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ABSTRACT. In this paper, we introduce the new notion of semi-parallel
real hypersurface in the complex quadric Q™. Moreover, we give a nonex-
istence theorem for semi-parallel Hopf real hypersurfaces in the complex
quadric Q™ for m > 3.

1. INTRODUCTION

In [4], Deprez initiated the study of semi-parallel or semi-symmetric sub-
manifolds. A submanifold M in a Riemannian manifold is said to be semi-
parallel (or also called semi-symmetric) if the second fundamental form h
satisfies

(1) Reh=0

ie. R(X,Y)-h=(VxVy —VyVx — Vixy])h = 0 for all tangent vector
fields X and Y on M, where the curvature tensor R of the van der Waerden-
Bortolotti connection V of M acts as a derivation on h, that is,

R(X,Y)(W(Z,W)) = (R(X,Y)h)(Z,W)+h(R(X,Y)Z,W)+h(Z, R(X,Y)W)

for any tangent vector fields X, Y, Z and W on M. This notion is an
extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for
which R- R = 0, that is, R(X,Y) - R = 0. Also, the notion of semi-parallel
submanifolds is a generalization of parallel submanifolds, i.e. submanifolds for
which Vh = 0. In [4], Deprez showed that a submanifold M in Euclidean space
E™*! is semi-parallel implies that (M, g) is semi-symmetric. For more details
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on semi-symmetric spaces, we refer the readers to [29, 30] and references
therein.

Deprez mainly paid attention to the case of semi-parallel immersions in
Euclidean space E™*! (see [4, 5]). Later, Dillen [6] showed that a semi-parallel
hypersurface in non-flat real space forms R™+1(c), ¢ # 0, are flat surfaces, hy-
persurfaces with parallel Weigarten endomorphism or rotation hypersurfaces
of certain helices.

Niebergall and Ryan [18] studied real hypersurfaces in non-flat complex
two-dimensional complex space forms M?(c), ¢ # 0. As an extension of this
result, Ortega [19] proved that there are no semi-parallel real hypersurfaces
in non-flat complex space forms M™(c), ¢ # 0 of complex dimension m > 2.
In [26, 27], Romero gave some examples of indefinite complex Einstein hyper-
surfaces of the indefinite complex flat space, which are not locally symmetric.
Wang [36] studied a similar problem for semi-symmetric almost coKéhler 3-
manifolds.

On the other hand, as a typical model space of complex Grassmann
manifolds of rank 2, we can consider the complex two-plane Grassmannian
G2(C™*2) = SU,,12/S(UsU,,), which is the set of all complex two-dimensio-
nal linear subspaces in C™%2. It is the unique compact irreducible Riemannian
symmetric space with both a Kéhler structure J and a quaternionic Kéahler
structure J (see [17, 37, 38]). Semi-parallel real hypersurfaces in Ga(C™*2)
were studied by Hwang, Lee and Woo [8] and Loo [16], independently. By
Loo’s result, we obtain a non-existence theorem as follows.

THEOREM A. There does not exist a semi-parallel real hypersurface in
complex two-plane Grassmannians Go(C™+2) for m > 3.

Motivated by these results, in this paper we want to classify semi-parallel
real hypersurfaces in the complex quadric Q™ = SO,;,12/50,,SO5. The com-
plex quadric Q™ which is a complex hypersurface in the complex projective
space CP™*! can be regarded as a kind of real Grassmann manifold of com-
pact type with rank 2 (see [1, 2, 7, 10]). Moreover, @™ admits two important
geometric structures, so-called a real structure A and a complex structure
J which anti-commute with each other, that is, AJ = —JA. By using the
method of Lie algebra in [11], the triple (Q™, J, g) is a Hermitian symmetric
space of compact type with rank 2 and its maximal sectional curvature is
equal to 4 (see also [7, 25]).

On the complex quadric there exists a remarkable geometric structure 2
which is a parallel rank 2 vector bundle, which is given by the set of all complex
conjugations defined on Q™, that is, Ap,; = {Axz | A € S*CC} for any point [2]
of Q™. Then ) becomes a parallel rank 2-subbundle of End Tj,;Q™, [2] €
Q™. This geometric structure determines a maximal 2-invariant subbundle
Q of the tangent bundle T'M of a real hypersurface M in Q™. Here the notion
of parallel vector bundle 2l means that (VxA)Y = ¢(X)JAY for any vector
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fields X and Y on Q™, where V and ¢ denote a connection and a certain
1-form defined on T7.,;Q™, [2] € Q™ respectively (see [28]).

Recall that a nonzero tangent vector W € T,;Q™ is called singular if it
is tangent to more than one maximal flat in Q™. Since Q™ is a Hermitian
symmetric space of rank 2, there are two types of singular tangent vectors for
the complex quadric Q™: Let V(A) = {X € T,;Q™ | AX = X} and JV(A) =
{X € T1,)Q™ | AX = —X} be the (+1)-cigenspace and (—1)-eigenspace for
the involution A on Tp,;Q™ for [z] € Q™.

(a) If there exists a conjugation A € 2 such that W € V(A) = {X €
T Q™| AX = X}, then W is singular. Such a singular tangent vector
is called 2A-principal.

(b) If there exist a conjugation A € 2 and orthonormal vectors Z;, Zs €
V(A) such that W/||W|| = (Z, + JZ5)/+/2, then W is singular. Such
a singular tangent vector is called 2-isotropic.

Let (¢,&,m,g) be the almost contact metric structure induced on M by
the Kéahler structure of Q™. We say that M is a contact hypersurface of a
Kahler manifold if there exists an everywhere nonzero smooth function s such
that dn(X,Y) = 2kg(¢X,Y) holds on M. It can be easily verified that a real
hypersurface M is contact if and only if there exists an everywhere nonzero
constant function x on M such that S¢ + ¢S = 2k¢, where S is the shape
operator of M with respect to the normal vector field N that allows us to
define £ = —JN.

From this property, we naturally obtain that a contact real hypersurface
M of a Kéhler manifold is Hopf. The notion of Hopf means that the Reeb
vector field € of M is principal by the shape operator S of M, that is, S§ =
9(5¢,8)§ = a&. When the Reeb (curvature) function oo = g(S¢, ) identically
vanishes on M, we say that M has vanishing geodesic Reeb flow. Otherwise,
we say that M has non-vanishing geodesic Reeb flow.

A typical characterization of contact real hypersurfaces in the complex
quadric Q™ was introduced in Berndt and Suh [2] as follows.

