	-1	0	0	1	0	0	1	0	-1	0
2q + 23	0	0	0	0	-1	1	0	0	0	0
2q + 24	0	0	1	-1	0	0	0	-1	0	1
2q + 25	0	1	-1	0	0	0	-1	0	1	0
2q + 26	1	-1	0	0	1	-1	0	1	0	-1
2q + 27	-1	0	0	0	0	0	1	0	0	0
2q + 28	0	0	0	1	-1	1	0	0	-1	0
2q + 29	0	0	1	-1	0	0	0	-1	0	1
2q + 30	0	1	-1	0	0	0	-1	0	1	0
2q + 31	1	-1	0	0	1	-1	0	1	0	-1
2q + 32	-1	0	0	0	0	0	1	0	0	0

TABLE 8. $2q \le f(0) \le 2q + 32$

	f(q) > f(q+1) > f(q+2) > f(q+3) > f(q+4) > f(0) > f(1) > f(2) > f(3) > f(4)											
f(0)	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$		
0	0	0	0	1	-1	1	0	0	-1	0		
1	0	0	1	-1	0	0	0	-1	0	1		
2	0	1	-1	0	0	0	-1	0	1	0		
3	1	-1	0	0	0	-1	0	1	0	0		
4	-1	0	0	0	1	0	1	0	0	-1		

TABLE 9. $2q + 33 \le f(0) \le 3q - 1$

	f(q) >	f(q + 1) >	f(q+2) >	f(q+3) >	f(q+4) > .	f(0) >	f(1) >	f(2) >	f(3) >	f(4)
f(0)	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
3q	0	-1	0	0	0	0	0	1	0	0
3q + 1	0	0	0	0	1	-1	1	0	0	-1
3q + 2	0	0	0	1	-1	1	0	0	-1	0
3q + 3	0	0	1	-1	0	0	0	-1	0	1
3q + 4	0	1	-1	0	0	0	-1	0	1	0
3q + 5	0	-1	0	0	0	0	0	1	0	0
3q + 6	0	0	0	0	1	-1	1	0	0	-1
3q + 7	0	0	0	1	-1	1	0	0	-1	0
3q + 8	0	0	1	-1	0	0	0	-1	0	1
3q + 9	0	0	-1	0	0	0	0	0	1	0
3q + 10	0	0	0	0	0	0	-1	1	0	0
3q + 11	0	0	0	0	1	-1	1	0	0	-1
3q + 12	0	0	0	1	-1	1	0	0	-1	0
3q + 13	0	0	1	-1	0	0	0	-1	0	1
3q + 14	0	0	-1	0	0	0	0	0	1	0
3q + 15	0	0	0	0	0	0	-1	1	0	0
3q + 16	0	0	0	0	1	-1	1	0	0	-1
3q + 17	0	0	0	1	-1	1	0	0	-1	0
3q + 18	0	0	0	-1	0	0	0	0	0	1
3q + 19	0	0	0	0	0	0	0	-1	1	0
3q + 20	0	0	0	0	0	0	-1	1	0	0
3q + 21	0	0	0	0	1	-1	1	0	0	-1
3q + 22	0	0	0	1	-1	1	0	0	-1	0
3q + 23	0	0	0	-1	0	0	0	0	0	1
3q + 24	0	0	0	0	0	0	0	-1	1	0
3q + 25	0	0	0	0	0	0	0	-1	1	0
3q + 26	0	0	0	0	1	-1	1	0	0	-1
3q + 27	0	0	0	0	-1	1	0	0	0	0
3q + 28	0	0	0	0	0	0	0	0	-1	1
3q + 29	0	0	0	0	0	0	0	-1	1	0
3q + 30	0	0	0	0	0	0	-1	1	0	0
3q + 31	0	0	0	0	1	-1	1	0	0	-1
3q + 32	0	0	0	0	-1	1	0	0	0	0

TABLE 10. $3q \le f(0) \le 3q + 32$

	f(q) >	f(q + 1) >	f(q+2) >	f(q + 3) >	f(q + 4) > 1	f(0) > 0	f(1) >	f(2) >	f(3) >	f(4)
$\overline{f(0)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
0	0	0	0	0	0	1	0	0	0	-1
1	0	0	0	0	0	0	0	0	-1	1
2	0	0	0	0	0	0	0	-1	1	0
3	0	0	0	0	0	0	-1	1	0	0
4	0	0	0	0	0	-1	1	0	0	0
				0 0						

