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Abstract. Let a and b = ka be positive integers with k ∈ {2, 3, 6},
such that ab+4 is a perfect square. In this paper, we study the extensibility

of the D(4)-pairs {a, ka}. More precisely, we prove that by considering
families of positive integers c depending on a, if {a, b, c, d} is a set of positive

integers which has the property that the product of any two of its elements

increased by 4 is a perfect square, then d is given by

d = a+ b+ c+
1

2

(
abc±

√
(ab+ 4)(ac+ 4)(bc+ 4)

)
.

As a corollary, we prove that any D(4)-quadruple tht contains the pair

{a, ka} is regular.

1. Introduction

The study of Diophantine sets goes back to the third century and it was
the ancient Greek mathematician Diophantus of Alexandria who was the first
to study such sets. In the fourth part of his book Arithmetica [13], exercise no.
20 states: “Find four numbers (for Diophantus, this meant positive rational
numbers) such that the product of any two among them increased by 1 gives a
square.” Diophantus therefore described in his book a procedure to solve this
exercise. Hence, he found the first example that we call nowadays a rational
Diophantine quadruple {

1

16
,
33

16
,
17

4
,
105

16

}
.

2020 Mathematics Subject Classification. 11D09, 11B37, 11J68, 11J86.
Key words and phrases. Diophantine m-tuples, Pellian equations, Linear form in log-

arithms, Reduction method.

35
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However, the first example for an integral Diophantine quadruple {1, 3, 8, 120}
was found by Fermat. Later, the concept evolved and led to the generalization
mentioned in the following definition.

Definition 1.1. Let n ̸= 0 be an integer. We call a set of m distinct
positive integers a D(n)-m-tuple or an m-tuple with the property D(n), if the
product of any two of its distinct elements increased by n is a perfect square.

For a D(4)-triple {a, b, c}, a < b < c, we define

d± = d±(a, b, c) = a+ b+ c+
1

2

(
abc±

√
(ab+ 4)(ac+ 4)(bc+ 4)

)
.

It is straightforward to check that {a, b, c, d+} is a D(4)-quadruple, which
we will call a regular quadruple. A quadruple which is not regular is called
an irregular quadruple. If d− ̸= 0 then {a, b, c, d−} is also a regular D(4)-
quadruple with d− < c. It is conjectured that an irregular quadruple does not
exist.

Conjecture 1.2. Any D(4)-quadruple is regular.

In this paper, we consider extensions of the D(4)-pairs {a, ka}, k = 2, 3, 6
to a D(4)-quadruple {a, ka, c, d} by following the method in [2], where the
extensions of Diophantine pairs {a, ka}, with k = 3, 8, were studied. We
conjecture that d = d+(a, ka, c), i.e., that there is no irregular quadruple of
this form. The validity of the conjecture is shown for some special pairs and
triples. One of the results of interest for our case is the following lemma,
which gives us a lower bound for the second element of the pair b = ka.

Lemma 1.3 ([6, Lemma 2.2]). Let {a, b, c, d} be a D(4)-quadruple such
that a < b < c < d+ < d. Then b > 105.

If {a, ka} is a D(4)-pair, then there exists r ∈ N such that

(1.1) ka2 + 4 = r2.

Rewriting (1.1) as a Pellian equation, yields

(1.2) r2 − ka2 = 4.

The theory of Pellian equations guarantees that there is only one funda-
mental solution (r1, a1) of (1.2), for any k = 2, 3, 6, namely (r1, a1) ∈
{(6, 4), (4, 2), (10, 4)} (in that order). All solutions (rp, ap) of the equation
(1.2) are given by

rp + ap
√
k

2
=

(
r1 + a1

√
k

2

)p

, p ∈ N.(1.3)

It is easy to see that gcd(r, a) = 2 holds in every case. Since b = ka > 105 we
can also deduce a lower bound for a. For k = 2, we have a ≥ a7 = 161564,
which also gives us b = 2a ≥ 323128. In the case k = 3, we have a ≥ a9 =
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81090 and b = 3a ≥ 3a9 ≥ 243270. Finally, for k = 6, the lower bounds
a ≥ a5 = 38804, b ≥ 232824 hold.

In general, if we extend a D(4)-pair {a, b} to a D(4)-triple {a, b, c} then
there exist s, t ∈ N such that

ac+ 4 = s2,

bc+ 4 = t2.

Combining these two equalities yields a Pellian equation

(1.4) at2 − bs2 = 4(a− b).

Its solutions (t, s) are given by

(tν + sν
√
k) = (t0 + s0

√
k)

(
r +
√
ab

2

)ν

, ν ≥ 0,

where (t0, s0) is a fundamental solution of the equation (1.4) and ν is a non-
negative integer.

In [6, Lemma 6.1], it has been shown that (t0, s0) = (±2, 2) are the only
fundamental solutions when b ≤ 6.85a, which is our case. We can represent
the solutions (tν , sν) as pair of binary recurrence sequences

t0 = ±2, t1 = b± r, tν+2 = rtν+1 − tν ,(1.5)

s0 = 2, s1 = r ± a, sν+2 = rsν+1 − sν , ν ≥ 0.(1.6)

Since c = s2−4
a , we give an explicit expression for the third element c in the

terms of a and b by

(1.7)

c = c±ν =
4

ab


(√

b±
√
a

2

)2(
r +
√
ab

2

)2ν

+

(√
b∓
√
a

2

)2(
r −
√
ab

2

)2ν

− a+ b

2

 ,

where ν ≥ 0 is an integer. From [6, Proposition 1.8], if a ≥ 35 then c ≥ c−4
cannot hold, i.e., it remains to observe the cases c ∈ {c±1 , c

±
2 , c

±
3 }. Let us list

them in a more suitable form

c±1 = a+ b± 2r,

c±2 = (ab+ 4)(a+ b± 2r)∓ 4r,

c±3 = (a2b2 + 6ab+ 9)(a+ b± 2r)∓ 4r(ab+ 3).