THEOREM B. Let M be a connected orientable real hypersurface with
constant mean curvature in the complex quadric Q™, m > 3. Then M is a
contact hypersurface if and only if M is congruent to an open part of a tube
around the m-dimensional sphere S™ which is embedded in Q™ as a real form
of Q™.

Hereafter, we will call such a real hypersurface given in Theorem 1 a tube
of type (B) and denote such a model space (Tg).

Related to the study of Hopf real hypersurfaces in Q™, recently many
characterizations have been investigated by several differential geometers from
various viewpoints (see [2, 12, 13, 20, 21, 23, 31], etc.). In [14], Lee and Suh
gave a characterization of Hopf real hypersurfaces in the complex quadric Q™
as follows.
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THEOREM C ([14]). Let M be a Hopf real hypersurface in the complex
quadric Q™ for m > 3. Then the unit normal vector field N of M is -
principal if and only if M is locally congruent to an open part of a tube around
the m-dimensional sphere S™ which is totally real and totally geodesic in Q™.

Under these background and motivations, in this paper we want to classify
semi-parallel Hopf real hypersurfaces in the complex quadric Q™. In order to
do this, we first prove the following result.

THEOREM 1. Let M be a semi-parallel Hopf real hypersurface in the com-
plex quadric Q™ for m > 3. Then, the unit normal vector field N of M in
Q™ is singular, that is, either A-principal or A-isotropic.

Then we can assert a non-existence result of semi-parallel Hopf real hy-
persurfaces in Q™, m > 3, as follows.

THEOREM 2. There does not exist any semi-parallel Hopf real hypersur-
face in the complex quadric Q™, m > 3.

On the other hand, as mentioned above, the notion of semi-parallel hy-
persurfaces in Kéhler manifolds is a natural generalization of parallel hyper-
surfaces. From such a viewpoint, we introduce the following result given by
Suh as a corollary of Theorem 2.

COROLLARY A ([31]). There does not exist any parallel Hopf real hyper-
surface in the complex quadric Q™ for m > 3.

The present paper is organized as follows: in Section 2 we review the geo-
metric structure of complex quadric @™ including its Riemannian curvature
tensor R. In Section 3, by using the properties of complex structure J and
real structure A € 2 given on Q™, the equations of Gauss and Codazzi could
be derived from the curvature tensor R of Q™. Moreover, in this section we
introduce some important results for a Hopf real hypersurface with singular
unit normal vector field in Q™. In Section 4, we study semi-parallel Hopf real
hypersurfaces in Q™. Moreover, we show that such real hypersurfaces have a
singular unit normal vector field, as mentioned in Theorem 1. By means of
this result, in Section 5 we give a complete proof of Theorem 2.

2. THE COMPLEX QUADRIC

For more background to this section we refer to [9, 11, 13, 22, 24, 25,
32, 33, 34]. The complex quadric Q™ is the complex hypersurface in CP™*!
which is defined by the equation z? + --- + zfn+2 = 0, where 21,...,2Zm+2
are homogeneous coordinates on CP™*!. We equip Q™ with the Riemann-
ian metric which is induced from the Fubini Study metric on CP™+! with
constant holomorphic sectional curvature 4. The Kéhler structure on CP™+1!
induces canonically a Kéahler structure (J,g) on the complex quadric. For
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a nonzero vector z € C™*2? we denote by [2] the complex span of z, that is,
[2] = Cz = {\z| X € S* C C}. Note that by definition [2] is a point in CP™**.
For each [z] € Q™ € CP™*! we identify T7,jCP™ ! with the orthogonal com-
plement C™*2 © Cz of Cz in C™*?2 (see Kobayashi and Nomizu [11]). The
tangent space T1,)Q™ can then be identified canonically with the orthogonal
complement C"™*2 & (Cz & Cp) of Cz @ Cp in C™*2, where p € v,;Q™ is a
normal vector of Q™ in CP™*! at the point [2].

The complex projective space CP™*! is a Hermitian symmetric space
of the special unitary group SU,, 2, namely CP™! = SU,, 1 2/S(Up11U1).
We denote by o = [0,...,0,1] € CP™*! the fixed point of the action of the
stabilizer S(Up,+1U1). The special orthogonal group SO, 12 C SU,,42 acts on
CP™*! with cohomogeneity one. The orbit containing o is a totally geodesic
real projective space RP™+! C CP™*t!. The second singular orbit of this
action is the complex quadric Q™ = SO,,+2/50,,S0,. This homogeneous
space model leads to the geometric interpretation of the complex quadric
Q™ as the Grassmann manifold Gy (R™*2) of oriented 2-planes in R™*2. Tt
also gives a model of Q™ as a Hermitian symmetric space of rank 2. The
complex quadric Q! is isometric to a sphere S? with constant curvature, and
Q? is isometric to the Riemannian product of two 2-spheres with constant
curvature. For this reason we will assume m > 3 from now on.

For a unit normal vector p of Q™ at a point [z] € Q™ we denote by
A = A, the shape operator of @™ in CP™"! with respect to p. The shape
operator is an involution on the tangent space 71,;Q™ and

T[Z]Qm = V(AP) D JV(AP)7

where V(A,) is the (41)-eigenspace and JV (A,) is the (—1)-eigenspace of A,,.
Geometrically this means that the shape operator A, defines a real structure
on the complex vector space T],;Q™, or equivalently, is a complex conjuga-
tion on 7],;Q™. Since the real codimension of Q™ in CP™*!is 2, this induces
an S'-subbundle 2 of the endomorphism bundle End(TQ™) consisting of
complex conjugations. There is a geometric interpretation of these conjuga-
tions. The complex quadric @™ can be viewed as the complexification of
the m-dimensional sphere S™. Through each point [z] € Q™ there exists a
one-parameter family of real forms of @™ which are isometric to the sphere
S™. These real forms are congruent to each other under action of the center
SO of the isotropy subgroup of SO,,4+2 at [z]. The isometric reflection of
Q™ in such a real form S™ is an isometry, and the differential at [z] of such a
reflection is a conjugation on 77,;Q™. In this way the family 2l of conjugations
on T7,;Q™ corresponds to the family of real forms S™ of Q™ containing [2],
and the subspaces V(A) in T},;Q™ correspond to the tangent spaces 7}.)S™
of the real forms S™ of Q™.