TABLE 11. $3q + 33 \le f(0) \le 4q - 1$

24

	f(q+1) > f(q+2) > f(q+3) > f(q+4) > f(0) > f(1) > f(0)								> f(4)	> f(q)
f(0)	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$
4q	0	0	0	0	0	1	0	0	0	-1
4q + 1	0	0	0	0	0	0	0	0	-1	1
4q + 2	0	0	0	0	0	0	0	-1	1	0
4q + 3	0	0	0	0	0	0	-1	1	0	0
4q + 4	0	0	0	0	0	-1	1	0	0	0
4q + 5	0	0	0	0	0	1	0	0	0	-1
4q + 6	0	0	0	0	0	0	0	0	-1	1
4q + 7	0	0	0	0	0	0	0	-1	1	0
4q + 8	0	0	0	0	0	0	-1	1	0	0

TABLE 12. $4q \le f(0) \le 4q + 8$

	f(q+2) >	> f(q+3) >	> f(q + 4) >	f(0)	> f(1)	> f(2)	> f(3)	> f(4)	> f(q)	> f(q+1)
f(0)	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$
4q + 9	0	0	0	0	0	1	0	0	0	-1
4q + 10	0	0	0	0	0	0	0	0	-1	1
4q + 11	0	0	0	0	0	0	0	-1	1	0
4q + 12	0	0	0	0	0	0	-1	1	0	0
4q + 13	0	0	0	0	0	-1	1	0	0	0
4q + 14	0	0	0	0	0	1	0	0	0	-1
4q + 15	0	0	0	0	0	0	0	0	-1	1
4q + 16	0	0	0	0	0	0	0	-1	1	0
4q + 17	0	0	0	0	0	0	-1	1	0	0

TABLE 13. $4q + 9 \le f(0) \le 4q + 17$

	f(q+3) > f(q+4) > f(0) > f(1) > f(2) > f(3) > f(4) > f(q) > f(q+1) > f(q+2)											
f(0)	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$		
4q + 18	0	0	0	0	0	1	0	0	0	-1		
4q + 19	0	0	0	0	0	0	0	0	-1	1		
4q + 20	0	0	0	0	0	0	0	-1	1	0		
4q + 21	0	0	0	0	0	0	-1	1	0	0		
4q + 22	0	0	0	0	0	-1	1	0	0	0		
4q + 23	0	0	0	0	0	1	0	0	0	-1		
4q + 24	0	0	0	0	0	0	0	0	-1	1		
4q + 25	0	0	0	0	0	0	0	-1	1	0		
4q + 26	0	0	0	0	0	0	-1	1	0	0		

TABLE 14. $4q + 18 \le f(0) \le 4q + 26$

	f(q+4) >	> f(0)	> f(1)	> f(2)	> f(3)	> f(4)) > f(q)	> f(q+1)	> f(q+2) :	> f(q+3)
f(0)	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$
4q + 27	0	0	0	0	0	1	0	0	0	-1
4q + 28	0	0	0	0	0	0	0	0	-1	1
4q + 29	0	0	0	0	0	0	0	-1	1	0
4q + 30	0	0	0	0	0	0	-1	1	0	0
4q + 31	0	0	0	0	0	-1	1	0	0	0
4q + 32	0	0	0	0	0	1	0	0	0	-1
4q + 33	0	0	0	0	0	0	0	0	-1	1
4q + 34	0	0	0	0	0	0	0	-1	1	0
4q + 35	0	0	0	0	0	0	-1	1	0	0

TABLE 15. $4q + 27 \le f(0) \le 4q + 35$

	f(0) > f(1) > f(2) > f(3) > f(4) > f(q) > f(q+1) > f(q+2) > f(q+3) > f(q+4)										
$\overline{f(0)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	
0	0	0	0	0	0	1	0	0	0	-1	
1	0	0	0	0	0	0	0	0	-1	1	
2	0	0	0	0	0	0	0	-1	1	0	
3	0	0	0	0	0	0	1	-1	0	0	
4	0	0	0	0	0	-1	1	0	0	0	
TABLE 16. $4q + 36 \le f(0) \le 5q - 1$											