Let us mention some observations in the case c−1 . Note that if k ∈ {2, 3}, then
c−1 < a < b and in case k = 6 we have a < c−1 < b. So, in these cases, we
consider the D(4)-triple {a, b, c} of the form {c−1 , a, b} or {a, c

−
1 , b}.
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The present paper deals with two closely related families, viz. those of
D(4)-triples mentioned in this section. The outcome of our study is the the-
orem below, showing that each of the triples under scrutiny has a unique
extension to quadruple, which supports Conjecture 1.2.

Theorem 1.4. Let k and ν be positive integers such that k ∈ {2, 3, 6}.
If {a, b, c±ν , d} is a D(4)-quadruple with b = ka, then it is regular. In other
words, we have d = d±.

Notice that the choice of the D(4)-pairs {a, ka} with k ∈ {2, 3, 6} is
not random. In fact, the idea is to investigate irregular D(4)-quadruples
containing the pairs {a, ka}, for any positive integer k. In the second author’s
recent work in [6], it was shown that a < b ≤ 6.85a implies that c must
be of the form (1.7). Thus, if we choose to observe b = ka, we will have
k ∈ {2, 3, 4, 5, 6}. For k = 4, it is easy to check from equation (1.1) that there
is no D(4)-pair of the form {a, 4a}. On the other hand, for k = 5, we obtain
an equation of the type

r2 − 5a2 = 4,

whose positive solutions are defined by (r, a) = (L2n, F2n), where Fn and Ln

denote the n-th Fibonacci and Lucas numbers respectively. Here also the
extension of the D(4)-pair {F2n, 5F2n} should be skipped since it has already
been studied (see [8, 11]). Thus, it remains to only study k = 2, 3, 6, which is
the goal of this paper.

The organization of this paper is as follows. In Sections 2 and 3 of the
paper, we will essentially prove useful results to achieve our main goal. We
devote Section 4 to the proof of Theorem 1.4.

2. Pellian equations and linear forms in three logarithms

The goal of this section is to provide and prove the main technical tools
used in our proof of Theorem 1.4. These tools are related to the search for the
intersection of linear recurrent sequences and to linear forms in logarithms.

2.1. System of simultaneous Pellian equations. Let us observe an exten-
sion of a triple {a, b, c} to a quadruple {a, b, c, d}:

ad+ 4 = x2,

bd+ 4 = y2,

cd+ 4 = z2.
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By eliminating d from these equations, we get a system of generalized Pellian
equations

az2 − cx2 = 4(a− c),(2.1)

bz2 − cy2 = 4(b− c),(2.2)

ay2 − bx2 = 4(a− b).(2.3)

Its solutions (z, x), (z, y), and (y, x) satisfy

z
√
a+ x

√
c = (z0

√
a+ x0

√
c)

(
s+
√
ac

2

)m

,(2.4)

z
√
b+ y

√
c = (z1

√
a+ y1

√
c)

(
t+
√
bc

2

)n

,(2.5)

y
√
a+ x

√
b = (y2

√
a+ x2

√
b)

(
r +
√
ab

2

)l

,(2.6)

where m,n, l are nonnegative integers and (z0, x0), (z1, y1), and (y2, x2) are
fundamental solutions of these equations.

Any solution to the system satisfies z = vm = wn, where vm, and wn are
the recurrent sequences defined by

v0 = z0, v1 =
1

2
(sz0 + cx0) , vm+2 = svm+1 − vm,

w0 = z1, w1 =
1

2
(tz1 + cy1) , wn+2 = twn+1 − wn.

The initial terms of these sequences are described in the next theorem.

Theorem 2.1 ([6, Theorem 1.3]). Suppose that {a, b, c, d} is a D(4)-
quadruple with a < b < c < d and that wm and vn are defined as before.

i) If the equation v2m = w2n has a solution, then z0 = z1 and |z0| = 2 or
|z0| = 1

2 (cr − st).
ii) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| =

1
2 (cr − st) and z0z1 < 0.

iii) If the equation v2m = w2n+1 has a solution, then |z1| = s, |z0| =
1
2 (cr − st) and z0z1 < 0.

iv) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s
and z0z1 > 0.

Moreover, if d > d+, then the case ii) cannot occur.

Remark that because of the mentioned results by Fujita [12] and the
authors [3] on the extensibility of Diophantine pairs {k − 1, k + 1} and on
the extensibility of D(4)-pair of the form {k − 2, k + 2}, if we prove that
under the assumption of the following lemma, D(4)-triple {a, ka, c} has only
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two extensions to a quadruple (with d = d− and d = d+) it will imply the
statement of Theorem 1.4.

Lemma 2.2. Assume that {a, b, c, c′} is not a D(4)-quadruple for any c′

with 0 < c′ < c±ν−1. We have:

i) if the equation v2m = w2n has a solution, then z0 = z1 = ±2 and
x0 = y1 = 2,

ii) if the equation v2m+1 = w2n+1 has a solution, then z0 = ±t, z1 = ±s,
x0 = y1 = r and z0z1 > 0.

Proof. The proof of this lemma is based on Theorem 2.1 and is similar
to the proofs [3, Lemma 3], [1, Lemma 2.3] and [12, Lemma 5].

Remark 2.3. If c = c±1 = a+ b±2r, then it is enough to observe the case
v2m = w2n.

Now, we observe the solutions of the system of equations (2.2) and (2.6).
More precisely, we will determine the intersections y = An = Bl of sequences
(An)n and (Bl)l defined by

A0 = y1, A1 =
1

2
(ty1 + bz1), An+2 = tAn+1 −An,(2.7)

B0 = y2, B1 =
1

2
(ry2 + bx2), Bl+2 = rBl+1 −Bl, n, j ≥ 0.(2.8)

The next lemma, which is a part of Lemma 2 in [8], gives us a description
of the solutions of Pell equations.

