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PILLAI’S CONJECTURE FOR POLYNOMIALS

Sebastian Heintze

Graz University of Technology, Austria

Abstract. In this paper we study the polynomial version of Pillai’s

conjecture on the exponential Diophantine equation

pn − qm = f.

We prove that for any non-constant polynomial f there are only finitely

many quadruples (n,m, deg p, deg q) consisting of integers n,m ≥ 2 and
non-constant polynomials p, q such that Pillai’s equation holds. Moreover,

we will give some examples that there can still be infinitely many possibil-

ities for the polynomials p, q.

1. Introduction

About hundred years ago Pillai [8] considered exponential Diophantine
equations of the form

(1.1) xn − ym = f,

where x, y, f are given positive integers and one is interested in integer so-
lutions (n,m) with n,m ≥ 2. A natural question concerning equation (1.1)
is how many solutions (n,m) exist for a given triple (f, x, y). After some
intermediate results by several authors, Bennett [1] proved that for any triple
(f, x, y) of integers with fxy ̸= 0 and x, y ≥ 2 there are at most two solutions
of equation (1.1). A frequently studied generalization of Pillai’s problem is to
replace xn and ym by simple linear recurrence sequences. Different authors
analyzed this problem for special choices of the linear recurrence sequences
and Chim, Pink and Ziegler considered in [3] this generalization for all simple
linear recurrence sequences satisfying some natural conditions. Furthermore,
the Pillai problem as well as its generalizations can also be considered over
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function fields instead of number fields. This was done e.g. by the author
together with Fuchs in [4].

So far we talked about the case that only the exponential parameters
are varying and the bases are fixed. Already Pillai considered the situation
when one allows also x and y to vary. He conjectured that for any given non-
zero integer f equation (1.1) has at most finitely many solutions in integers
n,m, x, y ≥ 2. In the case f = 1 we get the Catalan conjecture. Mihăilescu
[7] proved that 32 and 23 are the only perfect powers which differ exactly by
1. The case f ̸= 1 is still an open problem. The purpose of the present paper
is to study Pillai’s conjecture for polynomials. More precisely, we aim for
a bound on the solutions (n,m, p, q) in integers n,m ≥ 2 and non-constant
polynomials p, q ∈ C[x] of the Pillai equation

pn − qm = f

for a given polynomial f ∈ C[x]. Since there are still infinitely many polyno-
mials if we bound its height (there is no version of Northcott’s theorem for
function fields), we may have a slightly different statement than in the integer
case.

2. Results

Our theorem gives an explicit upper bound on the exponential variables
and the degrees of the polynomials. Therefore we can deduce finiteness of the
solutions only for the exponential variables and the degree of the polynomi-
als. In Remark 2.3 below we will give some counterexamples that in general
finiteness does not hold for the polynomials itself.

Theorem 2.1. Let f ∈ C[x] be a polynomial with deg f ≥ 1. Then for
all solutions (n,m, p, q) in integers n,m ≥ 2 and polynomials p, q ∈ C[x] with
deg p,deg q ≥ 1 of the Pillai equation

(2.1) pn − qm = f

we have
max (n,m,deg p,deg q) ≤ 4 + 12 deg f + 8(deg f)2.

In particular the quadruple (n,m,deg p,deg q) can take only finitely many
different values.

Before we start with preparing the utilities for the proof of this theorem
let us give some remarks on the scope of the above statement.

Remark 2.2. We do not handle the case that f ∈ C, i.e. a constant
polynomial, in Theorem 2.1 since this case is already solved. For f = 0 there
are obviously infinitely many solutions for the quadruple (n,m,deg p,deg q).
One can take e.g. the choice (n,m, p, q) = (3k, k, g, g3) for any positive integer
k ≥ 2 and non-constant polynomial g ∈ C[x]. The case f ∈ C∗, i.e. constant
and non-zero, is solved by Kreso and Tichy in [6]. They proved that there is



PILLAI’S CONJECTURE FOR POLYNOMIALS 69

no quadruple (n,m, p, q) with integers n,m ≥ 2 and non-constant polynomials
p, q ∈ C[x] which satisfies equation (2.1) if f ∈ C∗. Their argument essentially
builds on the fact that f is constant and thus cannot be generalized to our
situation. It is clear that there are some f ∈ C[x] for which equation (2.1)
has a solution.

Remark 2.3. The finiteness result given in Theorem 2.1 only holds for
the quadruple (n,m,deg p,deg q). In general there can still be infinitely many
pairs (p, q) of non-constant polynomials in C[x] for a given instance of the
quadruple (n,m,deg p,deg q) such that equation (2.1) holds. To illustrate
this fact we will give some examples.

