ON THE COEFFICIENTS OF A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang
Qufu Normal University, P. R. China

Abstract

A cyclotomic polynomial $\Phi_{n}(x)$ is said to be flat if its nonzero coefficients involve only ± 1. In this paper, for odd primes $p<q<$ r with $q \equiv 1(\bmod p)$ and $9 r \equiv \pm 1(\bmod p q)$, we prove that $\Phi_{p q r}(x)$ is flat if and only if $p=5, q \geq 41$, and $q \equiv 1(\bmod 5)$.

1. Introduction

Let

$$
\Phi_{n}(x)=\prod_{\substack{(m, n)=1 \\ 1 \leq m \leq n}}\left(x-\zeta_{n}^{m}\right)
$$

where $\zeta_{n}=e^{2 \pi i / n}$. This polynomial is called the nth cyclotomic polynomial. It is a classical and neoteric problem in number theory to investigate the arithmetic properties of cyclotomic polynomials. Since $\operatorname{deg}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)=$ $\phi(n)=\operatorname{deg} \Phi_{n}(x)$, it follows that $\Phi_{n}(x)$ is the irreducible polynomial for ζ_{n}. Also, $\Phi_{n}(x) \in \mathbb{Z}[x]$ since the coefficients are rational and also are algebraic integers.

The first few cyclotomic polynomials are

$$
\begin{aligned}
& \Phi_{1}(x)=x-1, \quad \Phi_{2}(x)=x+1 \\
& \Phi_{3}(x)=x^{2}+x+1, \quad \Phi_{4}(x)=x^{2}+1
\end{aligned}
$$

[^0]All these have coefficients ± 1 and 0 ; however, this is not true in general. By choosing n with many prime factors one can obtain arbitrarily large coefficients.

Let $a(n, j)$ denote the coefficient of x^{j} in the nth cyclotomic polynomial $\Phi_{n}(x)$ and $A(n)=\max \{|a(n, j)|: 0 \leq j \leq \phi(n)\}$ be the height of $\Phi_{n}(x)$. Cyclotomic polynomials of unit height are called flat. Since

$$
\Phi_{n}(x)=\Phi_{\operatorname{radical}(n)}\left(x^{n / \operatorname{radical}(n)}\right) \text { and } \Phi_{2 n}(x)= \pm \Phi_{n}(-x)
$$

we can restrict the study of $A(n)$ to the case $n=p q r \cdots$, where $3 \leq p<q<$ $r<\cdots$ are primes. It is clear that

$$
a(p, j)= \begin{cases}1 & \text { if } 0 \leq j \leq p-1 \tag{1.1}\\ 0 & \text { otherwise }\end{cases}
$$

$a(p q, j)= \begin{cases}1 & \text { if } j=u p+v q \text { for } 0 \leq u \leq s-1,0 \leq v \leq t-1 ; \\ -1 & \text { if } j=u p+v q+1 \text { for } 0 \leq u \leq q-s-1,0 \leq v \leq p-t-1 ; \\ 0 & \text { otherwise, }\end{cases}$
where s and t are unique positive integers $1 \leq s<q, 1 \leq t<p$ such that $p q+1=p s+q t$, see e.g. Lam and Leung [8] or Thangadurai [10]. Thus all the prime cyclotomic polynomials $\Phi_{p}(x)$ and binary cyclotomic polynomials $\Phi_{p q}(x)$ are flat.

The problem of flat ternary cyclotomic polynomials-flat polynomials of the form $\Phi_{p q r}(x)$, where p, q, and r are distinct odd primes - seems tantalizingly accessible but remains open. In 2009, Broadhurst proposed some conjectures about flat ternary cyclotomic polynomials, see [7, Conjecture] or [4, Conjecture 4.4.3]. Let $p<q<r$ be odd primes such that $z r \equiv \pm 1(\bmod p q)$, where z is a positive integer. At present, the flatness of $\Phi_{p q r}(x)$ in special cases $1 \leq z \leq 8$ has been considered, see $[1,2,3,5,6,9,11,12,13,14,15,16]$. In this paper, we study the flatness of $\Phi_{p q r}(x)$ in the special case when $q \equiv 1$ $(\bmod p)$ and $z=9$, and establish the following result.

TheOrem 1.1. Let $p<q<r$ be odd primes such that $q \equiv 1(\bmod p)$ and $9 r \equiv \pm 1(\bmod p q)$. Then $\Phi_{p q r}(x)$ is flat if and only if $p=5, q \geq 41$, and $q \equiv 1(\bmod 5)$.

2. Preliminaries

Before starting our proof of the theorem, the following lemmas will be useful. Let $p<q$ be odd primes such that $q=k p+1$. Then, for $p q+1=p s+q t$, we have $s=q-k, t=1$. Hence it follows immediately from (1.1) that the following holds.

Lemma 2.1. Let $p<q$ be odd primes such that $q=k p+1$. Then
$a(p q, j)= \begin{cases}1 & \text { if } j=u p \text { for some } 0 \leq u \leq q-k-1 ; \\ -1 & \text { if } j=u p+v q+1 \text { for some } 0 \leq u \leq k-1,0 \leq v \leq p-2 ; \\ 0 & \text { otherwise } .\end{cases}$
Our main tool is the following technical lemma due to Kaplan [6, Lemma 1], which reduces the computation of the ternary cyclotomic coefficients to that of the binary cyclotomic coefficients.

Lemma 2.2. Let $p<q<r$ be odd primes. Let $n \geq 0$ be an integer and $f(i)$ be the unique value $0 \leq f(i) \leq p q-1$ such that

$$
\begin{equation*}
r f(i)+i \equiv n \quad(\bmod p q) \tag{2.1}
\end{equation*}
$$

(1) Then

$$
\sum_{i=0}^{p-1} a(p q, f(i))=\sum_{i=q}^{q+p-1} a(p q, f(i))
$$

(2) Put

$$
a^{*}(p q, f(i))= \begin{cases}a(p q, f(i)) & \text { if } f(i) \leq \frac{n}{r} \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{equation*}
a(p q r, n)=\sum_{i=0}^{p-1} a^{*}(p q, f(i))-\sum_{i=q}^{q+p-1} a^{*}(p q, f(i)) \tag{2.3}
\end{equation*}
$$

We also need the periodicity of $A(p q r)$, which implies that the height $A(p q r)$ is determined by $\pm r(\bmod p q)$, see [6].