The Gauss equation for Q™ in CP™*! implies that the Riemannian cur-
vature tensor R of Q™ can be described in terms of the complex structure J
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and the complex conjugations A € A:

R(U, VYW = g(V,W)U — g(U W)V + g(JV,W)JU — g(JU,W)JV
(2.1) —29(JU,V)JW + g(AV,W)AU
— g(AU,W)AV + g(JAV,W)JAU — g(JAU,W)JAV

for any tangent vector fields U, V', and W on Q™. It is well known that for
every unit tangent vector U € Tj,)Q™ there exist a conjugation A € 2 and
orthonormal vectors Z;, Zy € V(A) such that

U = cos(t)Zy + sin(t)J Zy

for some t € [0,7/4] (see [25]). The singular tangent vectors correspond to
the values ¢ = 0 and ¢t = w/4. If 0 < ¢t < 7/4 then the unique maximal flat
containing U is RZ; & RJ Zs.

3. REAL HYPERSURFACES IN Q™

Let M be a real hypersurface in Q™ and denote by (¢, &, 7, g) the induced
almost contact metric structure (see [3]). By using the Gauss and Weingarten
formulas the left-hand side of (2.1) becomes, for any tangent vector fields X,
Y, and Z on M

R(X,Y)Z = R(X,Y)Z — g(SY,Z)SX + g(SX,Z)SY
+{9((Vx9)Y,Z) - g((VyS)X,Z)} N,

where R and S denote the Riemannian curvature tensor and the shape oper-
ator of M in Q™ respectively.

Note that JX = ¢X +n(X)N and JN = —&, where ¢X is the tangential
component of JX and N is a (local) unit normal vector field of M. The
tangent bundle T'M of M splits orthogonally into TM = C & RE, where
C = kern is the maximal complex subbundle of 7M. The structure tensor
field ¢ restricted to C coincides with the complex structure J restricted to C,
and ¢€ = 0. Moreover, since the complex quadric Q™ has also a real structure
A, we decompose AX into its tangential and normal components for a fixed
Ace€ Q[[Z] and X € T[Z]M:

AX =BX +46(X)N
where BX denotes the tangential component of AX and 6(X) = g(AX,N) =
g(X, AN).

As mentioned in Section 2, since the normal vector N belongs to T},;Q™,

[2] € M, we can choose A € 2] such that

N = cos(t)Z1 + sin(t)JJ Z,

for some orthonormal vectors Z1, Zs € V(A) and 0 < t < % (see Proposition
3 in [25]). Note that ¢ is a function on M. If t = 0, then N = Z; € V(A),
therefore we see that N becomes an 2-principal tangent vector. On the other
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hand, if t = 7, then N = %(21 +JZy). That is, N is an 2-isotropic tangent

vector of Q™. In addition, since £ = —JN, we have
¢ = —JN =sin(t)Zy — cos(t)J Zy,
(3.1) AN = cos(t)Z; — sin(t)J Za,

A& =sin(t)Z2 + cos(t)JJ Z,
for orthonormal vectors Z; and Z, in V(A). This implies
(3.2) (&) = g(A§,N) = g(§, AN) = 0.
Here we calculate it in detail
g(A&, N) = g(sin(t) Za + cos(t)J Zy, cos(t) Z1 + sin(t)J Z3) = 0,
where we have used that Z; and Z; are orthonormal vectors in V(A) such
that g(Z1, Z3) = 0 and J the Kéhler structure satisfying
9(Z1,JZ1) = g(Z2, J Z2) = g(J Z1, T Z2) = 0.

Accordingly, we can assert that the vector field A¢ is tangent to M, regardless
of singular normal vector field N (see [2, 35]). From this fact and the anti-
commuting property JA = —AJ, together with JN = —¢, we get

AN = AJ§ = —JAL = =9 AL — g(AE EN,
which implies
(3.3) 6(X) = g(AX,N) = g(AN, X) = —g(¢A¢, X)

for any tangent vector field X on M. By using this formula and A{ = BE, we
obtain

JAX = J(BX + g(AX, N)N)
= ¢BX +g(BX,§)N — g(X, AN)¢
= ¢BX + g(pAE, X)E + g(AS, X)N
for all X € TM. In addition, from (3.1) we also obtain that
g(AE, &) = —g(AN,N) = — cos(2t) (O <t< %)
on M. Using the formulas mentioned above and taking the tangential and
normal components of (2.1) yields
R(X,Y)Z —g(SY,Z2)SX + g(SX,Z)SY
=9(Y,2)X — g(X, 2)Y + g(¢Y, Z)¢X — g(¢ X, Z)pY
—29(6X,Y)$Z + g(BY, Z)BX — ¢(BX, Z)BY
+9(¢BY, Z)¢BX — g(¢BX, Z)¢BY
+ 9(pAL, Y )n(2)pBX — g(@AS, X)n(Z)9BY
+9(¢BY, Z)g(pAE, X)§ — g(¢BX, Z)g(¢AS, Y)E
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(VxS)Y — (VyS)X
=n(X)oY —n(Y)pX —29(¢X,Y){ — g(9AE, X)BY

+ 9(pAL, Y )BX + g(AL, X)9BY + g(AE, X)g(AL, Y)E

—9(AL,Y)9BX — g(AL,Y)g(pAE, X)E,
which are called the equations of Gauss and Codazzi, respectively.

At each point [z] € M we define a maximal -invariant subspace of Tj,; M,
[2] € M as follows:
Q[z] = {X S T[Z]M | AX e T[Z]M for all A € Ql[z]}

It is known that if Npj is 2-principal, then Q[.; = Cf.j (see [31]).

We now assume that M is a Hopf hypersurface in the complex quadric
Q™. Then the shape operator S of M in Q™ satisfies S¢ = a& with the Reeb
curvature function a = g(S¢,€) on M. By Codazzi equation (3.5), we obtain
the following lemma.

(3.5)

LEMMA 3.1 ([2]). Let M be a Hopf hypersurface in Q™ for m > 3. Then
we obtain

Xa = (Ea)n(X) —29(AE, €)g(pAE, X)

and

- 255X — apSX — aSoX — 26X — 29(X, pAE) A€

+29(X, A PAL + 29(X, 9AL)g (&, ASE — 29(§, AN(X)PAL =0
for any tangent vector fields X and Y on M.