Recall that n is a fixed integer in the range $0 \le n \le \phi(5qr)$ and we have, by Lemma 2.2 (2),

$$a(5qr,n) = \sum_{i=0}^{4} a^{*}(5q,f(i)) + \sum_{i=q}^{q+4} \Big(-a^{*}\big(5q,f(i)\big) \Big),$$

where

$$a^*(5q, f(i)) = \begin{cases} a_{f(i)} & \text{if } f(i) \leq \frac{n}{r}; \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$I = \{0, 1, 2, 3, 4, q, q+1, q+2, q+3, q+4\}.$$

If $f(i) > \frac{n}{r}$ holds for all $i \in I$, then $a^*(pq, f(i)) = 0$. So a(5qr, n) = 0. If $f(i) \le \frac{n}{r}$ holds for all $i \in I$, then $a^*(pq, f(i)) = a_{f(i)}$. So

$$a(5qr,n) = \sum_{i=0}^{4} a_{f(i)} + \sum_{i=q}^{q+4} (-a_{f(i)}).$$

Then it follows from Lemma 2.2 (1) that a(5qr, n) = 0.

If otherwise, then there certainly exist two neighboring symbols $f(i_1)$ and $f(i_2)$ in the first row of the corresponding table such that

$$f(i_1) > \frac{n}{r} \ge f(i_2).$$

If $0 \le i_2 \le 4$ (or $q \le i_2 \le q+4$), the value of a(5qr, n) is given by computing the sum of values from $a_{f(i_2)}$ (or $-a_{f(i_2)}$) to the end of the relevant row.

It is a routine matter to see that the sums of values about $\pm a_{f(i)}$, from anywhere to the end in all tables, is equal to ± 1 or 0. That is to say, $a(5qr, n) \in \{\pm 1, 0\}$ for $0 \le n \le \phi(5qr)$.

Therefore, A(5qr) = 1 if $q \ge 41$, $q \equiv 1 \pmod{5}$, and $9r \equiv 1 \pmod{5q}$, as desired.

3.2. The case when p = 7. For primes 7 < q < r with $q \equiv 1 \pmod{7}$ and $9r \equiv 1 \pmod{7q}$, our goal here is to use Lemma 2.2 to show that

$$a(7qr, 2qr + 22r + q + 2) = 2$$

Let n = 2qr + 22r + q + 2. By substituting the value of n into congruence (2.1), we infer that $f(i) \equiv 11q+40-9i \pmod{7q}$. On noting $0 \leq f(i) \leq 7q-1$,

we obtain that f(i) = 11q + 40 - 9i for $0 \le i \le 6$ and $q \le i \le q + 6$. Then $rf(i) \le n$ if $i \in \{q + 2, q + 3, q + 4, q + 5, q + 6\}$ and rf(i) > n if $i \in \{0, 1, \dots, 6\} \cup \{q, q + 1\}$. From (2.2), we have

$$a^*(7q, f(i)) = \begin{cases} a(7q, f(i)) & \text{if } i \in \{q+2, q+3, q+4, q+5, q+6\}; \\ 0 & \text{if } i \in \{0, 1, \cdots, 6\} \cup \{q, q+1\} \end{cases}$$

It follows from Lemma 2.2 that

(3.3)
$$a(7qr,n) = -\sum_{i=q+2}^{q+6} a(7q,f(i)).$$

Rewriting f(q + 2), f(q + 6) as f(q + 2) = 3 * 7 + 2q + 1 and $f(q + 6) = \frac{q-15}{7} \cdot 7 + q + 1$, we deduce, by Lemma 2.1, a(pq, f(q+2)) = a(pq, f(q+6)) = -1. Applying this to (3.3) yields

$$a(7qr,n) = 2 - \sum_{i=q+3}^{q+5} a(7q, f(i)).$$

Let $q+3 \leq i \leq q+5$. On one hand, it follows from $f(i) \neq 0 \pmod{7}$ and Lemma 2.1 that $a(7q, f(i)) \neq 1$; on the other hand, it follows from $f(i) \neq 7u + vp + 14$ with $0 \leq u \leq \frac{q-8}{7}$, $0 \leq v \leq 5$ that $a(7q, f(i)) \neq -1$. Hence a(7q, f(i)) = 0, and thus a(7qr, n) = 2.