Consider first the polynomial f = bxk for a fixed integer k ≥ 2 and a
fixed real number b > 0. Moreover, let (n,m,deg p,deg q) = (k, k, 1, 1). Then
we define

p =
k
√
ak + bx,

q = ax

and get for any a > 0 the equality pn − qm = f .
Further take a look at the polynomial f = bx for a fixed real number

b > 0 and let (n,m,deg p,deg q) = (2, 2, 1, 1). Then we define

p = ax+
b

4a
,

q = ax− b

4a

and get for any a > 0 the equality pn − qm = f .
So far we have only given examples for monomials f , but there are also

some for polynomials which are not monomials. For instance, we can gen-
eralize the previous example to more general linear polynomials. Consider
f = sx+ r for s ̸= 0 and put (n,m,deg p,deg q) = (2, 2, 1, 1). Now we define

p = ax+
ra

s
+

s

4a
,

q = ax+
ra

s
− s

4a

and get for any a > 0 the equality pn − qm = f .
By multiplying in the last paragraph the polynomials p and q both by xℓ

we get the same result for the polynomial f = sx2ℓ+1 + rx2ℓ.
Finally, let f = ux3 + tx2 + sx for u ̸= 0 and choose in this situation the

quadruple (n,m,deg p,deg q) = (2, 2, 2, 2). Here we define

p = ax2 +
4a2t+ u2

4au
x+

as

u
,

q = ax2 +
4a2t− u2

4au
x+

as

u
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and get for any a > 0 the equality pn − qm = f .
It is not clear whether or not there always, i.e. for any non-constant

polynomial f ∈ C[x], exist infinitely many pairs (p, q) for at least one or even
any instance of the quadruple (n,m,deg p,deg q), for which a solution exists
at all, such that equation (2.1) holds. We leave this as an open question.

3. Preliminaries

We will work with valuations and give here for the readers convenience
a short wrap-up of this notion that can e.g. also be found in [4]: For c ∈
C and f(x) ∈ C(x), where C(x) is the rational function field over C, we
denote by νc(f) the unique integer such that f(x) = (x − c)νc(f)p(x)/q(x)
with p(x), q(x) ∈ C[x] such that p(c)q(c) ̸= 0. Further we write ν∞(f) =
deg q − deg p if f(x) = p(x)/q(x). These functions ν : C(x) → Z are up to
equivalence all valuations in C(x). If νc(f) > 0, then c is called a zero of f ,
and if νc(f) < 0, then c is called a pole of f , where c ∈ C∪ {∞}. In C(x) the
sum-formula ∑

ν

ν(f) = 0

holds, where the sum is taken over all valuations (up to equivalence) in the
considered function field. For a finite set S of valuations on C(x), we denote
by O∗

S the set of S-units in C(x), i.e. the set

O∗
S = {f ∈ C(x)∗ : ν(f) = 0 for all ν /∈ S} .

The proof of Theorem 2.1 will use height functions. Hence, let us define
the height of an element f ∈ C(x)∗ by

H(f) := −
∑
ν

min (0, ν(f)) =
∑
ν

max (0, ν(f))

where the sum is taken over all valuations (up to equivalence) on the rational
function field C(x). Additionally we define H(0) = ∞. This height function
satisfies some basic properties, listed in the lemma below which is proven in
[5].

Lemma 3.1. Denote as above by H the height on C(x). Then for f, g ∈
C(x)∗ the following properties hold:

a) H(f) ≥ 0 and H(f) = H(1/f),
b) H(f)−H(g) ≤ H(f + g) ≤ H(f) +H(g),
c) H(f)−H(g) ≤ H(fg) ≤ H(f) +H(g),
d) H(fn) = |n| · H(f),
e) H(f) = 0 ⇐⇒ f ∈ C∗,
f) H(A(f)) = degA · H(f) for any A ∈ C[T ] \ {0}.
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Moreover, the following theorem due to Brownawell and Masser is an
important ingredient for our proof. It is an immediate consequence of [2,
Theorem B].

Theorem 3.2 (Brownawell-Masser). Let F/C be a function field in one
variable of genus g. Moreover, for a finite set S of valuations, let u1, . . . , uk
be S-units and

1 + u1 + · · ·+ uk = 0,

where no proper subsum of the left hand side vanishes. Then we have

max
i=1,...,k

H(ui) ≤
(
k
2

)
(|S|+max (0, 2g− 2)) .

4. Proof

We have now all tools that we need for proving our theorem. Hence we
can start with the proof.

Proof of Theorem 2.1. Since f is not zero, we can rewrite equation
(2.1), by dividing by f and bringing all terms to one side, as

1 +
qm

f
− pn

f
= 0.

