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In astrophysical environments, dynamics of large bodies such as planets, stars and
satellites is solely governed by gravitational force, whereas electromagnetic force is
the only force effective in controlling the dynamics of electrons, ions. It is very in-
teresting to note that for the micron and submicron size dust grains these two forces
become comparable, i.e. Gm2

d/q
2
d ≈ O(1), and the interplay between the gravita-

tional and the electrostatic forces in the dynamics of such grains leads to various
novel phenomena in the terrestrial and solar environment. Our motivation is to
study linear waves excited in a dusty plasma due to self gravity. The constituents
of our plasma system are electrons, ions, and micron- and submicron-sized dust
grains. We consider this dusty plasma to be infinite, homogeneous with spatially
uniform densities of the species. The ratio Gm2

d/q
2
d is very small for the electrons

and ions, and so the effects of self gravity for these species may be neglected. More-
over, we have taken into account the ion-dynamics together with the dust-dynamics
and charge fluctuation of the dust grains. Then we have derived a dispersion law
associated with the analysis of the linear gravitational instability of the waves. In
our analysis, we disregard the zero-order gravitational field and so Poisson’s equa-
tion for the gravitational potential, ψ, has to be modified. The dispersion law has
been analysed in detail and various cases are discussed.

PACS numbers: 36.40.Gk, 52.25.Zb, 52.35.-g UDC 533.922, 533.951
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1. Introduction

In recent years, numerous workers have been carrying out investigations on
various salient features of nonlinear waves in plasma contaminated by the dust
grains encountered very often in space and laboratory plasmas. The dust grains
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are massive and charged. Their mass is of the order of 106 − 1010 times the proton
mass and their charge is of the order of 103 − 107 times the electronic charge. The
presence of these dust particles in plasma (as impurity ions) can drastically modify
the dispersion and the nonlinear properties, and at the same time, it introduces new
time and space scales in the plasma behaviour leading to new waves and instabilities
etc. So, a dusty plasma is a three component plasma containing electrons, ions
and very massive charged grains of solid matter. Dusty plasma is usually found
in the interstellar clouds, circumsteller clouds, interplanetary medium, cometary
tails, planetary rings and the Earth’s magnetosphere [1, 2]. A novel feature of dusty
plasmas, when compared with usual electron-ion plasmas with different ion species
or with electrons having different temperatures, is the charging of the grains which
can fluctuate due to the collection of plasma (electron and ion) currents onto the
grain surface.

In the absence of dust charge fluctuation, dusty plasma can support ultra-low
frequency waves which propagate as normal modes. The first and one of the well
investigated normal modes is the so called “dust-acoustic wave” (DAW) [3] which
has been confirmed in recent laboratory experiments on dusty plasmas [4]. An-
other low-frequency mode supported by dusty plasma is “dust-ion-acoustic wave”
(DIAW) [5]. On the other hand, when the grain charge fluctuation is selfconsistently
included, the dust modes are found to be weakly damped [6, 7]. Furthermore, dense
dusty plasmas support a new kind of ultra-low-frequency wave mode which may be
called the “dust Coulomb wave” (DCW) [8, 9]. These waves are the normal modes
of a dense dusty plasma arising solely due to grain charge fluctuations.

In astrophysical scenarios, the dynamics of the large bodies like planets, stars
etc. is controlled by gravitational interaction while that of electrons and ions is
governed by electromagnetic forces. It is now well established that for the dust
particles these two forces are comparable. Because of the interplay between these
two forces in the dynamics of the dust grains, many interesting phenomena take
place in terrestrial and solar environments. Pandey et al. [10] have studied the
Jeans instability of a dusty plasma considering dynamics of all plasma species but
they have not taken into account the grain charge fluctuation. In the letter of Rao
et al. [11], only Jeans instability due to the effect of self gravitation of the dust
grains has been studied. They have considered only the dust dynamics assuming
both the electron and the ion number densities to follow Boltzmann distribution,
though they have included dust charge fluctuation. In our paper, an attempt has
been made to study Jeans instability due to self gravity of the dust grains only,
taking into account the dust charge fluctuation and ion dynamics, but assuming
electrons to be Boltzmannian.