REMARK 3.2. From (3.6) we know that if M has vanishing geodesic Reeb
flow (or constant Reeb curvature), then the normal vector field N is singular.
In fact, under this assumption (3.6) becomes g(A¢,&)g(X, AN) = 0 for any
tangent vector field X on M. Since g(A&, §) = — cos(2t), the case of g(AE, &) =
0 implies that N is 2-isotropic. Besides, if g(A&, &) # 0, that is, g(AN, X) =0
for all X € TM, then

2m
AN = "g(AN,e;)e; + g(AN,N)N = g(AN,N)N

i=1
for any basis {e1, €2, ..., eam_1,e2m := N} of T,;Q™, [2] € Q™. Applying the
real structure A to the above formula and using the property of the involution
A% =1, we get N = A2N = g(AN, N)AN. Taking the inner product of the
above equation with the unit normal N, it follows that g(AN, N) = £1. Since
g(AN, N) = cos(2t) where ¢t € [0, ), we obtain AN = N. Hence N should
be 2A-principal.



SEMI-PARALLEL HOPF REAL HYPERSURFACES 109

LEMMA 3.3 ([31]). Let M be a Hopf hypersurface in Q™ such that the
normal vector field N is A-principal everywhere. Then the Reeb function «
is constant. Moreover, if X € C is a principal curvature vector of M with
principal curvature X\, then 2\ # « and its corresponding vector ¢pX is a

L . L A2
principal curvature vector of M with principal curvature 55

Moreover, if the normal vector IV is 2I-isotropic, the tangent vector space
T, )M, [2] € M, is decomposed as

T1.)M = [(] ® Span{A{, AN} & Q,
where C © Q = Q+ = Span{A¢, AN}.

LEMMA 3.4 ([15]). Let M be a Hopf hypersurface in Q™, m > 3, such
that the normal vector field N is -isotropic everywhere. Then the following
statements hold.

(a) The Reeb function « is constant.

(b) The unit tangent vector fields AE and AN = —¢pAE are principal for
the shape operator and their principal curvature is zero, that is, SAE =
SAN = SpA¢ = 0.

(¢c) If X € Q is a principal curvature vector of M with principal curvature
A, then 2\ # « and its corresponding vector ¢ X is a principal curvature

. g al+2
vector of M with principal curvature §5=5 .

On the other hand, from the property of §(§) = g(A&, N) = 0 in (3.2)
for a real hypersurface M in Q™ we see that the non-zero vector field A is
tangent to M. Hence by Gauss formula, VxV = VxY + g(SX,Y)N and
(VxA)Y =q(X)JAY for any X, Y € TM, it yields

Vx(A€) = Vx(A€) — g(SX, AN

= (VxA)E + A(VxE) — g(SX, AN
= q(X)JAE + A(VxE) + 9(SX, AN — g(SX, AN

for any X € TM. By using AN = AJ¢ = —JAE and JAE = pAE + n(AE)N,

the tangential part and normal part of this formula give us, respectively,
Vx(AE) = q¢(X)pAE + BOSX — g(SX,§)pAL

and

(3.8) a(X)g(AE, &) = —g(AN, Vx&) + g(5X, §)g(AE, §) + g(SX, AL)

' = 2¢g(SX, A¢).

In particular, if M is Hopf, then (3.8) becomes
q(§)g(A¢g, §) = 2a9(AE, €).

Now, if a real hypersurface M has 2-principal normal vector field IV in
Q™, then A = —¢ and AN = N. Therefore the following lemma holds.
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LEMMA 3.5 ([15]). Let M be a real hypersurface with A-principal normal
vector field N in the complex quadric Q™, m > 3. Then we obtain:
(a) AX = BX,
(b) ApX = —pAX,
(c) ApSX = —pSX and ¢(X) = 29(5SX, &),
(d) ASX = SX — 29(SX,€)¢ and SAX = SX — 25(X)S¢
for all X € Ty M, [z] € M.

Finally, we introduce one lemma derived from the Hessian tensor of the
Reeb curvature function oo = ¢g(S¢, ). Indeed, it is defined by

(Hess a)(X,Y) = g(Vxgrada,Y)

for any X and Y tangent to M. Then, this tensor satisfies (Hess a)(X,Y) =
(Hess o) (Y, X), that is, g(Vxgrad,Y) = g(Vygrad o, X). From this prop-
erty we obtain the following lemma which plays a key role in the proof of our
Theorem 1.

LEMMA 3.6 ([15]). Let M be a Hopf real hypersurface in the complex
quadric Q™, m > 3. Then we obtain:

(3.9) X(€a) = —2B9(SAE, X) + £(Ea)n(X) + 2a8g(AE, X)
and
(3.10) XB = —29(SAE, X),

where two smooth functions o and B are defined by o = g(SE, &) and f =
g(AE, &), respectively. Furthermore, by using (3.9) and (3.10) we get

— 2Bg(SAEL X)n(Y) + 2a89(AE, X)n(Y) + (§a)g(¢SX,Y)
+ 4g(SSAE, X)g($AE,Y) + 49(SAE, X)g(AE,Y) - 289(BSX,Y)
= —2Bg(SAL Y )n(X) + 2a8g(AL Y )n(X) + (£a)g(9SY, X)
+4g(SPAE, Y)g(9AL, X) + 49(SAE Y )g(AE, X) — 2B9(BSY, X)
for any tangent vector fields X and Y on M.

(3.11)

4. PROOF OF THEOREM 1

Now in this section we want to get some basic equations for semi-parallel
shape operator from the equation of Gauss, and to show that the unit normal
vector field N of a semi-parallel Hopf real hypersurface in Q™ is singular.

Let M be a semi-parallel Hopf real hypersurface in the complex quadric
Q™, m > 3. By submanifold theory the second fundamental form h of M
satisfies h(Z, W) = g(SZ,W)N for any tangent vector fields Z and W on M,
where S denotes the shape operator of M. By such relation the condition ()
can be written as follows:

(+) (R(X,Y)S)Z =0
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for any tangent vector fields X, Y and Z on M. In addition, from
(R(X,Y)S)Z = R(X,Y)(SZ) — S(R(X,Y)Z) the condition (*) is equivalent
to
(%) R(X,Y)(SZ)=S(R(X,Y)Z)
for any tangent vector fields X, Y and Z on M. Hence, from (3.3) and (3.4),
(%) becomes
9(Y,52)X — g(X,52)Y + g(¢Y,52)pX — g(¢X,5Z)¢Y
—29(¢X,Y)pSZ + g(BY,SZ)BX — ¢g(BX,SZ)BY
+9(¢BY,5Z)pBX + ag(pAL, Y )n(Z)pBX
+9(pBY,52)g(9p AL, X)§ — g(¢BX,5Z)pBY
— ag(pAL, X)n(Z)pBY — g(¢BX, SZ)g(¢AL,Y)E
+9(SY,572)SX — g(SX,SZ)SY
=9(Y,Z2)5X — g(X, Z2)SY + g(¢Y, Z)SpX — g(¢X, Z)SpY
—29(¢X,Y)S¢Z + g(BY,Z)SBX — g(BX,Z)SBY
+9(¢BY, Z)S¢BX + g(¢pAE, Y )n(Z)SpBX
+ ag(oBY, Z)g(¢ AL, X)€ — g(¢BX, Z)S¢BY
= 9(9AL, X)n(Z)SPBY — ag(¢BX, Z)g(pAE, Y )E
+9(SY, 2)S?X — g(SX, Z)S*Y
for any vector fields X, Y and Z tangent to M.