The left hand side of this equation cannot have a vanishing subsum since there
are only three summands and none of them is zero. Let S be a finite set of
valuations such that p, q, f are all S-units. This is possible with

|S| ≤ 1 + deg f + deg p+ deg q.

Now we can apply Theorem 3.2 and get

H
(
pn

f

)
≤ |S| ≤ 1 + deg f + deg p+ deg q

as well as

H
(
qm

f

)
≤ |S| ≤ 1 + deg f + deg p+ deg q

because the genus of C(x) is 0. Using Lemma 3.1 and the definition of the
height this yields

(4.1) n · deg p = H(pn) ≤ 1 + 2deg f + deg p+ deg q

and

(4.2) m · deg q = H(qm) ≤ 1 + 2deg f + deg p+ deg q.

In the sequel we may assume without loss of generality that deg p ≥ deg q.
The other case is completely analogous. For a better readability we give a
name to the bound stated in the theorem, say

B := 4 + 12 deg f + 8(deg f)2.
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Now inequality (4.1) implies

(4.3) (n− 2) · deg p ≤ 1 + 2deg f.

We have to distinguish between three cases. The first case is n ≥ 3, the second
case supposes n = 2 and m ≥ 3, and in the last case we consider the situation
n = m = 2.

So let us start with the case n ≥ 3. Then inequality (4.3) immediately
gives

deg p ≤ 1 + 2deg f ≤ B
as well as

n ≤ 3 + 2deg f ≤ B.
By the original equation (2.1) we get

m · deg q = deg(qm) = deg(pn − f) ≤ max (n · deg p, deg f)
≤ (1 + 2 deg f)(3 + 2 deg f) = 3 + 8deg f + 4(deg f)2

which yields
deg q ≤ 3 + 8deg f + 4(deg f)2 ≤ B

and
m ≤ 3 + 8deg f + 4(deg f)2 ≤ B.

As the next step we consider the case n = 2 and m ≥ 3. Here inequality
(4.1) is equivalent to

deg p ≤ 1 + 2deg f + deg q.

Inserting this into inequality (4.2) gives

m · deg q = H(qm) ≤ 2 + 4deg f + 2deg q

and thus
(m− 2) · deg q ≤ 2 + 4deg f.

Therefore we have the upper bounds

deg q ≤ 2 + 4deg f ≤ B
and

m ≤ 4 + 4deg f ≤ B.
Using once again equation (2.1) we also get

2 · deg p = deg(p2) = deg(qm + f) ≤ max (m · deg q,deg f)
≤ (2 + 4 deg f)(4 + 4 deg f) = 8 + 24 deg f + 16(deg f)2

which yields
deg p ≤ 4 + 12 deg f + 8(deg f)2 = B.

Finally we consider the case n = m = 2. Here we can factorize equation
(2.1) to get

(p− q)(p+ q) = f.
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Since f is non-zero, we have p− q ̸= 0 and p+ q ̸= 0 and the two bounds

deg(p− q) ≤ deg f,

deg(p+ q) ≤ deg f.

If deg p > deg q, then we have

deg q < deg p = deg(p− q) ≤ deg f ≤ B.

Otherwise, when deg p = deg q, we get

deg p = deg q = deg(p+ q) ≤ deg f ≤ B

if p and q have the same leading coefficient, or

deg p = deg q = deg(p− q) ≤ deg f ≤ B

if p and q have different leading coefficients, respectively. Thus the theorem
is proven.

Remark 4.1. Most of the parts of the proof can be generalized to the
more general equation

apn + bqm = f

for a given non-constant polynomial f and given non-zero polynomials a, b
in C[x]. Again we are interested in solutions (n,m, p, q) in integers n,m ≥ 2
and polynomials p, q ∈ C[x] with deg p,deg q ≥ 1. Here the result is almost
analogous to them of Theorem 2.1 above, where now the upper bound for
max (n,m,deg p,deg q) clearly also depends on deg a and deg b. The essential
difference in the general situation is that, if a and b are not both constant,
we have to exclude the case n = m = 2 in the assumptions of the theorem in
order to achieve that our proof still works since our factorization argument in
the proof does not apply to this situation. We leave it up to the interested
reader to calculate the upper bound in the generalized setting explicitly.

Note that the exclusion of n = m = 2 has a parallel to the (still open)
problem for integers. In the generalized equation

axn + bym = f

with given non-zero integers a, b, f to be solved in positive integers n,m, x, y,
for the seeked finiteness result one obviously has to exclude the case n = m = 2
as there arise (for suitable a, b and f) infinitely many solutions (x, y) from the
related Pell equation if the unit rank of the involved number field is larger
than zero.
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