3.3. The case when p > 7. In this part, we will prove the following proposition to complete the proof of Theorem 1.1.

PROPOSITION 3.1. Let 7 be odd primes such that <math>q = kp + 1and $9r \equiv 1 \pmod{pq}$.

(1) If $p \equiv 1 \pmod{9}$, then

$$2 \leq \begin{cases} a(pqr, pr + 10qr + q + r + \frac{2p-11}{9}) & \text{ if } k = 4; \\ a(pqr, 3pr + 9qr + q + r + \frac{p-10}{9}) & \text{ if } k \geq 6. \end{cases}$$

(2) If
$$p \equiv 2 \pmod{9}$$
, then

$$2\begin{cases} = A(pqr) & \text{if } k = 2 \text{ and } p = 11; \\ \leq a(pqr, 10qr + q + r + \frac{2p - 13}{9}) & \text{if } k = 2 \text{ and } p > 11; \\ \leq a(pqr, qr + q + r + \frac{5p - 10}{9}) & \text{if } k \ge 6. \end{cases}$$

(3) If $p \equiv 4 \pmod{9}$, then $a(pqr, 3qr + r + \frac{7p-10}{9}) \leq -2$. (4) If $p \equiv 5 \pmod{9}$, then

$$2 \leq \begin{cases} a(pqr, -pr + 10qr + q + \frac{4p-11}{9}) & \text{if } k = 2; \\ a(pqr, 5pr + 9qr + r + q + \frac{2p-10}{9}) & \text{if } k \ge 6. \end{cases}$$

(5) If $p \equiv 7 \pmod{9}$, then $a(pqr, 3pr + 9qr + q + r + \frac{4p-10}{9}) \ge 2$. (6) If $p \equiv 8 \pmod{9}$, then $a(pqr, 3qr + q + r + \frac{8p-10}{9}) \ge 2$.

Proof of Proposition 3.1. (1) Case 1. k = 4.

Noting that $p \equiv 1 \pmod{9}$ and q = 4p + 1, we get $p \geq 37$. Let $n = pr + 10qr + q + r + \frac{2p-11}{9}$. In order to use Lemma 2.2, we first obtain, by substituting the value of l into congruence $rf(i) + i \equiv l \pmod{pq}$,

$$f(i) \equiv 12p + 17q - 8 - 9i \pmod{pq}.$$

Since $p \ge 37$ and $0 \le f(i) \le pq - 1$, we have

(3.4)
$$f(i) = 12p + 17q - 8 - 9i,$$

where $0 \le i \le p-1$ or $q \le i \le q+p-1$. It follows that rf(i) > n whenever $i \in \{0, 1, \dots, p-1\} \cup \{q, q+1, \dots, q+\frac{2p-20}{9}\}$ and $rf(i) \le n$ whenever $i \in \{q+\frac{2p-11}{9}, q+\frac{2p-2}{9}, \dots, q+p-1\}$. Thus, by (2.2),

$$a^*(pq, f(i)) = \begin{cases} 0 & \text{if } i \in [0, p-1] \cup [q, q + \frac{2p-20}{9}];\\ a(pq, f(i)) & \text{if } i \in [q + \frac{2p-11}{9}, q+p-1]. \end{cases}$$

Hence

(3.5)
$$a(pqr,n) = -\sum_{j=\frac{2p-11}{9}}^{p-1} a(pq, f(q+j)).$$

Noticing that $f(q + \frac{2p-11}{9}) = p + 10q + 1$, f(q + p - 1) = 3p + 8q + 1, we deduce from Lemma 2.1 that $a(pq, f(q + \frac{2p-11}{9})) = a(pq, f(q + p - 1)) = -1$. Applying this to (3.5) gives

$$a(pqr,n) = 2 - \sum_{j=\frac{2p-2}{9}}^{p-2} a(pq, f(q+j)).$$

Let $\frac{2p-2}{9} \leq j \leq p-2$. It is clear that the binary coefficient a(pq, f(q+j)) takes on one of three values: -1, 0, or 1. To show $a(pqr, n) \geq 2$, it suffices to prove that $a(pq, f(q+j)) \neq 1$. If the assertion did not hold, then, by Lemma 2.1, we would obtain

$$f(q+j) \equiv 0 \pmod{p}.$$

Combining with (3.4) yields $9j \equiv 0 \pmod{p}$. This leads to a contradiction and yields $a(pqr, n) \geq 2$.