Lemma 2.4 ([8, Lemma 2]). If (X,Y ) is a positive integer solution to a
generalized Pell equation

aY 2 − bX2 = 4(a− b),

with ab+ 4 = r2, then we have

Y
√
a+X

√
b = (y0

√
a+ x0

√
b)

(
r +
√
ab

2

)n

,

where n ≥ 0 is an integer and (x0, y0) is an integer solution of the equation
such that

1 ≤ x0 ≤
√
a(b− a)
r − 2

and 1 ≤ |y0| ≤
√

(r − 2)(b− a)
a

.

The next lemma will be proved following the steps of [2, Lemma 4].

Lemma 2.5. Assume that {a, b, c′, c} is not a D(4)-quadruple for any c′

with 0 < c′ < c±ν−1 and b ≥ 832824. Then, A2n = B2l+1 has no solution.
Moreover, if A2n = B2l then y2 = 2. In other cases we have y2 = ±2.
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Proof. It is straightforward to check by induction that

A2n ≡ y1 (mod b), A2n+1 ≡
1

2
(ty1 + bz1) (mod b),

B2l ≡ y2 (mod b), B2l+1 ≡
1

2
(ry2 + bx2) (mod b).

From Lemma 2.4, we have

|y2| ≤
√

(r − 2)(b− a)
a

=

√
(r − 2)(k − 1)a

a
=
√
(k − 1)(r − 2),

where we have used that b = ka, k ∈ {2, 3, 6}. This implies

|y2| ≤
√
(k − 1)

√
b2/k + 4 ≤


0.85
√
b, k = 2,

1.075
√
b, k = 3,

1.43
√
b, k = 6.

Case 1: If A2n = B2l, then y1 ≡ y2 (mod b). From Lemma 2.2, we
have y1 = 2, so y2 ≡ 2 (mod b). On the other hand,

y2 < 1.43
√
b < 0.5b,

for b ≥ 9, so y2 = 2.
Case 2: If A2n = B2l+1, then we have y1 = 2 and

(2.9) 2 ≡ 1

2
(ry2 + bx2) (mod b).

Since ab + 4 = r2, we know that g = gcd(b, r) ∈ {1, 2, 4}. After multiplying
congruence (2.9) by 2 and using the fact that r2 ≡ 4 (mod b), we can divide
the final congruence by r and get

(2.10) r ≡ y2
(
mod

b

g

)
.

We can rewrite the upper bound on |y2| and get

(2.11) |y2| ≤


0.002b, k = 2,

0.0022b, k = 3,

0.003b, k = 6,

where we have used a lower bound on b for each value of k. Also,

r =
√
ab+ 4 =

√
b2/k + 4 =

√
1/k + 4/b2 · b,

so we can use lower bounds on b to get those on r in the terms of b. More
precisely,

R0 · b < r < (R0 + 0.01) · b,
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where

R0 =


0.7, k = 2,

0.57, k = 3,

0.4, k = 6.

If g = gcd(b, r) = 1, for each k, then we have ||y2| + r| < 0.712b < b. This
implies y2 = r > 0.4b, which is a contradiction with (2.11). On the other
hand, if g = gcd(b, r) ∈ {2, 4} we get y2 = r + b

4 · p, for some p ∈ Z. If p ≥ 0,
then we have |y2| ≥ r and a contradiction as in the previous case. If p ≤ −4,
then we have |y2| > 0.29b. For the remaining cases, p = −1,−2,−3, we have
|y2| > 0.13b, 0.09b, 0.04b, which is a contradiction in each case.

Other possibilities for the parities of the indices of the sequences (An)
and (Bl) are solved similarly to [2, Lemma 4]. Thus, we omit the details.

Therefore, the fundamental solutions of equation (2.3) are (y2, x2) =
(±2, 2). Finally, we need to look at x = Qm = Pl, for some non-negative
integers m and l, where the sequences (Qm)m≥0 and (Pl)l≥0 are obtained
using (2.4) and (2.6) and are given by

P0 = x2, P1 =
1

2
(rx2 + ay2) , Pl+2 = rPl+1 − Pl,(2.12)

Q0 = x0, Q1 =
1

2
(sx0 + az0) , Qm+2 = sQm+1 −Qm.(2.13)

From the above, for the equation x = Pl = Qm, we conclude that only the
following two possibilities exist:
Type 1: If l ≡ m ≡ 0 (mod 2), then z0 = ±2, x0 = y2 = 2 and x2 = 2.
Type 2: If m ≡ 1 (mod 2), then z0 = ±t, x0 = r, y2 = ±2 and x2 = 2.

For the rest of this paper, we will carefully examine the following equation

(2.14) x = Qm = Pl,

while using the fundamental solutions of Types 1 and 2. As we mentioned
in Remark 2.3, we only need to consider solutions in Type 1 if c = c±1 since
1

2
(cr − st) = 1

2
((a+ b± 2r)r − (r ± a)(b± r)) = ±2.

2.2. A linear form in three logarithms. Solving recurrences (2.12) and
(2.13), we obtain

Pl =
1

2
√
b

(
(y2
√
a+ x2

√
b)αl − (y2

√
a− x2

√
b)α−l

)
,

Qm =
1

2
√
c

(
(z0
√
a+ x0

√
c)βm − (z0

√
a− x0

√
c)β−m

)
,

where

(2.15) α =
r +
√
ab

2
and β =

s+
√
ac

2
.
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Let us define

(2.16) γ =

√
c(y2
√
a+ x2

√
b)√

b(z0
√
a+ x0

√
c)

and γ′ =

√
b(y2
√
a+ x2

√
c)

√
c(z0
√
a+ x0

√
b)
.