Lemma 2.3. Let $3 \leq p<q<r$ be primes. Then for any prime $s>q$ such that $s \equiv \pm r(\bmod p q), A(p q r)=A(p q s)$.

3. Proof of Theorem 1.1

Note that $9 r \equiv \pm 1(\bmod p q)$ implies that $p \neq 3$. In view of Lemma 2.3, it is enough to consider primes $p<q<r$ such that

$$
p \geq 5, q \equiv 1(\bmod p), \text { and } 9 r \equiv 1(\bmod p q)
$$

The proof will be split into the following three parts according to the value of p.
3.1. The case when $p=5$. (i) By using the PARI/GP system, we have $A(5 \cdot 11 \cdot 269)=A(5 \cdot 31 \cdot 379)=2$. On noting that $9 \cdot 269 \equiv 1(\bmod 5 \cdot 11)$ and $9 \cdot 379 \equiv 1(\bmod 5 \cdot 31)$, we obtain from Lemma 2.3 that

$$
A(5 q r)=2 \text { if } q=11,31, \text { and } 9 r \equiv 1(\bmod 5 q)
$$

(ii) Next, we will show that

$$
A(5 q r)=1 \text { if } q \geq 41, q \equiv 1(\bmod 5), \text { and } 9 r \equiv 1(\bmod 5 q)
$$

Let $q=5 k+1$. Then k is even and $k \geq 8$. For $5 q+1=5 s+q t$, we have $s=4 k+1, t=1$. Thus, in this case, we may rewrite the conclusion of Lemma 2.1 in the following form:

$$
a(5 q, j)=\left\{\begin{array}{lll}
1 & \text { if } j \equiv 0 \quad(\bmod 5) \text { and } 0 \leq j \leq 20 k \tag{3.1}\\
-1 & \text { if } j \equiv 1 \quad(\bmod 5) \text { and } 1 \leq j \leq 5 k-4 \\
-1 & \text { if } j \equiv 2 \quad(\bmod 5) \text { and } 5 k+2 \leq j \leq 10 k-3 \\
-1 & \text { if } j \equiv 3 \quad(\bmod 5) \text { and } 10 k+3 \leq j \leq 15 k-2 \\
-1 & \text { if } j \equiv 4 \quad(\bmod 5) \text { and } 15 k+4 \leq j \leq 20 k-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

For any given $n \in[0, \phi(5 q r)]$, it follows from $r f(i)+i \equiv n(\bmod 5 q)$ that

$$
\begin{equation*}
f(i+1)+9 \equiv f(i) \quad(\bmod 5 q) \tag{3.2}
\end{equation*}
$$

Therefore, the quantity $f(i)$ can be regarded as uniquely determined by $f(0)$, where $1 \leq i \leq 4$ and $q \leq i \leq q+4$. Now we give the following tables according to the value of $f(0)$. For simplicity, we may put

$$
a_{f(i)}=a(5 q, f(i))
$$

in the rest of this section. The first row in each table is the inequality about $f(i)$ for $i \in[0,4] \cup[q, q+4]$. The values of $a_{f(i)}$ in the following tables are obtained by using (3.1) and (3.2). We will let $\overline{f(0)}$ denote the unique integer satisfying $\overline{f(0)} \equiv f(0)(\bmod 5)$ and $0 \leq \overline{f(0)} \leq 4$ in Tables $5,7,9,11$, and 16 below.

	$f(1)>f(2)>f(3)>f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)$									
$f(0)$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$
0	0	0	0	0	0	0	0	0	-1	1
1	0	0	0	0	1	0	0	-1	1	-1
2	0	0	0	0	0	0	-1	1	0	0
3	0	0	0	0	0	-1	1	0	0	0
4	0	0	0	0	-1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	-1	1
6	0	0	0	0	1	0	0	-1	1	-1
7	0	0	0	0	0	0	-1	1	0	0
8	0	0	0	0	0	-1	1	0	0	0

TABLE 1. $0 \leq f(0) \leq 8$

	$f(2)>f(3)>f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)$										
$f(0)$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	
9	0	0	0	-1	0	0	0	0	0	1	
10	0	0	0	0	1	0	0	-1	1	-1	
11	0	0	0	1	0	0	-1	1	-1	0	
12	0	0	0	0	0	-1	1	0	0	0	
13	0	0	0	0	-1	1	0	0	0	0	
14	0	0	0	-1	0	0	0	0	0	1	
15	0	0	0	0	1	0	0	-1	1	-1	
16	0	0	0	1	0	0	-1	1	-1	0	
17	0	0	0	0	0	-1	1	0	0	0	

Table 2. $9 \leq f(0) \leq 17$

| | $f(3)>f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $a_{f(3)}$ | $a_{f(4)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ |
| 18 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 19 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 |
| 20 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 |
| 21 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 |
| 22 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 |
| 23 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 24 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 |
| 25 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 |
| 26 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 |

Table 3. $18 \leq f(0) \leq 26$

| | $f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $a_{f(4)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ |
| 27 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 28 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 |
| 29 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 | 0 |
| 30 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 |
| 31 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 0 |
| 32 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 33 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 |
| 34 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 | 0 |
| 35 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 |

TABLE 4. $27 \leq f(0) \leq 35$

| | $f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{f(0)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ |
| 0 | 0 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | -1 | 0 | -1 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 |
| 3 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 | 0 |
| 4 | -1 | 0 | 1 | 0 | 0 | 0 | 1 | -1 | 0 | 0 |