CASE 2. $k \ge 6$.

Let $n = 3pr + 9qr + q + r + \frac{p-10}{9}$. Then by using the congruence (2.1) we have f(i) = 4p + 18q - 9 - 9i for $0 \le i \le p - 1$ and $q \le i \le q + p - 1$. Thus, $f(i) > \frac{n}{r}$ if $i \in [0, p-1] \cup [q, q + \frac{p-19}{9}]$, and $f(i) \le \frac{n}{r}$ if $i \in [q + \frac{p-10}{9}, q + p - 1]$. Invoking Lemma 2.2, we have

$$a^*(pq, f(i)) = \begin{cases} 0 & \text{if } i \in [0, p-1] \cup [q, q + \frac{p-19}{9}];\\ a(pq, f(i)) & \text{if } i \in [q + \frac{p-10}{9}, q+p-1]. \end{cases}$$

Hence

(3.6)
$$a(pqr,n) = -\sum_{\substack{j=\frac{p-10}{9}}}^{p-1} a(pq, f(q+j))$$

Noting that $f(q + \frac{p-10}{9}) = 3p + 9q + 1$, f(q + p - 1) = (k - 5)p + 8q + 1, and $k \ge 6$, we deduce from Lemma 2.1 that $a(pq, f(q + \frac{p-10}{9})) = a(pq, f(q + \frac{p-10}{9}))$ (p-1) = -1. Combing this with (3.6) gives

$$a(pqr, n) = 2 - \sum_{j=\frac{p-1}{9}}^{p-2} a(pq, f(q+j)).$$

Next, we claim that $a(pq, f(q+j)) \neq 1$ for $\frac{p-1}{9} \leq j \leq p-2$. If the assertion did not hold, then, by Lemma 2.1, we would obtain

$$f(q+j) = 4p + 9q - 9 - 9j \equiv 0 \pmod{p}$$

Thus, p|9j, a contradiction to $\frac{p-1}{9} \leq j \leq p-2$. Hence we infer that $a(pq, f(q+j)) \in \{-1, 0\}$ for $\frac{p-1}{9} \leq j \leq p-2$, and then $a(pqr, n) \ge 2$.

(2) CASE 1. k = 2 and p = 11.

By using PARI/GP, we have $A(11 \cdot 23 \cdot 1237) = 2$. Then the claim follows from $9 \cdot 1237 \equiv 1 \pmod{11 \cdot 23}$ and Lemma 2.3 that A(pqr) = 2 in the case p = 11, q = 23, and $9r \equiv 1 \pmod{pq}$.

CASE 2. k = 2 and p > 11. Let $n = 10qr+q+r+\frac{2p-13}{9}$. By substituting the value of n into congruence $rf(i) + i \equiv n \pmod{pq}$ and noting that $0 \leq f(i) \leq pq - 1$, we have

(3.7)
$$f(i) = 2p + 19q - 12 - 9i,$$

where $0 \le i \le p-1$ or $q \le i \le q+p-1$. Therefore,

$$\frac{n}{r} \begin{cases} > f(i) & \text{ if } q + \frac{2p-13}{9} \le i \le q+p-1; \\ < f(i) & \text{ if } 0 \le i \le p-1 \text{ or } q \le i \le q + \frac{2p-22}{9}. \end{cases}$$

It follows from Lemma 2.2 that

$$a(pqr,n) = -\sum_{\substack{j=\frac{2p-13}{9}}}^{p-1} a(pq, f(q+j)).$$

Noting that $f(q + \frac{2p-13}{9}) = 10q + 1$ and f(q + p - 1) = p + 6q + 1, we infer from Lemma 2.1 that $a(pq, f(q + \frac{2p-13}{9})) = a(pq, f(q + p - 1)) = -1$, and thus

$$a(pqr,n) = 2 - \sum_{j=\frac{2p-4}{9}}^{p-2} a(pq, f(q+j)).$$

Let $\frac{2p-4}{9} \leq j \leq p-2$. Our task now is to show that $a(pq, f(q+j)) \neq 1$. Otherwise we have

$$f(q+j) \equiv 0 \pmod{p}$$

in view of Lemma 2.1. Applying (3.7) to the above congruence yields $9j+2 \equiv 0$ (mod p). Hence we deduce that $9j + 2 \in \{wp : 2 \le w \le 8\}$, a contradiction to $p \equiv 2 \pmod{9}$. According to Lemma 2.1, we have $a(pq, f(q+j)) \in \{0, -1\}$, and thus $a(pqr, n) \geq 2$.