We follow the strategy used in [2] with some improvements and define the
following linear forms in three logarithms

(2.17) Λ = l logα−m log β + log γ for c > b,

and

(2.18) Λ′ = l log β −m logα+ log γ′ for c < b.

Lemma 2.6. i) If the equation Pl = Qm has a solution (l,m) of Type
1 with m ≥ 1, then

0 < Λ < 11.7β−2m and 0 < Λ′ < 11.7α−2m.

ii) If the equation Pl = Qm has a solution (l,m) of Type 2 with m ≥ 1,
then

0 < Λ < 4.4a2β−2m.

Proof. For c > b, we define

E =
y2
√
a+ x2

√
b√

b
αl and F =

z0
√
a+ x0

√
c√

c
βm.

One can easily check that E, F > 1 if l,m ≥ 1. Then, the equation Pl = Qm

becomes

E + 4

(
b− a
b

)
E−1 = F + 4

(
c− a
c

)
F−1.(2.19)

Because c > b > 105, we have c−a
c > b−a

b . It follows that

(2.20) E + 4

(
b− a
b

)
E−1 > F + 4

(
b− a
b

)
F−1

and hence

(E − F )
(
EF − 4

(
b− a
b

))
> 0.

Therefore, E > F . Moreover, by (2.19) we have

0 < E − F < 4

(
c− a
c

)
F−1 < 4F−1.

It follows that Λ > 0, with

Λ = log
E

F
= log

(
1 +

E − F
F

)
<
E − F
F

< 4F−2.
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Type 1: One has

Λ < 4
c

(±2
√
a+ 2

√
c)2

β−2m =
c

(±
√
a+
√
c)2

β−2m

<
k

(
√
k − 1)2

β−2m < 11.7β−2m, for c > b = ka > 105.

Note that in the case b > c, we consider the D(4)-triple of the form {a, c−1 , b}.
So in this case, we similarly get 0 < Λ′ < 11.7α−2m, which is valid for
k = 2, 3, 6.

Type 2:
• The case z0 = t. We have

Λ < 4
c

(t
√
a+ r

√
c)2

β−2m <
4

r2
c

(
√
a+
√
c)2

β−2m < β−2m,

for c > b > 105 and r > 100.
• The case z0 = −t. From (2.19), we get

F = E + 4

(
b− a
b

)
E−1 − 4

(
c− a
c

)
F−1 > E − 4

(
c− a
c

)
F−1

> E − 4

(
c− a
c

)
> 0.

The above inequality comes from the fact that F > 1. Thus, we obtain

F−1 <

(
E − 4

(
c− a
c

))−1

.

Therefore, we have

(2.21)

E − F = 4

(
c− a
c

)
F−1 − 4

(
b− a
b

)
E−1

< 4

(
c− a
c

)(
E − 4

(
c− a
c

))−1

− 4

(
b− a
b

)
E−1.

Moreover, in Type 2 and for m ≥ 3, we have

(2.22)

F ≥ r
√
c− t

√
a√

c
β3 =

4(c− a)√
c(r
√
c+ t

√
a)
·
(
s+
√
ac

2

)3

>
4(c− a)√
c · 2r

√
c
· (
√
ac)3 > 4(c− a),

which implies E > F > 4(c− a) and then

c− a
c

(
E − 4

(
c− a
c

))−1

< E−1.(2.23)
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When m = 1, we can easily see that Pl ̸= Q1 by following what is done in the
proof of [1, Lemma 3.3]. So, combining (2.21) and (2.23), we obtain

E − F < 4E−1 − 4

(
b− a
b

)
E−1 =

4a

b
E−1 <

4

k
F−1.

Therefore, one can see that

Λ = log
E

F
= log

(
1 +

E − F
F

)
<
E − F
F

<
4

k
F−2

and

4

k
F−2 =

4

k
· c

(r
√
c− t

√
a)2

β−2m <
c2r2

k(c− a)2
β−2m.

Using the fact that c > b = ka > 105, we get

r2 = ka2 + 4 < 1.1ka2 and
c2

k(c− a)2
<

k

(k − 1)2
.

Hence, Λ = log
E

F
< 4.4a2β−2m. Considering all cases in Type 2, we have

Λ < 4.4a2β−2m. This completes the proof of Lemma 2.6.

We now have the next result whose proof is similar to that of part 2) in
[2, Lemma 8].

Lemma 2.7. If the equation x = Qm = Pl has a solution (l,m) with
m ≥ 3, then m ≤ l.

For any nonzero algebraic number α of degree d over Q whose minimal

polynomial over Z is a0
∏d

j=1(X − α(j)), we denote by

h(α) =
1

d

log |a0|+
d∑

j=1

logmax
(
1,
∣∣∣α(j)

∣∣∣)


its absolute logarithmic height. We recall the following result due to Matveev
[14].

Lemma 2.8. Denote by α1, . . . , αj algebraic numbers, not 0 or 1, by
logα1, . . . , logαj determinations of their logarithms, by D the degree over
Q of the number field K = Q(α1, . . . , αj), and by b1, . . . , bj integers. Define
B = max{|b1|, . . . , |bj |} and

Ai = max{Dh(αi), | logαi|, 0.16} (1 ≤ i ≤ j),

where h(α) denotes the absolute logarithmic Weil height of α. Assume that
the number

Λ = b1 logα1 + · · ·+ bn logαj
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does not vanish. Then

|Λ| ≥ exp{−C(j, χ)D2A1 · · ·Aj log(eD) log(eB)},
where χ = 1 if K ⊂ R and χ = 2 otherwise and

C(j, χ) = min

{
1

χ

(
1

2
ej

)χ

30j+3j3.5, 26j+20

}
.

Proposition 2.9. Assume that c ∈ {c+1 , c
±
2 }. If Qm = Pl, then

l

log(el)
< 3.36 · 1013 · log2(5.9c2), with the solutions of Type 1,

l

log(el)
< 6.44 · 1013 · log2(5.9c2), with the solutions of Type 2.