Now, we want to prove that the unit normal vector field IV of M in Q™ is
singular. By Remark 3.2, we see that the unit normal vector field N becomes
singular when M has vanishing geodesic Reeb flow, that is, the Reeb function
a = g(S¢,€) identically vanishes on M. So, in the remaining part of this

section, we only consider the case that M has non-vanishing geodesic Reeb
flow.

(4.1)

LEMMA 4.1. Let M be a semi-parallel Hopf real hypersurface with non-
vanishing geodesic Reeb flow in the complex quadric @™, m > 3. Then
S2A¢ = aSAE. Moreover, we obtain

(4.2) aBS?X = afX —an(X)Aé+aBX +a’BSX —BSX+n(X)SAE—SBX
for any vector field X tangent to M.
PROOF OF LEMMA 4.1. If we put Z = ¢ in (4.1), it yields
an(Y)X —an(X)Y + ag(AL,Y)BX — ag(A¢, X)BY
+ ag(pAE, Y)pBX — ag(pAE, X)pBY + o?n(Y)SX — o*n(X)SY
=n(Y)SX —n(X)SY + g(A¢,Y)SBX — g(A&, X)SBY
+ g(PAE,Y)SPBX — g(pAE, X)SHBY + an(Y)S*X — an(X)S?Y

(4.3)
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forany X, Y € TM.
Putting Y = A€ in (4.3) and using BA¢ = A2%¢ — g(A%6, N)N = £, we
have
@4 afX — an(X)AE + aBX — ag(A¢, X)E + a?BSX — a’n(X)SAE
7 = BSX —n(X)SAE + SBX — ag(AE, X)¢ + aBS X — an(X)S? A€,
where 8 denotes the smooth function g(A¢&, ), that is, 8 := g(A4&,§).
Moreover, putting X = £ in (4.4) provides
aS?AE = o®S A€,
where we have used B¢ = A and S§ = a. Since M has non-vanishing
geodesic Reeb flow, this gives us
(4.5) SZA¢ = aSAE.
If we substitute (4.5) into (4.4), it becomes
aBX —an(X)A¢ +aBX +a?BSX = SX —n(X)SAE + SBX + afS?X,
that is,
aBS*X = aBX — an(X)AE + aBX +a?BSX — BSX +n(X)SAE — SBX
for any X € TM. So, we have finished the proof. ]

On the other hand, if the smooth function 8 = g(A&, ) identically van-
ishes on M, it implies that the normal vector field N of M in Q™ becomes -
isotropic. In fact, from (3.1) we obtain that 8 = g(Ag, €) = sin®(t) —cos?(t) =
—cot(2t) for t € [0,%]. So, B = 0 implies t = §. That is, the unit normal
vector field NV of M in Q™ can be expressed by

1
N=—(Z+JZ
\/5( 1 2)

for some orthonormal vector fields Z1, Zo € V(A) (see Section 3). By the
definition of 2A-isotropic tangent vector field of @™, it means that the unit
vector field IV is singular. Thus, hereafter unless otherwise stated, let us
assume that the smooth function f satisfies 5 = g(A¢&, &) # 0.

Now, for our convenience sake, let us denote by

(#) Px = g(SAE X)AL+ g(SPAE, X)PAL — g(AL, X)SAE — g(pAE, X)SPAL
for any vector field X on M.

LEMMA 4.2. Let M be a semi-parallel Hopf real hypersurface with non-
vanishing geodesic Reeb flow in the complex quadric Q™, m > 3. If B =
g(AE &) #£ 0, then Px becomes

Px = afn(X)AE - 26%9(p A€, X)SPAE — fn(X)SAg

4.6
(4.6) — aBg(AL, X)E + 282g(SOAE, X)AE + Bg(SAE, X)e
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and therefore
(4.7 Px =B8BSX — SBX
for any tangent vector field X on M.
PROOF OF LEMMA 4.2. Putting Z = ¢ and Y = £ in (4.1) implies
48) aS?X = aX + aBBX — ag(A¢, X)AE — ag(pAE, X)pAE
' +a%SX — SX — BSBX + g(A€, X)SAE + g(pAE, X)SHAEL
for all X € TM. Since 5 # 0, (4.8) becomes
afiS?X = afX + af’BX — afg(AL, X)AE — afg(pAE, X)pAE
(4.9) +a?BSX — BSX — 2SBX
+ Bg(AE, X)SAL + Bg(PAE, X)SPAE
for any tangent vector field X on M. From (4.2) and (4.9) we obtain
—an(X)AE + aBX +n(X)SAE — SBX
— B’ BX — aBg(A, X)A¢ — aBg(d AL, X)$AE — B*SBX
+ Bg(AE, X)SAL + Bg(pAE, X)SPAE,
that is,
— an(X)AE + aBX +n(X)SA¢ — SBX — a?BX
(4.10) +afg(AE, X)AE + aBg(AE, X)PAE + B2SBX
— Bg(Ag, X)SAE — Bg(AE, X)SPAL =0
for any tangent vector field X on M. If we take X = BX in (4.10), it follows
— ag(AE, X)AE + aB*X + g(A¢, X)SAE — SB*X
(4.11) — af’B*X + afg(A¢, BX)AE + aBg(pAE, BX)pAEL
+B2SB*X — Bg(A¢, BX)SAE — Bg(¢AE, BX)SPAE = 0,

where we have used n(BX) = g(BX,§) = g(X, A¢€) for any X € TM.
On the other hand, from JA = —AJ, A2 =1, JN = —¢ and A, € TM,
we obtain

(4.12) AN = AJ§ = —JAS = —9AS — (AL )N = —pAL — BN,

(4.13) BAE = A’¢ — g(A’¢,N)N =¢
and
(4.14) ¢BX + g(X,pAL)E = —BopX +n(X)pAL

for any vector field X tangent to M. Putting X = A¢ in (4.14) and using
(4.13) provides