Case 3. $k \geq 6$.

Let $n = qr + q + r + \frac{5p-10}{9}$. Then we have f(i) = 5p + 10q - 9 - 9ifor $0 \le i \le p - 1$ and $q \le i \le q + p - 1$. Hence $\frac{n}{r} > f(i)$ whenever $i \in \{q + \frac{5p-10}{9}, q + \frac{5p-1}{9}, \cdots, q+p-1\}$ and $\frac{n}{r} < f(i)$ whenever $i \in \{0, 1, \cdots, p-1\} \cup \{q, q + 1, \cdots, q + \frac{5p-19}{9}\}$. Thus, we infer

(3.8)
$$a(pqr,n) = -\sum_{j=\frac{5p-10}{9}}^{p-1} a(pq, f(q+j)).$$

Noting that $f(q + \frac{5p-10}{9}) = q + 1$ and f(q + p - 1) = (k - 4)p + 1, we deduce $a(pq, f(q + \frac{5p-10}{9})) = a(pq, f(q + p - 1)) = -1$ from Lemma 2.1. Then (3.8) becomes

$$a(pqr,n) = 2 - \sum_{j=\frac{5p-1}{9}}^{p-2} a(pq, f(q+j)).$$

Recall that the coefficients of binary cyclotomic polynomials $\Phi_{pq}(x)$ can only take on one of three values: ± 1 or 0. For the purpose of proving $a(pqr, n) \geq 2$, it suffices to show $a(pq, f(q+j)) \neq 1$ for $\frac{5p-1}{9} \leq j \leq p-2$. In view of Lemma 2.1, if a(pq, f(q+j)) = 1, then $f(q+j) \equiv 0 \pmod{p}$. This vields

$$9j + 8 \equiv 0 \pmod{p}.$$

It follows from $5p + 7 \le 9j + 8 \le 9p - 10$ that $9j + 8 \in \{wp : 6 \le w \le 8\}$. This is contrary to $p \equiv 2 \pmod{9}$, completing the proof.

(3) Let $n = 3qr + r + \frac{7p-10}{9}$. Then f(i) = 7p + 3q - 9 - 9i for $0 \le i \le p-1$ and f(q+j) = pq + 7p - 6q - 9j for $0 \le j \le p-1$. Therefore, $\frac{l}{r} > f(i)$ whenever $i \in [\frac{7p-10}{9}, p-1]$ and $\frac{l}{r} < f(i)$ whenever $i \in [0, \frac{7p-19}{9}] \cup [q, q+p-1]$. Thus,

(3.9)
$$a(pqr,n) = \sum_{j=\frac{7p-10}{9}}^{p-1} a(pq,f(j)).$$

Since $f(\frac{7p-10}{9}) = 3q+1$ and f(p-1) = (k-2)p+2q+1, then, by Lemma 2.1, $a(pq, f(\frac{7p-10}{9})) = a(pq, f(p-1)) = -1$. By substituting this into (3.9),

we obtain

$$a(pqr,n) = -2 + \sum_{j=\frac{7p-1}{9}}^{p-2} a(pq, f(j))$$

Our next destination is to show that $a(pq, f(j)) \neq 1$ for $\frac{7p-1}{q} < j < p-2$. If a(pq, f(j)) = 1, according to Lemma 2.1, then

$$f(j) = 7p + 3q - 9 - 9j \equiv 0 \pmod{p},$$

and thus $9j + 6 \equiv 0 \pmod{p}$. It follows from $7p + 5 \leq 9j + 6 \leq 9p - 12$ that 9i + 6 = 8p, a contradiction to $p \equiv 4 \pmod{9}$. Taking Lemma 2.1 into consideration, we derive $a(pq, f(j)) \in \{-1, 0\}$, and thus $a(pqr, n) \leq -2$.

(4) CASE 1. k = 2.