Table 5. $36 \leq f(0) \leq q-1$

	$f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$									
$f(0)$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
q	0	0	0	-1	0	0	0	0	0	1
$q+1$	1	0	-1	0	1	-1	0	0	1	-1
$q+2$	0	-1	0	1	0	0	0	1	-1	0
$q+3$	-1	0	1	0	0	0	1	-1	0	0
$q+4$	0	1	0	0	-1	1	-1	0	0	0
$q+5$	0	0	0	-1	0	0	0	0	0	1
$q+6$	1	0	-1	0	1	-1	0	0	1	-1
$q+7$	0	-1	0	1	0	0	0	1	-1	0
$q+8$	-1	0	1	0	0	0	1	-1	0	0
$q+9$	0	0	0	0	-1	1	0	0	0	0
$q+10$	0	1	0	-1	0	0	-1	0	0	1
$q+11$	1	0	-1	0	1	-1	0	0	1	-1
$q+12$	0	-1	0	1	0	0	0	1	-1	0
$q+13$	-1	0	1	0	0	0	1	-1	0	0
$q+14$	0	0	0	0	-1	1	0	0	0	0
$q+15$	0	1	0	-1	0	0	-1	0	0	1
$q+16$	1	0	-1	0	1	-1	0	0	1	-1
$q+17$	0	-1	0	1	0	0	0	1	-1	0
$q+18$	-1	0	0	0	0	0	1	0	0	0
$q+19$	0	0	1	0	-1	1	0	-1	0	0
$q+20$	0	1	0	-1	0	0	-1	0	0	1
$q+21$	1	0	-1	0	1	-1	0	0	1	-1
$q+22$	0	-1	0	1	0	0	0	1	-1	0
$q+23$	-1	0	0	0	0	0	1	0	0	0
$q+24$	0	0	1	0	-1	1	0	-1	0	0
$q+25$	0	1	0	-1	0	0	-1	0	0	1
$q+26$	1	0	-1	0	1	-1	0	0	1	-1
$q+27$	0	-1	0	0	0	0	0	1	0	0
$q+28$	-1	0	0	1	0	0	1	0	-1	0
$q+29$	0	0	1	0	-1	1	0	-1	0	0
$q+30$	0	1	0	-1	0	0	-1	0	0	1
$q+31$	1	0	-1	0	1	-1	0	0	1	-1
$q+32$	0	-1	0	0	0	0	0	1	0	0

TABLE 6. $q \leq f(0) \leq q+32$

	$f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$									
$\overline{f(0)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
0	0	0	1	0	-1	1	促	-1	0	
1	0	1	0	-1	0	0	-1	0	0	1
2	1	0	-1	0	0	-1	0	0	1	
3	0	-1		0	1	0	0	1	0	-1
4	-1	0	0	1	0	0	1	0	-1	0

TABLE 7. $q+33 \leq f(0) \leq 2 q-1$

	$f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$												
$f(0)$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$			
$2 q$	0	0	-1	0	0	0	0	0	1	0			
$2 q+1$	1	-1	0	0	1	-1	0	1	0	-1			
$2 q+2$	-1	0	0	1	0	0	1	0	-1	0			
$2 q+3$	0	0	1	0	-1	1	0	-1	0	0			
$2 q+4$	0	1	0	-1	0	0	-1	0	0	1			
$2 q+5$	0	0	-1	0	0	0	0	0	1	0			
$2 q+6$	1	-1	0	0	1	-1	0	1	0	-1			
$2 q+7$	-1	0	0	1	0	0	1	0	-1	0			
$2 q+8$	0	0	1	0	-1	1	0	-1	0	0			
$2 q+9$	0	0	0	-1	0	0	0	0	0	1			
$2 q+10$	0	1	-1	0	0	0	-1	0	1	0			
$2 q+11$	1	-1	0	0	1	-1	0	1	0	-1			
$2 q+12$	1	0	0	-1	0	0	-1	0	1	0			
$2 q+13$	0	0	1	0	-1	1	0	-1	0	0			
$2 q+14$	0	0	0	-1	0	0	0	0	0	1			
$2 q+15$	0	1	-1	0	0	0	-1	0	1	0			
$2 q+16$	1	-1	0	0	1	-1	0	1	0	-1			
$2 q+17$	-1	0	0	1	0	0	1	0	-1	0			
$2 q+18$	0	0	0	0	-1	1	0	0	0	0			
$2 q+19$	0	0	1	-1	0	0	0	-1	0	1			
$2 q+20$	0	1	-1	0	0	0	-1	0	1	0			
$2 q+21$	1	-1	0	0	1	-1	0	1	0	-1			
$2 q+22$	-1	0	0	0	1	0	0	1	0	-1	0		
$2 q+23$	0	0	0	0	-1	1	0	0	0	0			
$2 q+24$	0	0	1	-1	0	0	0	-1	0	1			
$2 q+25$	0	1	-1	0	0	0	-1	0	1	0			
$2 q+26$	1	-1	0	0	0	0	-1	0	1	0	-1		
$2 q+27$	-1	0	0	0	0	0	0	1	0	0	0		
$2 q+28$	0	0	0	0	-1	1	0	0	-1	0			
$2 q+29$	0	0	0	0	0	0	0	0	-1	0	1		
$2 q+30$	0	1	-1	0	0	0	0	1	0	0	0		
$2 q+31$	1	0	0	0	0	0	0	0	0	0	0	0	0
$2 q+32$	-1	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 8. $2 q \leq f(0) \leq 2 q+32$

| | $f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{f(0)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ |
| 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | -1 | 0 |
| 1 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | -1 | 0 | 1 |
| 2 | 0 | 1 | -1 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |
| 3 | 1 | -1 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 |
| 4 | -1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | -1 |