If Qm = Pl, with c = c−1 , then we get

l

log(el)
< 8.5 · 1013 · log2(26.3a), for k = 2, 3, 6.

Proof. We apply Lemma 2.8 with j = 3 and χ = 1 to the linear form
in logarithms (2.17). Here, we take

D = 4, b1 = l, b2 = −m, b3 = 1, α1 = α, α2 = β, and α3 = γ.

Since m ≤ l, we can take B = l. Also, we have

h(α1) =
1

2
logα and h(α2) =

1

2
log β.

• In the case c ∈ {c+1 , c
±
2 } with b = ka, we have c−a >

(
1− 1

k

)
c and r <

1

3
c.

Moreover, the conjugates of α3 are
√
c(y2
√
a± x2

√
b)√

b(z0
√
a± x0

√
c)
,

and the leading coefficient of the minimal polynomial of α3 divides the number
16k2(c− a)2. We proceed with the following estimates

h(α3) ≤
1

4

[
log(16k2(c− a)2) + 4 log

max{|
√
c(y2
√
a± x2

√
b)|}

min{|
√
b(z0
√
a± x0

√
c)|}

]

=
1

4

[
log(16k2(c− a)2) + 4 log

2
√
c(1 +

√
k)√

k(−t
√
a+ r

√
c)

]

<
1

4
log

[
24r4c4(1 +

√
k)4

(c− a)2

]
<

1

4
log

(
k2(1 +

√
k)2 · c6

(
√
k − 1)2

)

<
1

4
log(204c6) <

3

4
log(5.9c2).
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Thus, we can take

A1 = 2 logα, A2 = 2 log β, A3 = 3 log(5.9c2).

Applying Lemma 2.8, we get

log |Λ| > −1.3901 · 1011 · 16 · 12 · logα
· log β · log(5.9c2) · log(4e) · log(el).

From each inequality of Lemma 2.6, we have l logα < 2m log β and also

log |Λ| < −1.9m log β in Type 1, with m ≥ 1(2.24)

and

log |Λ| < −0.99m log β in Type 2, with m ≥ 2.(2.25)

Moreover,

log β <
1

2
log(5.9c2).(2.26)

Combining (2.24), (2.24), (2.25), and (2.26), we respectively get according to
Type 1 and Type 2 the following inequalities

l

log(el)
< 3.36 · 1013 · log2(5.9c2) and l

log(el)
< 6.44 · 1013 · log2(5.9c2).

• In the case c = c−1 with the solutions of Type 1, we similarly get the
following inequality

l

log(el)
< 8.5 · 1013 · log2(26.3a), for k = 2, 3, 6,

which comes from the combination of Lemm 2.8 and the upper bound on Λ′.
This ends the proof.

3. Lower bounds for m and l in terms of a

In this section, we will apply congruence relations to obtain some lower
bounds for the indices m and l satisfying the equation

x = Qm = Pl.

Lemma 3.1. If a is odd, then

Q2m ≡ x0 +
1

2
a(cx0m

2 + sz0m) (mod a2),(3.1)

P2l ≡ x2 +
1

2
a(bx2l

2 + ry2l) (mod a2).(3.2)

If a is even, then

Q2m ≡ x0 +
1

2
a(cx0m

2 + sz0m) (mod
1

2
a2),

P2l ≡ x2 +
1

2
a(bx2l

2 + ry2l) (mod
1

2
a2).
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Proof. The proof is similar to that of [2, Lemma 15]. We give the proof
of (3.1) by induction. The proofs of the other congruences can be done in the

same way. We have Q0 = x0, Q2 = x0 +
1

2
a(cx0 + sz0) and

Q4 =
1

2
x0a

2c2 +
1

2
a2z0cs+

1

2
a(4cx0 + 2sz0) + x0.

Assume that the assertion is valid for m − 1 and m. Note also that, the
sequence (Q2m)m≥0 satisfies the recurrence relation

Q2m+2 = (ac+ 2)Q2m −Q2m−2.

Thus, we obtain

Q2m+2 ≡ acx0 + x0 +
1

2
a[2cx0m

2 + 2sz0m− cx0(m− 1)2 − sz0(m− 1)]

≡ x0 +
1

2
a[cx0(m+ 1)2 + sz0(m+ 1)] (mod a2).

This completes the proof.

We now consider the following result.

Lemma 3.2. If the equation Pl = Qm has a solution (l,m) of Type 1, then
we have

l ≥ 1

12

(
−2 +

√
4 + 3

√
a

)
.

Proof. Let ν ∈ {1, 2, 3}, we have c = c±ν ≡ ±2νr (mod a). From (1.6),
we see that s ≡ 2, r (mod a). We also get that b = ak ≡ 0 (mod a). Using
Lemma 3.1, we have in all cases with the solutions in Type 1

cx0m
2 + sz0m ≡ bx2l2 + ry2l (mod a).

Hence, we get

±4νrm2 ± 4m ≡ 2rl (mod a), if s ≡ 2 (mod a)

and

±4νm2 ± 2m− 2l ≡ 0 (mod
a

gcd(a, r)
), if s ≡ r (mod a).

The case s ≡ r (mod a). Recall that in our case gcd(a, r) = 2. Thus,∣∣±4νm2 ± 2m− 2l
∣∣ ≥ a

gcd(a, r)
=
a

2
.

Note also that m ≤ l and ν ≤ 3. Thus, we get 12l2 + 4l ≥ a

2
, which implies

l ≥ 1

12

(
−2 +

√
4 + 6a

)
.(3.3)
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The case s ≡ 2 (mod a). In this case, by multiplying the congruence
obtained by r and using the fact that r2 ≡ 4 (mod a), we get

±16νm2 ± 4mr − 8l ≡ 0 (mod a).(3.4)

Because r2 ≡ 4 (mod a), we conclude that r ≡ ±2 (mod a′) for some a′ which
is a divisor of a and a′ ≥

√
a. It follows that

±16νm2 ± 8m− 8l ≡ 0 (mod a′).