2. Models and the dispersion relation

In our plasma model, we consider a three-component dusty plasma containing
electrons, ions and dust particles. We further include the self-gravitation because of
the massive dust grains only. The number density of electrons is given by Boltzmann
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distribution

ne = ne0 exp
{

eφ

kBTe

}
, (1)

where ne, Te and φ denote the number density, the temperature of electrons and
the electrostatic plasma potential, respectively; kB is the Boltzmann constant. As-
suming the hydrodynamical description of the ion-fluid and the dust-fluid to be
realistic, we can write the basic equations which govern the dynamics of the ions
and the dust particles as (for one-dimensional wave propagation along the z-axis):

For the ions:

∂ni

∂t
+

∂

∂z
(niui) = 0 ,

∂ui

∂t
+ ui

∂ui

∂z
= − e

mi

∂φ

∂z
− ∂ψ

∂z
− kBTi

mini

∂ni

∂z
. (2)

For the dust grains:

∂nd

∂t
+

∂

∂z
(ndud) = 0 ,

∂vd
∂t

+ vd
∂vd
∂z

= − qd
md

∂φ

∂z
− ∂ψ

∂z
, (3)

where Td � Ti < Te. ψ is the gravitational potential and qd is the charge of the
dust-grain which may be regarded as a dynamical variable having the equilibrium
value qd0. The description will be closed if one considers the following equations
which are the electrostatic and the gravitational Poisson’s equation

ε0
∂2φ

∂z2
+ ndqd + eni − ene = 0 , (4)

∂2ψ

∂z2
= 4πGmdnd . (5)

Here ni, nd represent the number densities of the ions and the dust particles;
mi, md are the ion mass and the dust grain mass, respectively; ui, ud denote,
respectively, the velocities of the ion-fluid and the dust-fluid along the direction
of propagation of the wave and Ti is the ion-temperature. It has been found by
Avinash et al. [12] that the inclusion of a non-static ion-response leads to a robust
purely growing instability, the increment of which is much larger than that reported
in Ref. [10]. Accordingly, the present instability is likely to play a very important
role in understanding the phenomenon of condensation of charged dust grains in
planetary rings as well as in galaxy formation. This is why we have incorporated
the ion-dynamics.
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The charge variation of the dust grains is given by

∂qd
∂t

+ ud
∂qd
∂z

= Ie + Ii , (6)

where Ie and Ii are the electron-current and the ion-current [13] given by

Ie = −e
√

8π a2ne(φ)vte exp
{
eΨ
kBTe

}
,

Ii = e
√

8π a2ni(φ)vti

(
1 − eΨ

kBTi

)
, (7)

where a denotes the radius of the dust grain, Ψ = qd/(4πε0a) is the grain surface
potential relative to the ambient plasma potential and qd = −Zde where Zd is the
charge number on the surface of the dust grain. Other symbols occurring in Eq. (7)
carry usual meanings.

In the equilibrium state, Eq. (6) becomes

Ie0 + Ii0 = 0 . (8)

This relation determines the equilibrium value of the dust charge, qd0, which is
given by

ni0vti

(
1 − eΨ0

kBTi

)
= ne0vte exp

{
eΨ0

kBTe

}
, (9)

where qd0 = −eZd0 and vtα =
√
kBTα/mα (α = e for electron and i for ion) is

the thermal velocity. To derive the linear dispersion relation, we have to linearise
Eqs. (1) – (7), assuming the perturbations of various plasma variables given below
to vary as exp{i(kz − ωt)},

ns = ns0 + ns1 , us = us1 , ud = ud0 + ud1 ,

qd = qd0 + qd1 , Is = Is0 + Is1 , φ = φ1 , ψ = ψ1 , (10)

where s = e, i, for electron and ion, respectively. Only the dust grains have been
assumed to have streaming velocities for obvious reasons.

After calculation, following usual technique, the linearised equations turn out
to be

ne1 =
ene0

kBTe
φ1 , (11)

−ωni1 + kni0ui1 = 0 , (12)

−ωni0ui1 + k
kBTi

mi
ni1 = − e

mi
kni0φ1 − kni0ψ1 , (13)
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nd0ud1 =
ω′

k
nd1, (14)

ω′ud1 =
kqd0

md
φ1 + kψ1 , (15)

nd0qd1 + qd0nd1 + eni1 − ene1 = k2ε0φ1 , (16)

4πGmdnd1 = −k2ψ1 , (17)

(
Ωc − iω′)qd1 = I0

(
ni1

ni0
− ne1

ne0

)
, (18)

where

ω′ = ω − kud0 ,

Ωc =
eI0
akBTe

(
1 +

σ

1 − eΨ0/(kBTi)

)
,

σ =
Te

Ti
.