Let $n = -pr + 10qr + q + \frac{4p-11}{9}$. Then f(i) = 3p + 19q - 11 - 9i for $i \in [0, p-1] \cup [q, q+p-1]$. Consequently,

$$\frac{n}{r} \begin{cases} > f(i) & \text{if } q + \frac{4p-11}{9} \le i \le q+p-1; \\ < f(i) & \text{if } 0 \le i \le p-1 \text{ or } q \le i \le q + \frac{4p-20}{9}. \end{cases}$$

Invoking Lemma 2.2, we have

$$a^*(pq, f(i)) = \begin{cases} a(pq, f(i)) & \text{if } i \in [q + \frac{4p - 11}{9}, q + p - 1];\\ 0 & \text{if } i \in [0, p - 1] \cup [q, q + \frac{4p - 20}{9}] \end{cases}$$

In particular, we have $f(q + \frac{4p-11}{9}) = p + 9q + 1$ and f(q + p - 1) = 7q + 1. It follows from Lemma 2.1 that $a(pq, f(q + \frac{4p-11}{9})) = a(pq, f(q + p - 1)) = -1$, and thus

$$a(pqr,n) = 2 - \sum_{j=\frac{4p-2}{9}}^{p-2} a(pq, f(q+j)).$$

Next we will show that $a(pq, f(q+j)) \neq 1$ for $\frac{4p-2}{9} \leq j \leq p-2$. Otherwise, by Lemma 2.1, we have $f(q+j) = 3p + 10q - 11 - 9j \equiv 0 \pmod{p}$. This yields $9j + 1 \equiv 0 \pmod{p}$. Since $4p - 1 \leq 9j + 1 \leq 9p - 17$, we obtain that $9j + 1 \in \{wp : 4 \leq w \leq 8\}$, a contradiction to $p \equiv 5 \pmod{9}$. Thus, by Lemma 2.1, a(pq, f(q+j)) = -1 or 0, and then $a(pqr, n) \ge 2$.

Case 2. $k \ge 6$.

Proceeding as above, let $n = 5pr + 9qr + q + r + \frac{2p-10}{9}$. Then f(i) = 7p + 18q - 9 - 9i for $i \in [0, p-1] \cup [q, q+p-1]$. It is easy to show that $f(i) \le \frac{n}{r}$ if $q + \frac{2p-10}{9} \le i \le q+p-1$ and $f(i) > \frac{n}{r}$ if $0 \le i \le p-1$ or $q \le i \le q + \frac{2p-19}{9}$. Owing to Lemma 2.2, we have

$$a^*(pq, f(i)) = \begin{cases} a(pq, f(i)) & \text{if } i \in [q + \frac{2p-10}{9}, q+p-1];\\ 0 & \text{if } i \in [0, p-1] \cup [q, q + \frac{2p-19}{9}]. \end{cases}$$

Noting that $f(q + \frac{2p-10}{9}) = 5p + 9q + 1$ and f(q + p - 1) = (k - 2)p + 8q + 1, we infer from Lemma 2.1 that $a(pq, f(q + \frac{2p-10}{9})) = a(pq, f(q + p - 1)) = -1$. According to Lemma 2.2, we then find that

$$a(pqr,n) = 2 - \sum_{j=\frac{2p-1}{9}}^{p-2} a(pq, f(q+j)).$$

In order to prove $a(pqr, n) \ge 2$, it remains to show that $a(pq, f(q+j)) \ne 1$ for $\frac{2p-1}{9} \le j \le p-2$. Otherwise, by Lemma 2.1, we have

$$f(q+j) = 7p + 9q - 9 - 9j \equiv 0 \pmod{p}$$

This gives $9j \equiv 0 \pmod{p}$, a contradiction to $\frac{2p-1}{9} \leq j \leq p-2$.