(4.15) BoA¢ = —¢pBAE + BPAL = BOAE.
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Moreover, from A? = I, together with (4.12) and (4.15), we get
X = A’X = A(BX + g(AX,N)N)
= B?X + g(ABX,N)N + g(AN, X)AN
— B2X — g(BX, AN + g(AL, X)SAE + Bg(9AE, X)N
— B2X — Bg(AL, X)N + g6 AL, X)SAE + Bg(AL, X)N
— B2X + g(9 AL, X)pAC,
that is,
(4.16) B*X = X — g(pAE, X)pAE, VX € TM.
By using (4.13), (4.15) and (4.16), equation (4.11) can be rearranged as
—ag(A, X)AL + aX — ag(dAL, X)pAE + g(AE, X)SAE — SX
(4.17)  +g(pAE, X)SHAE — af®X + 2a5°g(AE, X)PAE + afin(X)A¢
+ B%SX — 28°g(pAE, X)SPAE — Bn(X)SAE =0, VX €TM.
In addition, taking the symmetric part of (4.17), it follows
—ag(Ag, X)AE + aX — ag(pAE, X)pAE + g(SAE, X)AE — SX
(4.18)  + g(SPAE, X)PAE — af®X + 2a5%9(pAE, X)PAE + afg(AE, X)¢
+ B%SX —2B8°g(SPAL, X)pAE — Bg(SAL, X)E=0, VX e TM.
Subtracting (4.18) from (4.17) yields
G(AE, X)SAE + g(AE, X)SHAE + aBn(X)AS — 282g(AE, X) Sp A
— B(X)SAE — g(SAE, X) A — g(SHAE, X)pAE — afg(AE, X)¢
+28%9(SPAE, X)pAE + Bg(SAE, X)E =0,
that is,
9(AE, X)SAL + g(pAE, X)SPAL — g(SAE, X) AL — g(SPAE, X)pAS
(4.19) = —aBn(X)AE + 28%g(9AE, X)SGAE + Bn(X)SAE
+afg(A€, X )& — 262g(SPAE, X)PAE — Bg(SAE, X)¢

for any tangent vector field X on M. From (4.19), we obtain (4.6) in
Lemma 4.2.
The symmetric part of (4.8) yields

aS?X = aX + afBX — ag(A€, X)AE — ag(pAE, X)pAE
+a?SX — SX — BBSX + g(SAE, X)AE + g(SpAE, X)pAE
for any X € TM. Subtracting (4.20) from (4.8) follows
0= —BSBX + g(AL, X)SAL + g(9 AL, X)SHAE
+ BBSX — g(SAE, X) AL — g(SPAE, X)PAE,

(4.20)
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which implies that
BSBX — BBSX = g(A&, X)SAE + g(pAE, X)SPAE

— 9(SAE, X) AL — g(SPAE, X)PAL.
Consequently, (4.21) implies (4.7) in Lemma 4.2. d

(4.21)

In order to give our Theorem 1, the following remark is necessary.

REMARK 4.3. From (3.11), we note that Px mentioned at () can be
given by

4Px = ~26n(X)SAE + 208n(X) AE — (€0)S$X — 28SBX
+ 2B9(SAE, X)E — 20Bg(AL, X )¢ — (€a)$SX + 28BSX
for any vector field X tangent to M.

(4.22)

PROPOSITION 4.4. Let M be a semi-parallel Hopf real hypersurface with
non-vanishing geodesic Reeb flow in the complex quadric @™, m > 3. Then,
the unit normal vector field N of M is singular.

PROOF OF PROPOSITION 4.4. As mentioned above, if 5§ = g(A¢, &) = 0,
then the unit normal vector field N of M is 2d-isotropic. So, from now on let
us consider the case 8 # 0.

From (4.7) in Lemma 4.2 and (4.22) in Remark 4.3, we get

46BSX —4BSBX = 4Px
— 2Bn(X)SAE 1 2a8n(X)AE — (Ea)S6X
— 2BSBX +28g(SAE, X)€ — 2089(AE, X )&
— (a)pSX + 28BSX,
which implies
—20n(X)SAE + 2a0n(X) A — (a)SdX +28SBX
+289(SAE, X)E —2a8g(A¢, X)E — (Ea)pSX —28BSX = 0.
On the other hand, from (4.6) and (4.7) in Lemma 4.2, we have
BBSX — BSBX = Px
= afn(X)AE - 26%g(p AL, X)SOAE — Bn(X)SAE
— afg(AE, X)E + 26%9(SPAEL, X)pAE + Bg(SAE, X)E.
From this, equation (4.23) becomes
0 = —28n(X)SAE + 2a8n(X)AE — (§a)SopX
+ 239(SAE, X)E — 20f9(A€, X)E — (€a)pSX
— 2{aBn(X)AE — 25°g($AE, X)SPAE — pn(X)SAE
— afg(AE, X )€ +26%g(SPAE, X)pAE + Bg(SAE, X )¢}
= —(£a)SPX — (€a)pSX +48°g(pAE, X)SPAE — 45°g(SPAE, X)pAE,

(4.23)
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that is,
(424)  (£a)(S6 +6S)X = 482{g(6 AL, X)SHAL — g(SHAE, X)HAE}
for any tangent vector field X on M. Introducing (4.24) in Remark 4.3 implies

APy = —2Bn(X)SAE + 2a8n(X)AE — 28SBX

+2B8g(SAE, X)E —2a8g(AE, X)E+28BSX
—43%g(AE, X)SPAEL + 43 g(SPAE, X)pAE.
Bearing in mind (4.6) in Lemma 4.2, this equation becomes
dafin(X)AE — 85%g(pAE, X)SPAE — 4pn(X)SAE
—dafg(AE, X)E +86°g(SPAE, X)pAE + 489(SAE, X)E
=4Px
= —20n(X)SAE + 2afn(X)AL — 28SBX

+2Bg(SAE X)€ — 2a8g(AE, X)E+28BSX

— 43%g(PAE, X)SPAE + 46%9(SPAE, X)pAE,
which yields

BBSX — BSBX
(4.25) — aBn(X)AE — 26%($AE, X)SHAE — Bn(X)SAE
— aBg(AE, X)E + 282(SGAE, X)GAE + Bg(SAE, X)E.
By using (4.7) in Lemma 4.2, equation (4.25) gives
G(SAE, X)AE + g(SHAE, X)HAE — gAE, X)SAE — g6 AE, X)SGAE