Table 9. $2 q+33 \leq f(0) \leq 3 q-1$

	$f(q)>f(q+1)>$			$f(q+3)>$	$f(q+4)>$	$f(0)>$	$f(1)>$	$f(2)>$	$f(3)$	$f(4)$
$f(0)$	$-a_{f(q)}$	$-a_{f(q+1)}$		$-a_{f(q+3)}$	$-a_{f(q+4)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$
$3 q$	0	-1	0	0	0	0	0	1	0	0
$3 q+1$	0	0	0	0	1	-1	1	0	0	-1
$3 q+2$	0	0	0	1	-1	1	0	0	-1	0
$3 q+3$	0	0	1	-1	0	0	0	-1	0	1
$3 q+4$	0	1	-1	0	0	0	-1	0	1	0
$3 q+5$	0	-1	0	0	0	0	0	1	0	0
$3 q+6$	0	0	0	0	1	-1	1	0	0	-1
$3 q+7$	0	0	0	1	-1	1	0	0	-1	0
$3 q+8$	0	0	1	-1	0	0	0	-1	0	1
$3 q+9$	0	0	-1	0	0	0	0	0	1	0
$3 q+10$	0	0	0	0	0	0	-1	1	0	0
$3 q+11$	0	0	0	0	1	-1	1	0	0	-1
$3 q+12$	0	0	0	1	-1	1	0	0	-1	0
$3 q+13$	0	0	1	-1	0	0	0	-1	0	1
$3 q+14$	0	0	-1	0	0	0	0	0	1	0
$3 q+15$	0	0	0	0	0	0	-1	1	0	0
$3 q+16$	0	0	0	0	1	-1	1	0	0	-1
$3 q+17$	0	0	0	1	-1	1	0	0	-1	0
$3 q+18$	0	0	0	-1	0	0	0	0	0	1
$3 q+19$	0	0	0	0	0	0	0	-1	1	0
$3 q+20$	0	0	0	0	0	0	-1	1	0	0
$3 q+21$	0	0	0	0	1	-1	1	0	0	-1
$3 q+22$	0	0	0	1	-1	1	0	0	-1	0
$3 q+23$	0	0	0	-1	0	0	0	0	0	1
$3 q+24$	0	0	0	0	0	0	0	-1	1	0
$3 q+25$	0	0	0	0	0	0	0	-1	1	0
$3 q+26$	0	0	0	0	1	-1	1	0	0	-1
$3 q+27$	0	0	0	0	-1	1	0	0	0	0
$3 q+28$	0	0	0	0	0	0	0	0	-1	1
$3 q+29$	0	0	0	0	0	0	0	-1	1	0
$3 q+30$	0	0	0	0	0	0	-1	1	0	0
$3 q+31$	0	0	0	0	1	-1	1	0	0	-1
$3 q+32$	0	0	0	0	-1	1	0	0	0	0

TABLE 10. $3 q \leq f(0) \leq 3 q+32$

| | $f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 |

TABLE 11. $3 q+33 \leq f(0) \leq 4 q-1$

| | $f(q+1)>f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)>f(q)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ | $-a_{f(q)}$ |
| $4 q$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+1$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+2$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+3$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| $4 q+4$ | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 |
| $4 q+5$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+6$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+7$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+8$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |

Table 12. $4 q \leq f(0) \leq 4 q+8$

| | $f(q+2)>f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)>f(q)>f(q+1)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ |
| $4 q+9$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+11$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+12$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| $4 q+13$ | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 |
| $4 q+14$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+15$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+16$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+17$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |

TABLE 13. $4 q+9 \leq f(0) \leq 4 q+17$

| | $f(q+3)>f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)>f(q)>f(q+1)>f(q+2)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $-a_{f(q+3)}$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ |
| $4 q+18$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+19$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+20$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+21$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| $4 q+22$ | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 |
| $4 q+23$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+24$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+25$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+26$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |

Table 14. $4 q+18 \leq f(0) \leq 4 q+26$

| | $f(q+4)>f(0)>f(1)>f(2)>f(3)>f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(0)$ | $-a_{f(q+4)}$ | $a_{f(0)}$ | $a_{f(1)}$ | $a_{f(2)}$ | $a_{f(3)}$ | $a_{f(4)}$ | $-a_{f(q)}$ | $-a_{f(q+1)}$ | $-a_{f(q+2)}$ | $-a_{f(q+3)}$ |
| $4 q+27$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+28$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+29$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+30$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |
| $4 q+31$ | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 |
| $4 q+32$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| $4 q+33$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| $4 q+34$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 |
| $4 q+35$ | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 |

TABLE $15.4 q+27 \leq f(0) \leq 4 q+35$

	$f(0)>f(1)>f(2)>f(3)>f(4)>f(q)>f(q+1)>f(q+2)>f(q+3)>f(q+4)$										
$\overline{f(0)}$	$a_{f(0)}$	$a_{f(1)}$	$a_{f(2)}$	$a_{f(3)}$	$a_{f(4)}$	$-a_{f(q)}$	$-a_{f(q+1)}$	$-a_{f(q+2)}$	$-a_{f(q+3)}$	$-a_{f(q+4)}$	
0	0	0	0	0	0	1	0	0	0	-1	
1	0	0	0	0	0	0	0	0	-1	1	
2	0	0	0	0	0	0	0	-1	1	0	
3	0	0	0	0	0	0	1	-1	0	0	
4	0	0	0	0	0	-1	1	0	0	0	

TABLE $16.4 q+36 \leq f(0) \leq 5 q-1$

Recall that n is a fixed integer in the range $0 \leq n \leq \phi(5 q r)$ and we have, by Lemma 2.2 (2),

$$
a(5 q r, n)=\sum_{i=0}^{4} a^{*}(5 q, f(i))+\sum_{i=q}^{q+4}\left(-a^{*}(5 q, f(i))\right)
$$

where

$$
a^{*}(5 q, f(i))= \begin{cases}a_{f(i)} & \text { if } f(i) \leq \frac{n}{r} \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
I=\{0,1,2,3,4, q, q+1, q+2, q+3, q+4\}
$$

If $f(i)>\frac{n}{r}$ holds for all $i \in I$, then $a^{*}(p q, f(i))=0$. So $a(5 q r, n)=0$.
If $f(i) \leq \frac{n}{r}$ holds for all $i \in I$, then $a^{*}(p q, f(i))=a_{f(i)}$. So

$$
a(5 q r, n)=\sum_{i=0}^{4} a_{f(i)}+\sum_{i=q}^{q+4}\left(-a_{f(i)}\right)
$$

Then it follows from Lemma 2.2 (1) that $a(5 q r, n)=0$.
If otherwise, then there certainly exist two neighboring symbols $f\left(i_{1}\right)$ and $f\left(i_{2}\right)$ in the first row of the corresponding table such that

$$
f\left(i_{1}\right)>\frac{n}{r} \geq f\left(i_{2}\right)
$$

If $0 \leq i_{2} \leq 4$ (or $q \leq i_{2} \leq q+4$), the value of $a(5 q r, n)$ is given by computing the sum of values from $a_{f\left(i_{2}\right)}$ (or $-a_{f\left(i_{2}\right)}$) to the end of the relevant row.

It is a routine matter to see that the sums of values about $\pm a_{f(i)}$, from anywhere to the end in all tables, is equal to ± 1 or 0 . That is to say, $a(5 q r, n) \in$ $\{ \pm 1,0\}$ for $0 \leq n \leq \phi(5 q r)$.