Ωc is the charging frequency and I0 is the equilibrium current given by

I0 = Ie0 = −Ii0 = e
√

8π a2ni0vti

(
1 − eΨ0

kBTi

)
, (19)

where Ψ0 is the equilibrium value of the grain surface potential. Again, the first
order perturbed quantities like ni1, nd1, qd1 are expressed in terms of φ1 as

ni1 = nio

e
mi

− qd0

md

(
1 +

ω2

ω2
Jd

)−1

(
ω

k

)2

− v2
ti

φ1 , (20)

nd1 =
k2nd0qd0

md

φ1

ω′2 + ω2
Jd

, (21)

qd1 = i
1

ω′ + iΩc
I0

(
ni1

ni0
− ne1

ne0

)
, (22)

where ωJd is the Jeans frequency defined as ω2
Jd = 4πGmdnd0 and ni1, ne1 are given

by Eqs. (20) and (11) respectively.

Using the relations (11), (20), (21) and (22) in the linearised Poisson’s equation
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(16), after algebraic manipulation one obtains

(
i

1
ω′ + iΩc

nd0

nio
I0 + e

)
ni0

e
mi

− qd0

md

ω2
Jd

ω′2 + ω2
Jd

ω

k

2 − v2
ti

−
(

i
1

ω′ + iΩc
I0
nd0

ne0
+ e

)
ene0

kBTe
= k2ε0

(
1 − ω2

pd

ω′2 + ω2
Jd

)
. (23)

This is the dispersion relation which, on simplification, comes out to be a polynomial
equation in ω of the form

Aω5 +Bω4 + Cω3 +Dω2 + Eω + F = 0 , (24)

where the complex coefficients A, B, . . . are given in the Appendix. It is found
that the coefficients are alternately real and imaginary in the absence of streaming
of the dust particulates. In order to make a detailed analysis of (24) for studying
various modes of wave propagation and instabilities, both growing and decaying, it
is usual to express the wave frequency ω as ω = ωr + iγ where ωr is the real part
and γ is the growth rate (for positive value) or the decay rate (for negative value).
If this is substituted in Eq. (24), then equating the real part and the imaginary
part we obtain two simultaneous polynomial equations in ωr and γ as

Aω5
r +Brω

4
r + (−10Aγ2 − 4Bimγ + Cr)ω3

r + (−6Brγ
2

−3Cimγ +Dr)ω2
r + (5Aγ4 + 4Bimγ

3 − 3Crγ
2 − 2Dimγ + Er)ωr

+(Brγ
4 + Cimγ

3 −Drγ
2 − Eimγ + Fr) = 0 , (25)

Aγ5 +Bimγ
4 + (−10Aω2

r − 4Brωr − Cr)γ3 + (−6Bimω
2
r

−3Cimωr −Dim)γ2 + (5Aω4
r + 4Brω

3
r + 3Crω

2
r + 2Drωr + Er)γ

+(Bimω
4
r + Cimω

3
r +Dimω

2
r + Eimωr + Fim) = 0 , (26)

where the coefficients Br, Cr , . . . and Bim, Cim, . . . are defined in the Appendix.

3. Results and discussion

Equations (25) and (26) are two polynomial coupled equations in ωr and γ of
degree 5 (five). So it is not possible to have their analytical solutions. One can
solve them numerically. But it has been found that it is troublesome to solve them
numerically even using the effective software ‘MATHEMATICA’. Because of this
technical difficulty, some terms occurring in Eqs. (25) and (26) have been dropped
due to smallness. As a consequence, a cubic equation in γ has been obtained. For
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argon dusty plasma, it has been solved numerically with the typical parameter
values:

neo = 94 × 1013 m−3, kBTe = 2.76 × 10−19 J , md = 1.66 × 10−17 kg ,

Ωc = 6.028 × 105sec−1, I0 = 0.643× 10−9 A ,

nd0 = 5 × 109 m−3, ni0 = 1015 m−3, Zd0 = 1.2 × 104,
md

mi
≈ 1020,

ωpd ≈ 1.77 × 10−2 sec−1, ωJd ≈ 0.527 × 10−2sec−1.