(4.26) = afn(X)AE — 28%9(p A, X)SHAE — An(X)S A

— aBg(AE, X)¢ + 2B29(SHAE, X)AE + Bg(SAE, X)¢

for any vector field X tangent to M.
Taking the inner product of (4.26) with A&, we get

(4.27) = afn(X) — 26°g($AE, X)g(SPAE, A€) — fn(X)g(SAE, A€)
— af?g(AE, X) + 2g(SAE, X)

for all X € TM. Putting X = ¢AE in (4.27) and using g(pAE, pAE) = 1 — 52,
it becomes

g(SAE, 9AE) — (1 — B2)g(SPAE, A€)
= —23%(1 - B%)g(SPAE, A€) + B2g(SAE, 9 AC).
That is, this implies
26%(1 — 5%)g(SpAE, A€) = 0.
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Since 8 # 0, it becomes

which gives the following two cases.

Case I. 1 — %2 =0 (that is, B2 = 1)

The assumption of 42 = 1 implies 3 = £1. Meanwhile, from (3.1) we see
that the smooth function 3 = g(A¢, &) satisfies 3 = —cos(2t) for t € [0, F).
With these relations, ¢ = 0 holds. This means that the unit normal vector
field N satisfies N = Z; € V(A). Therefore, we claim that the unit normal
vector field NV is 2-principal.

Casg II. 1 — 82 # 0 (that is, g(SpAE, AE) = 0)

From our assumption and putting X = A€ in (4.24), we get
(4.28) (€a)(SPAE + pSAL) = 0.

SUBCASE II-1. éa =0

Let us suppose that & = 0 on M. Then, (3.9) provides
(4.29) SAE = aA¢.

Putting X = A in (3.7) and using (4.29) yields
aSPAE = (a® + 28%)pAE.
Since a # 0, it implies that the vector field ¢ A€ is principal with principal
2 2
curvature \ = %, that is,
042 + 262
—

Putting X = A¢ and Z = A in (4.1), together with (4.14), (4.16), (4.29)
and (4.30), becomes
—aY — 3ag(pAE,Y)pAE — afBY — a?SY

= —SY —3)\g(pAE, Y)pAE — BSBY — aS?Y, VY € TM.
Taking the inner product of (4.31) with ¢pA¢ and using g(¢AE, pAE) = 1— 32,
together with (4.15) and (4.30), yields

—ag(Y, pA€) = 3a(1 — B)g(¢AL,Y) — aB?g(Y, pAE) — a®Ag(Y, pAE)

= —Ag(Y, 9AE) = 3A(1 — B2)g(9AE,Y) — B2g(Y, AL) — aN®g(Y, 9AE),
that is,

(4.30) SPAE = ANpAE,  where A\ =

(4.31)

(0= N (282 — aX — 4)g($AE, ¥) = 0
for any vector field Y tangent to M. Putting Y = ¢pAE gives
(1— %) (a—N)(28% —a\—4) =0.
Now, as 32 # 1 it follows
(4.32) (a—N)(28% —aX—4) =0.
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From (4.30) we get al = a? + 232, Hence 23% — a\ —4 = —(a® +4) and it
does not vanish on M, that is, 28% — aX — 4 # 0. So, (4.32) gives us a = A,
which gives a contradiction. In fact, bearing in mind (4.30), the condition
a = X means that 282 = 0, that is, 3 = 0. But we consider the case of 5 # 0
on M.

Thus, the case of & = 0 does not occur in (4.28). Hence we obtain

(4.33) PSAE = —SPAE.

SUBCASE II-2. ¢pSAE+ SpAE =0
Putting X = A in (3.7) and using (4.33), we obtain

(4.34) S2pAE = —B2PAE.
In addition, putting X = ¢A¢ in (4.8) and using (4.15) yields
aS?PAE = ag A& + af?PAE — a1 — f?)pAE
(4.35) +a?SPAE — SPAE — BESHAE + (1 — B2)SpAEL
= 20329 A + (a® — 26%)SH AL,

where we have used g(¢AE, pAE) = —g(d?AE, AE) = 1 — 2. Substituting
(4.34) into (4.35) yields

(4.36) 3af%pAE + (a? — 282)SpAE = 0.

Let us suppose that a? — 262 = 0, that is, 8% = %2 Then, (4.34) gives
3
0 =3aB%pA¢ = 5043@45,

which implies pA¢ = 0. From its inner product with ¢ A€, we obtain 52 = 1.
It makes a contradiction. That is, a®> — 2% does not vanish on M. Hence,
(4.36) implies
3ap?
S¢A£ = M¢A£, where o= 7042—72ﬁ2 .

From this, we obtain

SPPAE = uSPAE = p*pAE.

But, bearing in mind (4.34), this equation gives y? = —A32%. It makes a
contradiction. So, we assert that there does not exist a semi-parallel Hopf
real hypersurface satisfying 32 # 1. ]

Summing up Remark 3.2 and Proposition 4.4 we assert our Theorem 1.
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5. PROOF OF THEOREM 2

In Section 4, we have proved that the unit normal vector field N of a
semi-parallel Hopf real hypersurface in the complex quadric @™, m > 3, is
singular. According to the definition of singular tangent vector field on Q™,
it means that N is either 2-isotropic or 2-principal. So, first we consider
the case of a semi-parallel Hopf real hypersurface M with a 2f-isotropic unit
normal vector field N in the complex quadric Q™, m > 3. Then N can be
expressed as

1
V2
for some orthonormal vector fields Z1, Zs € V(A), where V(A) denotes the
(4+1)-eigenspace of the complex conjugation A € 2. Then it follows that

L
V2

N = (Zl + JZ5)

1
AN = ——(Zy — JZ5), AJN = —
\@( 1 2)

Then it gives that
9(&, Ag) = g(JN, AJN) =0, g(§, AN) =0 and g(AN,N) =0,

which means that both vector fields AN = —¢A{ and A€ are tangent to M.
From these facts and Lemma 3.4, we obtain the following result.

(JZ1 + Zo) and JN = —(J Z1 — Z3).

L
V2

PROPOSITION 5.1. There does not exist any semi-parallel Hopf real hyper-
surface M with A-isotropic unit normal vector field N in the complex quadric

Q™, m>3.