Therefore, $A(5 q r)=1$ if $q \geq 41, q \equiv 1(\bmod 5)$, and $9 r \equiv 1(\bmod 5 q)$, as desired.
3.2. The case when $p=7$. For primes $7<q<r$ with $q \equiv 1(\bmod 7)$ and $9 r \equiv 1(\bmod 7 q)$, our goal here is to use Lemma 2.2 to show that

$$
a(7 q r, 2 q r+22 r+q+2)=2
$$

Let $n=2 q r+22 r+q+2$. By substituting the value of n into congruence (2.1), we infer that $f(i) \equiv 11 q+40-9 i(\bmod 7 q)$. On noting $0 \leq f(i) \leq 7 q-1$,
we obtain that $f(i)=11 q+40-9 i$ for $0 \leq i \leq 6$ and $q \leq i \leq q+6$. Then $r f(i) \leq n$ if $i \in\{q+2, q+3, q+4, q+5, q+6\}$ and $r f(i)>n$ if $i \in\{0,1, \cdots, 6\} \cup\{q, q+1\}$. From (2.2), we have

$$
a^{*}(7 q, f(i))= \begin{cases}a(7 q, f(i)) & \text { if } i \in\{q+2, q+3, q+4, q+5, q+6\} \\ 0 & \text { if } i \in\{0,1, \cdots, 6\} \cup\{q, q+1\}\end{cases}
$$

It follows from Lemma 2.2 that

$$
\begin{equation*}
a(7 q r, n)=-\sum_{i=q+2}^{q+6} a(7 q, f(i)) \tag{3.3}
\end{equation*}
$$

Rewriting $f(q+2), f(q+6)$ as $f(q+2)=3 * 7+2 q+1$ and $f(q+6)=$ $\frac{q-15}{7} \cdot 7+q+1$, we deduce, by Lemma 2.1, $a(p q, f(q+2))=a(p q, f(q+6))=-1$. Applying this to (3.3) yields

$$
a(7 q r, n)=2-\sum_{i=q+3}^{q+5} a(7 q, f(i))
$$

Let $q+3 \leq i \leq q+5$. On one hand, it follows from $f(i) \not \equiv 0(\bmod 7)$ and Lemma 2.1 that $a(7 q, f(i)) \neq 1$; on the other hand, it follows from $f(i) \neq$ $7 u+v p+14$ with $0 \leq u \leq \frac{q-8}{7}, 0 \leq v \leq 5$ that $a(7 q, f(i)) \neq-1$. Hence $a(7 q, f(i))=0$, and thus $a(7 q r, n)=2$.
3.3. The case when $p>7$. In this part, we will prove the following proposition to complete the proof of Theorem 1.1.

Proposition 3.1. Let $7<p<q<r$ be odd primes such that $q=k p+1$ and $9 r \equiv 1(\bmod p q)$.
(1) If $p \equiv 1(\bmod 9)$, then

$$
2 \leq \begin{cases}a\left(p q r, p r+10 q r+q+r+\frac{2 p-11}{9}\right) & \text { if } k=4 \\ a\left(p q r, 3 p r+9 q r+q+r+\frac{p-10}{9}\right) & \text { if } k \geq 6\end{cases}
$$

(2) If $p \equiv 2(\bmod 9)$, then

$$
2 \begin{cases}=A(p q r) & \text { if } k=2 \text { and } p=11 \\ \leq a\left(p q r, 10 q r+q+r+\frac{2 p-13}{9}\right) & \text { if } k=2 \text { and } p>11 \\ \leq a\left(p q r, q r+q+r+\frac{5 p-10}{9}\right) & \text { if } k \geq 6\end{cases}
$$

(3) If $p \equiv 4(\bmod 9)$, then $a\left(p q r, 3 q r+r+\frac{7 p-10}{9}\right) \leq-2$.
(4) If $p \equiv 5(\bmod 9)$, then

$$
2 \leq \begin{cases}a\left(p q r,-p r+10 q r+q+\frac{4 p-11}{9}\right) & \text { if } k=2 \\ a\left(p q r, 5 p r+9 q r+r+q+\frac{2 p-10}{9}\right) & \text { if } k \geq 6\end{cases}
$$

(5) If $p \equiv 7(\bmod 9)$, then $a\left(p q r, 3 p r+9 q r+q+r+\frac{4 p-10}{9}\right) \geq 2$.
(6) If $p \equiv 8(\bmod 9)$, then $a\left(p q r, 3 q r+q+r+\frac{8 p-10}{9}\right) \geq 2$.

Proof of Proposition 3.1. (1) Case 1. $k=4$.
Noting that $p \equiv 1(\bmod 9)$ and $q=4 p+1$, we get $p \geq 37$. Let $n=$ $p r+10 q r+q+r+\frac{2 p-11}{9}$. In order to use Lemma 2.2, we first obtain, by substituting the value of l into congruence $r f(i)+i \equiv l(\bmod p q)$,

$$
f(i) \equiv 12 p+17 q-8-9 i \quad(\bmod p q)
$$

Since $p \geq 37$ and $0 \leq f(i) \leq p q-1$, we have

$$
\begin{equation*}
f(i)=12 p+17 q-8-9 i \tag{3.4}
\end{equation*}
$$

where $0 \leq i \leq p-1$ or $q \leq i \leq q+p-1$. It follows that $r f(i)>n$ whenever $i \in\{0,1, \cdots, p-1\} \cup\left\{q, q+1, \cdots, q+\frac{2 p-20}{9}\right\}$ and $r f(i) \leq n$ whenever $i \in\left\{q+\frac{2 p-11}{9}, q+\frac{2 p-2}{9}, \cdots, q+p-1\right\}$. Thus, by (2.2),

$$
a^{*}(p q, f(i))= \begin{cases}0 & \text { if } i \in[0, p-1] \cup\left[q, q+\frac{2 p-20}{9}\right] ; \\ a(p q, f(i)) & \text { if } i \in\left[q+\frac{2 p-11}{9}, q+p-1\right]\end{cases}
$$

Hence

$$
\begin{equation*}
a(p q r, n)=-\sum_{j=\frac{2 p-11}{9}}^{p-1} a(p q, f(q+j)) \tag{3.5}
\end{equation*}
$$

Noticing that $f\left(q+\frac{2 p-11}{9}\right)=p+10 q+1, f(q+p-1)=3 p+8 q+1$, we deduce from Lemma 2.1 that $a\left(p q, f\left(q+\frac{2 p-11}{9}\right)\right)=a(p q, f(q+p-1))=-1$. Applying this to (3.5) gives

$$
a(p q r, n)=2-\sum_{j=\frac{2 p-2}{9}}^{p-2} a(p q, f(q+j))
$$

Let $\frac{2 p-2}{9} \leq j \leq p-2$. It is clear that the binary coefficient $a(p q, f(q+j))$ takes on one of three values: $-1,0$, or 1 . To show $a(p q r, n) \geq 2$, it suffices to prove that $a(p q, f(q+j)) \neq 1$. If the assertion did not hold, then, by Lemma 2.1, we would obtain

$$
f(q+j) \equiv 0 \quad(\bmod p)
$$

Combining with (3.4) yields $9 j \equiv 0(\bmod p)$. This leads to a contradiction and yields $a(p q r, n) \geq 2$.