(5) Applying $n = 3pr + 9qr + q + r + \frac{4p-10}{9}$ to congruence (2.1), we infer that f(i) = 7p + 18q - 9 - 9i, where $0 \le i \le p - 1$ and $q \le i \le q + p - 1$. It is easy to see that $f(i) \le \frac{n}{r}$ when $q + \frac{4p-10}{9} \le i \le q + p - 1$, and $f(i) > \frac{n}{r}$ when $0 \le i \le p - 1$ and $q \le i \le q + \frac{4p-19}{9}$. It follows from (2.2) and (2.3) that

$$a(pqr,n) = -\sum_{j=\frac{4p-10}{9}}^{p-1} a(pq, f(q+j))$$

Noting $f(q + \frac{4p-10}{9}) = 3p + 9q + 1$ and f(q + p - 1) = (k - 2)p + 8q + 1, we obtain from Lemma 2.1 that $a(pq, f(q + \frac{4p-10}{9})) = a(pq, f(q + p - 1)) = -1$. Thus,

$$a(pqr,n) = 2 - \sum_{j=\frac{4p-1}{9}}^{p-2} a(pq, f(q+j))$$

Let $\frac{4p-1}{9} \le j \le p-2$. If a(pq, f(q+j)) = 1, then, by Lemma 2.1,

$$f(q+j) = 7p + 9q - 9 - 9j \equiv 0 \pmod{p}$$

This yields $9j \equiv 0 \pmod{p}$, a contradiction to the range of j. Consequently, a(pq, f(q+j)) = -1 or 0. Therefore $a(pqr, n) \ge 2$.

(6) By substituting $n = 3qr + q + r + \frac{8p-10}{9}$ into (2.1), we deduce that f(i) = 8p + 12q - 9 - 9i for $i \in [0, p-1] \cup [q, q+p-1]$. It is straightforward to verify that $f(i) \leq \frac{n}{r}$ when $i \in [q + \frac{8p-10}{9}, q+p-1]$, and $f(i) > \frac{n}{r}$ when $i \in [0, p-1] \cup [q, q + \frac{8p-19}{9}]$. Then it follows from Lemma 2.2 that

(3.10)
$$a(pqr,n) = -\sum_{j=\frac{8p-10}{9}}^{p-1} a(pq, f(q+j))$$

Noticing $f(q + \frac{8p-10}{9}) = 3q + 1$ and f(q + p - 1) = (k - 1)p + 2q + 1, we obtain from Lemma 2.1 that $a(pq, f(q + \frac{8p-10}{9})) = a(pq, f(q + p - 1)) = -1$.

Combining this with (3.10) gives

$$a(pqr,n) = 2 - \sum_{j=\frac{8p-1}{9}}^{p-2} a(pq, f(q+j)).$$

Our task now is to show that $a(pq, f(q+j)) \neq 1$ for $\frac{8p-1}{9} \leq j \leq p-2$. If the assertion did not hold, then, by Lemma 2.1, we would have

$$f(q+j) = 8p + 3q - 9 - 9j \equiv 0 \pmod{p}$$
.

Consequently, we infer that $9j + 6 \equiv 0 \pmod{p}$. This contradicts the fact that $8p + 5 \leq 9j + 6 \leq 9p - 12$. Hence the binary coefficient a(pq, f(q + j)) takes on one of two values: -1 or 0. Finally, we have $a(pqr, n) \geq 2$. This completes the proof of Proposition 3.1.

ACKNOWLEDGEMENTS.

The author thanks the anonymous reviewers for detailed comments and valuable suggestions.

References

- G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
- [2] S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
- [3] T. J. Flanagan, On the coefficients of ternary cyclotomic polynomials, MS Thesis, University of Nevada, Las Vegas, 2007.
- [4] G.B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, Northridge, 2013.
- [5] C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
- [6] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
- [7] N. Kaplan, Flat cyclotomic polynomials of order four and higher, Integers 10 (2010), 357–363.
- [8] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(X)$, Amer. Math. Monthly **103** (1996), 562–564.
- C. Sanna, A survey on coefficients of cyclotomic polynomials, Expo. Math. 40 (2022), 469–494.
- [10] R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, eds. S. D. Adhikari, S. A. Katre, D. Thakur, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
- [11] B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
- [12] B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
- [13] B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
- [14] B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Semin. Mat. Univ. Padova 145 (2021), 1–42.

- [15] B. Zhang, A remark on flat ternary cyclotomic polynomials, Glas. Mat. Ser. III 56 (2021), 241–261.
- [16] J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.

B. Zhang
School of Mathematical Sciences
Qufu Normal University
273165 Qufu
P. R. China *E-mail:* zhangb2015@qfnu.edu.cn

Received: 9.7.2022.

34