PROOF OF PROPOSITION 5.1. Since the unit normal vector field IV is 2-
isotropic, we see that 8 = g(A&, &) = 0. Bearing in mind Lemma 3.4, putting
Y = A¢ and Z = ¢ in (4.1) yields

—an(X)AL + aBX — ag(Ag, X)§ = SBX — ag(Ag, X)¢E,
that is, we obtain
(5.1) SBX = —an(X)A{ +aBX, VX eTM.

Taking X = BX in (5.1) and using B>X = X — g(AN, X)AN, together with
AN = —¢pA& and SAN = 0, we get

SX =SX — g(AN, X)SAN = SB*X
= —an(BX)A¢ + aB*X
= —ag(A¢, X)AE + aX — ag(AN, X)AN
= —ag(Ag, X)AL + aX — ag(9AL, X)PAE,
that is,
(5.2) SX = aX — ag(Ag, X)AE — ag(pAE, X)pAE, VX € TM.
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Let Q be the orthogonal complement of the 3-dimensional distribution
Q1 :=span{¢, A¢, AN} in the tangent bundle M, that is, the tangent vector
bundle T'M is given by

TM = span{&, A, AN} @ Q.
Let Xy be any unit tangent vector field of Q. Then (5.2) tells us that
X is principal satisfying SXo = aXy. Then, by Lemma 3.4 we see that the
corresponding unit vector field ¢ Xy becomes a principal curvature vector field

of M with principal curvature y := O‘?Q, that is,

a?+2

(5.3) SoXo = upXog where p:= -

for any Xy € Q.
On the other hand, substituting X by ¢X in (5.2) we get

S¢X = apX — ag(AL, X)) AL — ag(AL, X )PAS
= apX + ag(PAS, X) AL — ag(AS, X)PAS
for any vector field X tangent to M. From this, we get
(5.4) SpXo = apXy

for any Xy € Q.
From (5.3) and (5.4) we have pr = «, which gives a contradiction. It
completes the proof of our Proposition 5.1. O

By virtue of Theorem 1 and Proposition 5.1, we see that the unit normal
vector field N of M becomes 2-principal. From this result, together with
Theorem C, we assert the following.

PROPOSITION 5.2. Let M be a semi-parallel Hopf real hypersurface in the
compler quadric Q™, m > 3. Then, M is locally congruent to an open part

of a tube (Tg) of type (B).

As mentioned in Section 1, the model space (Tp) means the tube of radius
0<r< ﬁ around the m-dimensional sphere S™ which is embedded in Q™
as a real form of Q™.

From now on let us check the converse statement of Proposition 5.2, that
is,

Does the tube (75) of Type (B) in Q™ satisfy the assumption
of semi-parallelism mentioned in Proposition 5.27

In order to do this, we introduce the following proposition given in [31].

PROPOSITION A. Let (Tg) be a tube of radius 0 < r < 2”% around the

m-dimensional sphere S™ in Q™. Then the following statements hold:

(i) (Tg) is a Hopf hypersurface.
(i) The normal bundle of (Tg) consists of A-principal vector fields.
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(iii) (Tg) has three distinct constant principal curvatures. The principal
curvatures and corresponding principal curvature spaces of (Tg) are as

in Table 1.

| principal curvature | eigenspace | multiplicity |
a=—+2cot(v2r) | T, =RJN 1
A=+V2tan(v2r) |Th={X €C|AX = X} m—1
©=0 T, ={X€ClAX = X} | m—_1

TABLE 1

By (i) and (ii) in Proposition A, it follows that (7g) is a Hopf real hyper-
surface with 2-principal normal vector field N in the complex quadric @™,
m > 3.

Now, let us check if a real hypersurface (7T5) is semi-parallel, that is, the
shape operator S of (Tp) satisfies (xx) for any tangent vector fields X, Y and
Z on (Tg). Indeed, by (3.4) the left and right sides of (xx) are respectively
given by

Left side = R(X,Y)(SZ)
=9(Y,S2)X — g(X,S2)Y + g(¢Y,SZ)9X — g(¢X,SZ)pY
(5.5) —29(pX,Y)pSZ + g(AY,SZ)AX — g(AX,SZ)AY
+ 9($AY, SZ)$AX — g(pAX, SZ)pAY
+g(SY,S2)SX — g(SX,S52)SY

and
Right side = S(R(X,Y)Z)
=g(Y,2)SX — g(X,Z)SY + g(¢Y, Z)SpX
(5.6) —9(0X,2)SoY —29(¢X,Y)SoZ

+ g(AY, Z)SAX — g(AX, Z)SAY
+ g(pAY, Z)SPAX — g(pAX, Z)SPAY
+9(SY, Z)S*X — g(SX, 7Z)S?Y,

where we have used AN = N, A§ = —¢ and Lemma 3.5.
PuttingY =Z =¢ €T, C T(Tg) in (5.5) and (5.6) yields

(5.7) Left side = aX — 2an(X)¢ — aAX + a?SX — o®n(X)¢
and

(5.8) Right side = SX — 2an(X)¢é — SAX 4+ aS?X — o®n(X)¢
for any vector field X tangent to (7).
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Suppose that (7p) is a semi-parallel real hypersurface in Q™. Then, the
shape operator S satisfies (xx) for any vector fields X, Y and Z tangent to
(Tg). Hence, when Y = Z = ¢ € T,, together with (5.7) and (5.8), this
property provides

aX —aAX +a?SX = SX — SAX + aS*X.

It can be rearranged as
(5.9) aX —aAX +a?5X — SX + SAX —aS?’X =0
for any tangent vector field X on M. Bearing in mind Proposition 5, the left
side of (5.9) becomes
aX — aAX +a’SX — SX + SAX — aS®X

0 if X eT,

=caXa—-NX if X eT)
@—pwX ifXeT,.

(5.10)

It gives us a contradiction with our assumption that a real hypersurface (7p)
is semi-parallel. In fact, when a real hypersurface (7p) is semi-parallel, (5.10)
yields
a—A=0 on T
{ a=0 on Ty,

by using aX = (—v/2cot(v/2r)) - (v2tan(v/2r)) = —2 and u = 0. But the
principal curvature « is given by a = —v/2cot(v/2r) for r € (0, 2”—\/5)7 which
does not vanish on T),. It gives us a contradiction. From this, we can assert
that the shape operator S of (7p) does not satisfy the assumption of semi-
parallelism.

Consequently, this result and Proposition 5.2 give a complete proof of our
Theorem 1 in the introduction. That is, we assert that there does not exist
any semi-parallel Hopf real hypersurface in the complex quadric Q™, m > 3.
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