Case 2. $k \geq 6$.
Let $n=3 p r+9 q r+q+r+\frac{p-10}{9}$. Then by using the congruence (2.1) we have $f(i)=4 p+18 q-9-9 i$ for $0 \leq i \leq p-1$ and $q \leq i \leq q+p-1$. Thus, $f(i)>\frac{n}{r}$ if $i \in[0, p-1] \cup\left[q, q+\frac{p-19}{9}\right]$, and $f(i) \leq \frac{n}{r}$ if $i \in\left[q+\frac{p-10}{9}, q+p-1\right]$. Invoking Lemma 2.2, we have

$$
a^{*}(p q, f(i))= \begin{cases}0 & \text { if } i \in[0, p-1] \cup\left[q, q+\frac{p-19}{9}\right] \\ a(p q, f(i)) & \text { if } i \in\left[q+\frac{p-10}{9}, q+p-1\right]\end{cases}
$$

Hence

$$
\begin{equation*}
a(p q r, n)=-\sum_{j=\frac{p-10}{9}}^{p-1} a(p q, f(q+j)) . \tag{3.6}
\end{equation*}
$$

Noting that $f\left(q+\frac{p-10}{9}\right)=3 p+9 q+1, f(q+p-1)=(k-5) p+8 q+1$, and $k \geq 6$, we deduce from Lemma 2.1 that $a\left(p q, f\left(q+\frac{p-10}{9}\right)\right)=a(p q, f(q+$ $p-1))=-1$. Combing this with (3.6) gives

$$
a(p q r, n)=2-\sum_{j=\frac{p-1}{9}}^{p-2} a(p q, f(q+j))
$$

Next, we claim that $a(p q, f(q+j)) \neq 1$ for $\frac{p-1}{9} \leq j \leq p-2$. If the assertion did not hold, then, by Lemma 2.1, we would obtain

$$
f(q+j)=4 p+9 q-9-9 j \equiv 0 \quad(\bmod p)
$$

Thus, $p \mid 9 j$, a contradiction to $\frac{p-1}{9} \leq j \leq p-2$.
Hence we infer that $a(p q, f(q+j)) \in\{-1,0\}$ for $\frac{p-1}{9} \leq j \leq p-2$, and then $a(p q r, n) \geq 2$.
(2) Case $1 . k=2$ and $p=11$.

By using PARI/GP, we have $A(11 \cdot 23 \cdot 1237)=2$. Then the claim follows from $9 \cdot 1237 \equiv 1(\bmod 11 \cdot 23)$ and Lemma 2.3 that $A(p q r)=2$ in the case $p=11, q=23$, and $9 r \equiv 1(\bmod p q)$.

CASE 2. $k=2$ and $p>11$.
Let $n=10 q r+q+r+\frac{2 p-13}{9}$. By substituting the value of n into congruence $r f(i)+i \equiv n(\bmod p q)$ and noting that $0 \leq f(i) \leq p q-1$, we have

$$
\begin{equation*}
f(i)=2 p+19 q-12-9 i \tag{3.7}
\end{equation*}
$$

where $0 \leq i \leq p-1$ or $q \leq i \leq q+p-1$. Therefore,

$$
\frac{n}{r} \begin{cases}>f(i) & \text { if } q+\frac{2 p-13}{9} \leq i \leq q+p-1 \\ <f(i) & \text { if } 0 \leq i \leq p-1 \text { or } q \leq i \leq q+\frac{2 p-22}{9}\end{cases}
$$

It follows from Lemma 2.2 that

$$
a(p q r, n)=-\sum_{j=\frac{2 p-13}{9}}^{p-1} a(p q, f(q+j))
$$

Noting that $f\left(q+\frac{2 p-13}{9}\right)=10 q+1$ and $f(q+p-1)=p+6 q+1$, we infer from Lemma 2.1 that $a\left(p q, f\left(q+\frac{2 p-13}{9}\right)\right)=a(p q, f(q+p-1))=-1$, and thus

$$
a(p q r, n)=2-\sum_{j=\frac{2 p-4}{9}}^{p-2} a(p q, f(q+j))
$$

Let $\frac{2 p-4}{9} \leq j \leq p-2$. Our task now is to show that $a(p q, f(q+j)) \neq 1$.
Otherwise we have

$$
f(q+j) \equiv 0 \quad(\bmod p)
$$

in view of Lemma 2.1. Applying (3.7) to the above congruence yields $9 j+2 \equiv 0$ $(\bmod p)$. Hence we deduce that $9 j+2 \in\{w p: 2 \leq w \leq 8\}$, a contradiction to $p \equiv 2(\bmod 9)$. According to Lemma 2.1, we have $a(p q, f(q+j)) \in\{0,-1\}$, and thus $a(p q r, n) \geq 2$.