Therefore, we deduce that∣∣±16νm2 ± 8m− 8l
∣∣ ≥ a′ ≥ √a.

Using again m ≤ l and ν ≤ 3, we get

48l2 + 16l ≥
√
a,

which implies

l ≥ 1

12

(
−2 +

√
4 + 3

√
a

)
.(3.5)

Combining the inequalities (3.3) and (3.5), we obtain the desired inequality.
This completes the proof.

Let us denote

(3.6) Tτ + Uτ

√
ab = ατ =

(
r +
√
ab

2

)τ

,

where (2Tτ , 2Uτ ) is the τ -th positive integer solution to the Pell equation

T 2 − abU2 = T 2 − (r2 − 4)U2 = 4.

It is easy to show by induction that

T0 = 1, T1 =
r

2
, Tτ+2 = rTτ+1 − Tτ ,(3.7)

U0 = 0, U1 =
1

2
, Uτ+2 = rUτ+1 − Uτ ,(3.8)

for τ ≥ 0. From (1.5), (1.6), (3.7), and (3.8), we have

(3.9) s = s±τ = 2Tτ ± 2aUτ and t = t±τ = ±2Tτ + 2bUτ .

Considering congruences modulo r, we get

2Tτ ≡ ±2 (mod r), 2Uτ ≡ 0 (mod r) if τ ≡ 0 (mod 2),

and

2Tτ ≡ 0 (mod r), 2Uτ ≡ ±1 (mod r) if τ ≡ 1 (mod 2),

which implies that s ≡ ±2,±a (mod r). The case s ≡ ±a (mod r) leads to a
contradiction if c = c±2 . Let us prove it. In this case, we have

s2 = ac±2 + 4 ≡ a2 (mod r).
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Multiplying the above congruence by k and using the fact that ka2 = r2−4 ≡
−4 (mod r), we get

kac±2 ≡ −4k − 4 (mod r).(3.10)

Furthermore, from c = c±2 we have

kac±2 ≡ 0 (mod r).(3.11)

Thus, combining (3.10) and (3.11), we get 4k + 4 ≡ 0 (mod r) and therefore

r | 4k + 4 ∈ {12, 16, 28},

which is not possible in our case since r > 28 by b > 105. In conclusion, we
summarize what we have proved as the following result.

Proposition 3.3. Let c = c±2 = (ab + 4)(a + b ± 2r) ∓ 4r. There is no
D(4)-triple {a, b, c} if s ≡ ±a (mod r).

Therefore, for solutions of Type 2 with s ≡ ±2 (mod r), we get the
following key result.

Lemma 3.4. Assume that c = c±2 . If the equation Pl = Qm has a solution
(l,m) of Type 2, then we have

m >


(3
√
2− 4)a/4, k = 2,

(6− 3
√
3.1)a/4, k = 3,

(5
√
6− 12)a/4, k = 6.

Proof. By induction, we obtain

Pl ≡ ±2,±a (mod r) and Qm ≡
1

2
amz0 (mod r).

Because t = t±τ = ±2Tτ +2bUτ ≡ ±2,±b (mod r) and z0 = ±t, we would get

Qm ≡ ±am,±2m (mod r).

• The case Qm ≡ ±2m (mod r). Thus, first the equation Qm = Pl

implies

±2m ≡ ±2 (mod r),

which becomes ±m ± 1 ≡ 0 (mod r/2) and then m ≥ r/2 − 1. Secondly, we
see that

±2m ≡ ±a (mod r),

which leads to 2m+ a ≥ r. It follows that

m ≥ 1

2
(r − a) > 1

2
(
√
k − 1)a, for k ∈ {2, 3, 6}.

•The case Qm ≡ ±am (mod r). Combining this with Pl ≡ ±a (mod r),
the equation Qm = Pl implies am ≡ ±a (mod r), which, using gcd(a, r) = 2,
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gives m ≡ ±1 (mod r/2) and m ≥ r/2−1. Now, we use the fact that Pl ≡ ±2
(mod r) to see that the equation Qm = Pl implies

ma ≡ ±2 (mod r).(3.12)

Multiplying the above congruence by ka and adding 4m, we would get

m(ka2 + 4) ≡ 4m± 2ka (mod r),

which gives

2ka± 4m ≡ 0 (mod r).(3.13)

Then, m ≥ 1

2
ka or the left hand side is positive and we get for k = 2 the

possibilities:

4a+ 4m = 3r, 4r, 5r, . . .(3.14)

4a− 4m = r, 2r.(3.15)

From (3.14), we have 4a+ 4m ≥ 3r and using r =
√
2a2 + 4 > a

√
2 we get

m >
1

4
(3
√
2− 4)a.(3.16)

In the case (3.15), we have 4a− 4m ≤ 2r. Since r < a
√
2.1, we obtain

m >
1

2
(2−

√
2.1)a.(3.17)

We conclude that for k = 2, the relation (3.16) holds in all cases. The other
cases (k = 3, 6) can be treated in the same way. So, we omit them.

4. Proof of Theorem 1.4

In this section, we complete the proof of Theorem 1.4 in two subsections
according to the values of c.

4.1. Proof of Theorem 1.4 for c = c±1 , c
±
2 . We start with the following

case:
• The case b = 2a. From (1.3), we easily get the following relation

a = ap =
1√
2

(
(3 + 2

√
2)p − (3− 2

√
2)p
)
,(4.1)

which gives using Proposition 2.9, Lemmas 3.2 and 3.4 the following result.