Numerical analysis reveals that two roots are large negative numbers which are
independent of k, while the third root is positive but very small (∼ 10−21) in the
absence of dust streaming. This positive root corresponds to the growing instability
of the waves. It is very interesting to note that the growth rate comes out to be of
the order of 10−6 if streaming of the dust particulates is considered. Apart from
this, the growth rate, and thereby the growing instability, turns out to be markedly
dependent on k. The mode of variation of the growth rate with k for a particu-
lar value of ud0, the streaming velocity of the dust grains is displayed in Fig. 1.
It shows that the growth rate increases in a nonlinear way with k. Moreover, it is

Fig. 1. Plot of growth rate γ(s−1) versus the wavenumber k(m−1) for the argon
dusty plasma.
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observed that the growth rate is greater when the streaming velocity of the dust
grains is higher and vice versa for a fixed value of k. In this case ωpd > ωJd. So,
the dynamics of the charged particles is governed mostly by electrostatic forces.
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Appendix

A =
(
k2ε0 +

e2ne0

kBTe

)
md, B = Br + iBim, C = Cr + iCim,

D = Dr + iDim, E = Er + iEim, F = Fr + iFim.

Br = −3kud0A, Bim = AΩc + emd
I0nd0

kBTe
,

Cr = −e2k2ni0
md

mi
+
[
e2ne0

kBTe

(
3k2u2

d0 + ω2
Jd

)
+ k2ε0

(
ω2

Jd + 3k2u2
d0 − ω2

pd

)]
md,

Cim = 2kud0md

[−e2ne0

kBTe

(
I0
e

nd0

ne0
+ Ωc

)
− k2ε0Ωc

]
,

Dr = 3e2k3ud0ni0
md

mi
− kud0md

e2ne0

kBTe

(
k2u2

d0 + ω2
Jd

)

+k3ε0mdud0

[
ω2

pd − (k2u2
d0 + ω2

Jd)
]

Dim = −e2k2ni0
md

mi

(
I0
e

nd0

ni0
+ Ωc

)
+
e2ne0

kBTe
md

(
k2u2

d0 + ω2
Jd

)

×
(
I0
e

nd0

ne0
+ Ωc

)
− k2ε0mdΩc

[
ω2

pd − (k2u2
d0 + ω2

Jd)
]
,

Er = e2k2ni0

[
− md

mi

(
ω2

Jd + 3k2u2
d0

)− Zd0ω
2
Jd

]
,

Eim = 2e2k3ni0ud0
md

mi

(
Ωc +

I0
e

nd0

ni0

)
,
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Fr = e2k3ni0ud0

[(
k2u2

d0 + ω2
Jd

)md

mi
+ Zd0ω

2
Jd

]
,

Fim = −e2k2ni0

(
I0
e

nd0

ni0
+ Ωc

)[
(k2u2

d0 + ω2
Jd)

md

mi
+ Zd0ω

2
Jd

]
.
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LINEARNI VALOVI U PRAŠNJAVOJ PLAZMI POD DJELOVANJEM
VLASTITE GRAVITACIJSKE SILE UZ IZMJENE NABOJA

U astrofizičkim uvjetima, za dinamiku velikih tijela, kao planeta i njihovih prati-
laca, te zvijezda, važne su samo gravitacijske sile, dok elektromagnetske sile odre-
d–uju dinamiku elektrona i iona. Med–utim, vrlo je zanimljivo primijetiti da su te
dvije sile usporedive, tj. Gm2

d/q
2
d ≈ O(1), u med–udjelovanju čestica mikronske i

podmikronske veličine, što vodi do novih pojava u omotaču Zemlje, Sunca i drugih
nebeskih tijela. Zamisao ovog rada je proučavanje linearnih valova u prašnjavoj
plazmi zbog vlastitih gravitacijskih sila. Sastav plazme su elektroni, ioni i čestice
prašine mikronske i podmikronske veličine. Pretpostavljamo homogenu plazmu
beskonačnih razmjera s jednolikom gustoćom tih čestica. Omjer Gm2

d/q
2
d je vrlo

malen za elektrone i ione pa se gravitacijska sila tih čestica može zanemariti. Razma-
tramo zajedno dinamiku iona i čestica prašine, uzimajući u obzir promjene naboja
zrnaca prašine. Izveli smo disperzijsku relaciju za analizu linearnih gravitacijskih
nestabilnosti valova. U ovom razmatranju nismo uzeli u obzir gravitacijsko polje
nultog reda, stoga se Poissonova jednadžba za gravitacijski potencijal, ψ, morala
izmijeniti. Analizira se disperzijska relacija i raspravljaju različiti slučajevi.
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