CASE 3. $k \geq 6$.
Let $n=q r+q+r+\frac{5 p-10}{9}$. Then we have $f(i)=5 p+10 q-9-9 i$ for $0 \leq i \leq p-1$ and $q \leq i \leq q+p-1$. Hence $\frac{n}{r}>f(i)$ whenever $i \in\left\{q+\frac{5 p-10}{9}, q+\frac{5 p-1}{9}, \cdots, q+p-1\right\}$ and $\frac{n}{r}<f(i)$ whenever $i \in\{0,1, \cdots, p-$ $1\} \cup\left\{q, q+1, \cdots, q+\frac{5 p-19}{9}\right\}$. Thus, we infer

$$
\begin{equation*}
a(p q r, n)=-\sum_{j=\frac{5 p-10}{9}}^{p-1} a(p q, f(q+j)) \tag{3.8}
\end{equation*}
$$

Noting that $f\left(q+\frac{5 p-10}{9}\right)=q+1$ and $f(q+p-1)=(k-4) p+1$, we deduce $a\left(p q, f\left(q+\frac{5 p-10}{9}\right)\right)=a(p q, f(q+p-1))=-1$ from Lemma 2.1. Then (3.8) becomes

$$
a(p q r, n)=2-\sum_{j=\frac{5 p-1}{9}}^{p-2} a(p q, f(q+j))
$$

Recall that the coefficients of binary cyclotomic polynomials $\Phi_{p q}(x)$ can only take on one of three values: ± 1 or 0 . For the purpose of proving $a(p q r, n) \geq 2$, it suffices to show $a(p q, f(q+j)) \neq 1$ for $\frac{5 p-1}{9} \leq j \leq p-2$. In view of Lemma 2.1, if $a(p q, f(q+j))=1$, then $f(q+j) \equiv 0(\bmod p)$. This yields

$$
9 j+8 \equiv 0 \quad(\bmod p)
$$

It follows from $5 p+7 \leq 9 j+8 \leq 9 p-10$ that $9 j+8 \in\{w p: 6 \leq w \leq 8\}$. This is contrary to $p \equiv 2(\bmod 9)$, completing the proof.
(3) Let $n=3 q r+r+\frac{7 p-10}{9}$. Then $f(i)=7 p+3 q-9-9 i$ for $0 \leq i \leq p-1$ and $f(q+j)=p q+7 p-6 q-9 j$ for $0 \leq j \leq p-1$. Therefore, $\frac{l}{r}>f(i)$ whenever $i \in\left[\frac{7 p-10}{9}, p-1\right]$ and $\frac{l}{r}<f(i)$ whenever $i \in\left[0, \frac{7 p-19}{9}\right] \cup[q, q+p-1]$. Thus,

$$
\begin{equation*}
a(p q r, n)=\sum_{j=\frac{7 p-10}{9}}^{p-1} a(p q, f(j)) \tag{3.9}
\end{equation*}
$$

Since $f\left(\frac{7 p-10}{9}\right)=3 q+1$ and $f(p-1)=(k-2) p+2 q+1$, then, by Lemma 2.1, $a\left(p q, f\left(\frac{7 p-10}{9}\right)\right)=a(p q, f(p-1))=-1$. By substituting this into (3.9),
we obtain

$$
a(p q r, n)=-2+\sum_{j=\frac{7 p-1}{9}}^{p-2} a(p q, f(j))
$$

Our next destination is to show that $a(p q, f(j)) \neq 1$ for $\frac{7 p-1}{9}<j<p-2$. If $a(p q, f(j))=1$, according to Lemma 2.1, then

$$
f(j)=7 p+3 q-9-9 j \equiv 0 \quad(\bmod p)
$$

and thus $9 j+6 \equiv 0(\bmod p)$. It follows from $7 p+5 \leq 9 j+6 \leq 9 p-12$ that $9 j+6=8 p$, a contradiction to $p \equiv 4(\bmod 9)$. Taking Lemma 2.1 into consideration, we derive $a(p q, f(j)) \in\{-1,0\}$, and thus $a(p q r, n) \leq-2$.
(4) CASE 1. $k=2$.

Let $n=-p r+10 q r+q+\frac{4 p-11}{9}$. Then $f(i)=3 p+19 q-11-9 i$ for $i \in[0, p-1] \cup[q, q+p-1]$. Consequently,

$$
\frac{n}{r} \begin{cases}>f(i) & \text { if } q+\frac{4 p-11}{9} \leq i \leq q+p-1 \\ <f(i) & \text { if } 0 \leq i \leq p-1 \text { or } q \leq i \leq q+\frac{4 p-20}{9}\end{cases}
$$

Invoking Lemma 2.2, we have

$$
a^{*}(p q, f(i))= \begin{cases}a(p q, f(i)) & \text { if } i \in\left[q+\frac{4 p-11}{9}, q+p-1\right] \\ 0 & \text { if } i \in[0, p-1] \cup\left[q, q+\frac{4 p-20}{9}\right]\end{cases}
$$

In particular, we have $f\left(q+\frac{4 p-11}{9}\right)=p+9 q+1$ and $f(q+p-1)=7 q+1$. It follows from Lemma 2.1 that $a\left(p q, f\left(q+\frac{4 p-11}{9}\right)\right)=a(p q, f(q+p-1))=-1$, and thus

$$
a(p q r, n)=2-\sum_{j=\frac{4 p-2}{9}}^{p-2} a(p q, f(q+j)) .
$$

Next we will show that $a(p q, f(q+j)) \neq 1$ for $\frac{4 p-2}{9} \leq j \leq p-2$. Otherwise, by Lemma 2.1, we have $f(q+j)=3 p+10 q-11-9 j \equiv 0(\bmod p)$. This yields $9 j+1 \equiv 0(\bmod p)$. Since $4 p-1 \leq 9 j+1 \leq 9 p-17$, we obtain that $9 j+1 \in\{w p: 4 \leq w \leq 8\}$, a contradiction to $p \equiv 5(\bmod 9)$. Thus, by Lemma 2.1, $a(p q, f(q+j))=-1$ or 0 , and then $a(p q r, n) \geq 2$.

Case 2. $k \geq 6$.
Proceeding as above, let $n=5 p r+9 q r+q+r+\frac{2 p-10}{9}$. Then $f(i)=$ $7 p+18 q-9-9 i$ for $i \in[0, p-1] \cup[q, q+p-1]$. It is easy to show that $f(i) \leq \frac{n}{r}$ if $q+\frac{2 p-10}{9} \leq i \leq q+p-1$ and $f(i)>\frac{n}{r}$ if $0 \leq i \leq p-1$ or $q \leq i \leq q+\frac{2 p-19}{9}$.