Lemma 4.1. i) For a D(4)-triple {a, 2a, c±1 } with a = ap (p ≥ 1), if
the equation Pl = Qm has a solution (l,m) with m ≥ 3, then p ≤ 111
and l ≤ 2.53 · 1020.

ii) For a D(4)-triple {a, 2a, c±2 } with a = ap (p ≥ 1), if the equation
Pl = Qm has a solution (l,m) in Type 1 with m ≥ 3, then p ≤ 116 and
l ≤ 2.57 · 1021. If the equation Pl = Qm has a solution (l,m) in Type
2 with m ≥ 3, then p ≤ 28 and l ≤ 2.81 · 1020.
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• The case b = 3a. Using (1.3), we get

a = ap =
1√
3

(
(2 +

√
3)p − (2−

√
3)p
)
.(4.2)

Combining this with Proposition 2.9, Lemmas 3.2 and 3.4, we obtain the
following result.

Lemma 4.2. i) For a D(4)-triple {a, 3a, c±1 } with a = ap (p ≥ 1), if
the equation Pl = Qm has a solution (l,m) with m ≥ 3, then p ≤ 149
and l ≤ 2.55 · 1020.

ii) For a D(4)-triple {a, 3a, c±2 } with a = ap (p ≥ 1), if the equation
Pl = Qm has a solution (l,m) in Type 1 with m ≥ 3, then p ≤ 156 and
l ≤ 2.6 · 1021. If the equation Pl = Qm has a solution (l,m) in Type 2
with m ≥ 3, then p ≤ 37 and l ≤ 2.74 · 1020.

• The case b = 6a. By (1.3), we have

a = ap =
1√
6

(
(5 + 2

√
6)p − (5− 2

√
6)p
)
.(4.3)

Combining this with Proposition 2.9, Lemmas 3.2 and 3.4 we obtain the fol-
lowing result.

Lemma 4.3. i) For a D(4)-triple {a, 6a, c±1 } with a = ap (p ≥ 1), if
the equation Pl = Qm has a solution (l,m) with m ≥ 3, then p ≤ 85
and l ≤ 2.52 · 1020.

ii) For a D(4)-triple {a, 6a, c±2 } with a = ap (p ≥ 1), if the equation
Pl = Qm has a solution (l,m) in Type 1 with m ≥ 3, then p ≤ 89 and
l ≤ 2.56 · 1021. If the equation Pl = Qm has a solution (l,m) in Type
2 with m ≥ 3, then p ≤ 22 and l ≤ 3 · 1020.

For the remaining cases, we will use the following lemma which is a slight
modification of the original version of Baker-Davenport reduction method (see
[7, Lemma 5a]).

Lemma 4.4. Assume that M is a positive integer. Let p/q be a convergent
of the continued fraction expansion of κ such that q > 6M and let

η = ∥µq∥ −M · ∥κq∥,

where ∥ · ∥ denotes the distance from the nearest integer. If η > 0, then there
is no solution of the inequality

0 < lκ−m+ µ < AB−l

in integers l and m with

log(Aq/η)

log(B)
≤ l ≤M.
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The case c = c−1 . Dividing 0 < Λ′ < 11.7α−2m by logα and using the
fact that α−2m < β−l we get

(4.4) 0 < lκ−m+ µ < AB−l,

where

κ :=
log β

logα
, µ :=

log γ′

logα
, A :=

11.7

logα
, B := β.

The case c ∈ {c+1 , c
±
2 }. Dividing 0 < Λ < 11.7β−2m and 0 < Λ <

4.4a2β−2m by log β and using the fact that we have β−2m < α−l leads to an
inequality of the form

(4.5) 0 < lκ−m+ µ < AB−l,

where we consider solutions of Type 1

κ :=
logα

log β
, µ :=

log γ

log β
, A :=

11.7

log β
, B := α,

and for solutions of Type 2

κ :=
logα

log β
, µ :=

log γ

log β
, A :=

4.4a2

log β
, B := α.

For the remaining proof, we use Mathematica to apply Lemma 4.4. For
the computations, if the first convergent such that q > 6M does not satisfy
the condition η > 0, then we use the next convergent until we find the one
that satisfies the conditions. For c = c±1 we get l ≤ 4 in each case b = ka,
k = 1, 2, 3, and for c = c±2 we get l ≤ 8 in each case.

Therefore, in all cases, we can conclude that

3 ≤ m ≤ l ≤ 8.(4.6)

Combining this with Lemma 3.2 and the relations (4.1), (4.2), and (4.3), for
solutions in Type 1, we get

p ≤


8, k = 2,

11, k = 3,

6, k = 6,

and therefore the equation Qm = Pl has no solutions in this range. Combining
now (4.6) with Lemma 3.4, in all cases, we get a ≤ 131, which contradicts the
fact that b = ka > 105, with k = 2, 3, 6. Finally, we need to observe the cases
m ∈ {0, 1, 2}. For m = 0, we get x = Q0 = P0 = 2, which gives d = 0. By
following what is done in the proof of [1, Lemma 3.3], one can easily see that
the only solution of equation (2.14) if m ∈ {1, 2} is (l,m) = (τ, 1) for z0 = t
i.e. x = Q1 = Pτ+1. In this case we have

x = Q1 = Pτ+1 = r(Tτ ± aUτ ) + a(bUτ ± Tτ ),
which implies d = (x2 − 4)/a = d±.
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4.2. Proof of Theorem 1.4 with c = c±3 . In the case c = c±3 , recall that the
problem is more complicated to solve if s ≡ ±a (mod r) by considering the
equation (2.14). The difficulty lies in the fact that it is not easy to find a lower
bound of l and m in terms of a in the equation (2.14) if s ≡ ±a (mod r). To
overcome this situation, we will deal with this case by examining the equation
z = vm = wn using Lemma 2.2. Now, we will give the lower bounds of the
indices m and n in the equation z = vm = wn, for 2 < n < m < 2n (where
the relationship between m and n follows from [10, Lemma 5] if m and n have
the same parity). First, we have the following result.