Owing to Lemma 2.2, we have

$$
a^{*}(p q, f(i))= \begin{cases}a(p q, f(i)) & \text { if } i \in\left[q+\frac{2 p-10}{9}, q+p-1\right] ; \\ 0 & \text { if } i \in[0, p-1] \cup\left[q, q+\frac{2 p-19}{9}\right]\end{cases}
$$

Noting that $f\left(q+\frac{2 p-10}{9}\right)=5 p+9 q+1$ and $f(q+p-1)=(k-2) p+8 q+1$, we infer from Lemma 2.1 that $a\left(p q, f\left(q+\frac{2 p-10}{9}\right)\right)=a(p q, f(q+p-1))=-1$. According to Lemma 2.2, we then find that

$$
a(p q r, n)=2-\sum_{j=\frac{2 p-1}{9}}^{p-2} a(p q, f(q+j))
$$

In order to prove $a(p q r, n) \geq 2$, it remains to show that $a(p q, f(q+j)) \neq 1$ for $\frac{2 p-1}{9} \leq j \leq p-2$. Otherwise, by Lemma 2.1, we have

$$
f(q+j)=7 p+9 q-9-9 j \equiv 0 \quad(\bmod p)
$$

This gives $9 j \equiv 0(\bmod p)$, a contradiction to $\frac{2 p-1}{9} \leq j \leq p-2$.
(5) Applying $n=3 p r+9 q r+q+r+\frac{4 p-10}{9}$ to congruence (2.1), we infer that $f(i)=7 p+18 q-9-9 i$, where $0 \leq i \leq p-1$ and $q \leq i \leq q+p-1$. It is easy to see that $f(i) \leq \frac{n}{r}$ when $q+\frac{4 p-10}{9} \leq i \leq q+p-1$, and $f(i)>\frac{n}{r}$ when $0 \leq i \leq p-1$ and $q \leq i \leq q+\frac{4 p-19}{9}$. It follows from (2.2) and (2.3) that

$$
a(p q r, n)=-\sum_{j=\frac{4 p-10}{9}}^{p-1} a(p q, f(q+j))
$$

Noting $f\left(q+\frac{4 p-10}{9}\right)=3 p+9 q+1$ and $f(q+p-1)=(k-2) p+8 q+1$, we obtain from Lemma 2.1 that $a\left(p q, f\left(q+\frac{4 p-10}{9}\right)\right)=a(p q, f(q+p-1))=-1$. Thus,

$$
a(p q r, n)=2-\sum_{j=\frac{4 p-1}{9}}^{p-2} a(p q, f(q+j))
$$

Let $\frac{4 p-1}{9} \leq j \leq p-2$. If $a(p q, f(q+j))=1$, then, by Lemma 2.1,

$$
f(q+j)=7 p+9 q-9-9 j \equiv 0 \quad(\bmod p)
$$

This yields $9 j \equiv 0(\bmod p)$, a contradiction to the range of j. Consequently, $a(p q, f(q+j))=-1$ or 0 . Therefore $a(p q r, n) \geq 2$.
(6) By substituting $n=3 q r+q+r+\frac{8 p-10}{9}$ into (2.1), we deduce that $f(i)=8 p+12 q-9-9 i$ for $i \in[0, p-1] \cup[q, q+p-1]$. It is straightforward to verify that $f(i) \leq \frac{n}{r}$ when $i \in\left[q+\frac{8 p-10}{9}, q+p-1\right]$, and $f(i)>\frac{n}{r}$ when $i \in[0, p-1] \cup\left[q, q+\frac{8 p-19}{9}\right]$. Then it follows from Lemma 2.2 that

$$
\begin{equation*}
a(p q r, n)=-\sum_{j=\frac{8 p-10}{9}}^{p-1} a(p q, f(q+j)) \tag{3.10}
\end{equation*}
$$

Noticing $f\left(q+\frac{8 p-10}{9}\right)=3 q+1$ and $f(q+p-1)=(k-1) p+2 q+1$, we obtain from Lemma 2.1 that $a\left(p q, f\left(q+\frac{8 p-10}{9}\right)\right)=a(p q, f(q+p-1))=-1$.

Combining this with (3.10) gives

$$
a(p q r, n)=2-\sum_{j=\frac{8 p-1}{9}}^{p-2} a(p q, f(q+j))
$$

Our task now is to show that $a(p q, f(q+j)) \neq 1$ for $\frac{8 p-1}{9} \leq j \leq p-2$. If the assertion did not hold, then, by Lemma 2.1, we would have

$$
f(q+j)=8 p+3 q-9-9 j \equiv 0 \quad(\bmod p)
$$

Consequently, we infer that $9 j+6 \equiv 0(\bmod p)$. This contradicts the fact that $8 p+5 \leq 9 j+6 \leq 9 p-12$. Hence the binary coefficient $a(p q, f(q+j))$ takes on one of two values: -1 or 0 . Finally, we have $a(p q r, n) \geq 2$. This completes the proof of Proposition 3.1.

Acknowledgements.

The author thanks the anonymous reviewers for detailed comments and valuable suggestions.

References

[1] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53-60.
[2] S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
[3] T. J. Flanagan, On the coefficients of ternary cyclotomic polynomials, MS Thesis, University of Nevada, Las Vegas, 2007.
[4] G. B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, Northridge, 2013.
[5] C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269-2274.
[6] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118-126.
[7] N. Kaplan, Flat cyclotomic polynomials of order four and higher, Integers 10 (2010), 357-363.
[8] T. Y. Lam ands K. H. Leung, On the cyclotomic polynomial $\Phi_{p q}(X)$, Amer. Math. Monthly 103 (1996), 562-564.
[9] C. Sanna, A survey on coefficients of cyclotomic polynomials, Expo. Math. 40 (2022), 469-494.
[10] R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, eds. S. D. Adhikari, S. A. Katre, D. Thakur, Bhaskaracharya Pratishthana, Pune, 2000, 311-322.
[11] B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911-1924.
[12] B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529-547.
[13] B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201-216.
[14] B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Semin. Mat. Univ. Padova 145 (2021), 1-42.
[15] B. Zhang, A remark on flat ternary cyclotomic polynomials, Glas. Mat. Ser. III 56 (2021), 241-261.
[16] J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223-2237.
B. Zhang

School of Mathematical Sciences
Qufu Normal University
273165 Qufu
P. R. China

E-mail: zhangb2015@qfnu.edu.cn
Received: 9.7.2022.

[^0]: 2020 Mathematics Subject Classification. 11B83, 11C08, 11N56.
 Key words and phrases. Cyclotomic polynomial, Coefficients of cyclotomic polynomial, Flat ternary cyclotomic polynomial, Non-flat ternary cyclotomic polynomial.

 This work was supported by Shandong Provincial Natural Science Foundation, Taishan Scholar Project of Shandong Province and the Young Talents Invitation Program of Shandong Province.