Lemma 4.5. i) If the equation z = v2m = w2n has a solution (m,n)
with n > 1, then m > 0.495b−0.5c0.5.

ii) If the equation z = v2m+1 = w2n+1 has a solution (m,n) with n > 1,
then m2 > 0.0625b−1c0.5.

Proof. i) The statement follows from the proof of [4, Proposition 2.3].
Here we only have to use that b > 105 > 104.

ii) Using Lemma 2.2 in the case of odd indices and from [10, Lemma 12],
we get

(4.7) ±1

2
astm(m+ 1) + r(2m+ 1) ≡ ±1

2
bstn(n+ 1) + r(2n+ 1) (mod c).

Because (st)2 ≡ 16 (mod c), we conclude that st ≡ ±4 (mod c′) for some
divisor c′ of c with c′ ≥

√
c. Also the ± sign means that one of the congruences

is true. Hence, we get

(4.8) ±2am(m+ 1) + r(2m+ 1) ≡ ±2bn(n+ 1) + r(2n+ 1) (mod c′).

Let us now assume the opposite i.e., m2 ≤ 0.0625b−1c0.5. Then, it is easy to
see that both sides of the congruence relation (4.8) are less than c′ and they
have the same sign. More precisely, we have

max
{
2am(m+ 1), r(2m+ 1), 2bn(n+ 1), r(2n+ 1)

}
≤ 2bm(m+ 1)

and

2bm(m+ 1) < 4bm2 ≤ c′

4
.

Therefore, we get

| ± 2am(m+ 1) + r(2m+ 1)| < c′

2
and | ± 2bn(n+ 1) + r(2n+ 1)| < c′

2
.

Note that in the case of the sign “−”, the two quantities ±2am(m + 1) +
r(2m + 1) and ±2bn(n + 1) + r(2n + 1) are negative and in the case of the
sign “+” they are positive. Thus, we actually have the equations

±2am(m+ 1) + r(2m+ 1) = ±2bn(n+ 1) + r(2n+ 1)(4.9)
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instead of a congruence. Notice that we assume that b = ka with k = 2, 3, 6.
Now considering congruence modulo a, we get

r(2m+ 1) ≡ r(2n+ 1) (mod a),

which implies

2m ≡ 2n (mod
a

2
).(4.10)

Since c±3 < 519a5, we get

2n < 2m ≤ 2 · 0.06250.5 · b−0.5 ·
(
519a5

)0.25
<
a

4
.

Therefore, the congruence (4.10) gives an equation of the form 2m = 2n.
Therefore, from (4.9), we get m = n = 0, which is a contradiction. This
completes the proof.

Now, we will combine the lower bounds for indices m and n together with the
result obtained using Baker’s theory of linear forms in logarithms to prove
the main Theorem for large values of p. Using the main result in [5] the third
author proved in [9] that z = vm = wn, for n > 2, implies

m

log(m+ 1)
< 6.543 · 1015 log2 c.(4.11)

Combining this with Lemma 4.5, in the case of even indices, we get

(4.12)
2 · 0.495b−0.5c0.5

log(2 · 0.495b−0.5c0.5 + 1)
< 6.543 · 1015 log2 c,

and in the case of odd indices, we get the inequality

(4.13)
2 · 0.06250.5b−0.5c0.25 + 1

log(2 · 0.06250.5b−0.5c0.25 + 2)
< 6.543 · 1015 log2 c.

Therefore, using Maple, the solutions obtained for inequalities (4.12) and
(4.13) are summarized in the following lemma.

Lemma 4.6. i) For the D(4)-triples {a, 2a, c±3 } with a = ap (p ≥ 1)
defined in (4.1), if z = v2m = w2n has a solution (m,n), then p ≤ 14
and m ≤ 2.6 · 1021 but if z = v2m+1 = w2n+1 has a solution (m,n),
then p ≤ 40 and m ≤ 2.1 · 1022.

ii) For the D(4)-triples {a, 3a, c±3 } with a = ap (p ≥ 1) defined in (4.2),
if z = v2m = w2n has a solution (m,n), then p ≤ 19 and m ≤ 3 · 1021
but if z = v2m+1 = w2n+1 has a solution (m,n), then p ≤ 54 and
m ≤ 2.2 · 1022.

iii) For the D(4)-triples {a, 6a, c±3 } with a = ap (p ≥ 1) defined in (4.3), if
z = v2m = w2n has a solution (m,n), then p ≤ 11 and m ≤ 2.6 · 1021
but if z = v2m+1 = w2n+1 has a solution (m,n), then p ≤ 30 and
m ≤ 2.1 · 1022.
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Now, it remains to see what happens for small values of p by applying
Lemma 4.5. For this, we also need the inequality, which follows from vm =
wn, n > 2 (that is [11, Lemma 9]),

0 < m log

(
s+
√
ac

2

)
− n log

(
t+
√
bc

2

)
+ log

√
b(x0
√
c+ z0

√
a)

√
a(y1
√
c+ z1

√
b)

< 2ac

(
s+
√
ac

2

)−2m

.

Using Lemma 4.6, we apply Lemma 4.4 considering c = c±3 . Note that in the
case of even indices we have z0 = z1 = ±2, x0 = y1 = 2 and in the case
of odd indices we have x0 = y1 = r, z0 = ±t, z1 = ±s and z0z1 > 0. We
have done the reduction using Mathematica. In all cases according to b = ka
with k = 2, 3, 6, after at most 2 steps of reduction, we see that z = vm = wn

implies n ≤ m ≤ 2. In these small ranges, it is not difficult to check that all
solutions of z = vm = wn will give the extension of D(4)-triple {a, b, c} to a
quadruple with d = d− or d = d+. This completes the proof of Theorem 1.4.
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J. Number Theory 227 (2021), 330–351.
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Université d’Abomey-Calavi
Bénin

E-mail : adedjnorb1988@gmail.com

M. Bliznac Trebješanin
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