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Fluctuation pattern of pions is investigated in a wide range of projectile energy
from 4.5 AGeV (?**Mg-AgBr interactions) to 200 AGeV (32S-AgBr interactions).
Two-dimensional analysis is performed. To obtain the correct phase-space partition
condition considering anisotropy of phase space, we use the concept of Hurst ex-
ponent H. The analysis is performed in a rigorous way by fitting one-dimensional
factorial moment saturation curves. The effective fluctuation strength ceg is cal-
culated. The study reveals that the fluctuation pattern is scale-dependent at both
relativistic and ultrarelativistic energies.
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1. Introduction

The anomalous scaling of scaled factorial moments (SFM’s) or intermittency
[1] have been studied extensively with the aim of exploring the possible existence
of dynamical fluctuations or multifractal structure of multiparticle spectrum in
the high-energy collision process. Although the method of intermittency is intro-
duced to understand the unusual “spiky” events in pseudorapidity spectra [2—4],
the study of particle density fluctuation in different phase space domains can reveal
new insights into the underlying dynamics of multi-hadron production process. The
pioneers Bialas and Peschansky [1] suggested the behaviour of the scaled factorial
moments in analogy with the phenomenon known as intermittency in the hydro-
dynamics of turbulent fluid flow (Mandelbrot, Ref. [5]). The main advantage of
this method is that it disentangles the statistical noise, which contaminates the
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dynamical fluctuation, and measures only the non-statistical fluctuation. The cor-
responding experiments have been preformed in various kinds of collisions, et—e™,
hadron—hadron, hadron-nucleus and nucleus-nucleus. Most of the studies of in-
termittency have been performed in one dimension. But the actual process takes
places in three dimensions. It is generally believed that the fluctuations should be
studied in higher dimensions instead of one dimensional (rapidity) analysis. Ochs
[6] pointed out that in the lower-dimensional projection, the fluctuation gets re-
duced by the averaging process. The projection effect may completely wash out
the self-similar nature of fluctuation. Thus, the analysis should be done in higher
dimensions to reduce the error due to dimensional reduction.

The wusual procedure for analyzing higher dimension, in particular two-
dimensional intermittency, is to divide the corresponding phase space subsequently
into sub-cells by shrinking equally in each dimension, considering the phase space
to be isotropic. This corresponds to self-similar fractal structure [7]. However, the
phase space in multiparticle production is generally found to be anisotropic [8]. The
influence of anisotropic phase space on nonstatistical fluctuation should be consid-
ered. For this reason, we cannot simply expect the fluctuation or scaling properties
to be the same in both directions. According to Mandelbrot [9], a pattern scaled
differently in different direction is called self-affine fractal. Since both one- and
two-dimensional self-similar evolution are not good candidates for the description
of multiparticle production the next possibility is two dimensional self-affinity.

Investigations in high-energy nuclear collisions are generally carried out on the
produced pions, because these particles are believed to be the most informative
about the collision dynamics. In our earlier works, we have investigated the fluctu-
ation pattern of 2Mg-AgBr interaction at 4.5 AGeV and 32S-AgBr interaction at
200 AGeV in two dimension and the fluctuation pattern was found to be self-affine
with Hurst exponent H = 0.4 and 0.7, respectively [10]. However, the question
arises, is the fluctuation pattern different at different scales? Analysis is carried
out at two different projectile energies to find out whether the scale dependence of
fluctuation pattern of pions is a general observation and whether the dependence
is different at different projectile energies.

In our earlier works, we have optimized the value of H by finding the minimum
of x?/d.o.f. of the linear fit to the plots of In(F,) to In M [11]. But in that case the
corresponding errors should be estimated with utmost care keeping in mind that the
data points are correlated since they stem from the same data sample which is quite
difficult. Though different approaches for error calculation have been prescribed,
none of them has been claimed to give a correct estimation. The estimation of
errors is nontrivial and the accuracy of the method of determination of depends
on how accurately the errors are determined. The robustness of the method of
determination of H was questioned by some physicists, hence, in this paper we deal
with the problem in a more rigorous manner by fitting one-dimensional Fy vs. M
saturation curves as done by Agababyan et al. [12]. The value of H is extracted,
two-dimensional analysis is performed and values of intermittency exponent and
effective fluctuation strength are calculated. The study reveals that the fluctuation
pattern is scale-dependent as well as phase-space dependent.
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2. Erxperimental details

The data set used in this analysis were obtained by exposing NIKFI BR2
nuclear-emulsion plates to ?*Mg beam at 4.5 AGeV at JINR Dubna, Russia and
G5 nuclear emulsion plates to S beam with energy 200 AGeV from CERN SPS.
The particles emitted after interaction are classified as :

(i) Black particles which are constituted of target fragments. They have range
< 3 mm and velocity < 0.3 c.

(ii) Grey particles which are constituted of recoil protons with energy upto 400
MeV. They have range > 3 mm and velocity between 0.3 ¢ and 0.7 c.

(iii) Shower particles which are constituted mainly of produced pions. They
have velocity > 0.7 c.

Along with these tracks there are few projectile fragments. They generally lie
within 3° w.r.t. the mean beam direction. Great care is taken to identify the
projectile fragments.

A total 800 events for 2Mg beam ((ns) = 9.99) and 140 events for 32S beam
((ns) = 93.12) with nj, > 8 were selected for the present analysis as genuine 2*Mg-
AgBr and 32S-AgBr interactions (np, = ny + ng) where ng, ny and n, are average
multiplicities of the shower, black and grey particles, respectively. The details of the
data, scanning and measurement procedure is given in our earlier papers [11,13]. It
is worthwhile to mention that the emulsion technique possesses a very high spatial
resolution which makes it a very effective detector, though with a limited statistics.

3. Method of study

For two-dimensional analysis of fluctuation pattern of pions, we first consider
the two-dimensional factorial moment defined by the relation (1). In the two-
dimensional phase space, if the two phase space variables are 1 and x2, the factorial
moment of order ¢, F, is given by the relation [1]

N (N — 1) -+« (N, — ¢+ 1)
(m)?

NE

Fq(éxl,éxg) = M (1)
m=1
where dx1x dxo is the size of a two-dimensional cell, n,, is the multiplicity in the
m™ cell, M’ is the number of two-dimensional cells into which the considered
phase-space has been divided.
In the two-dimensional space (say denoted as (z1, z2)) we make self-affine trans-
formation dz1 = Axy /My and dxg = Az /Ms, where My#Ms and M’ = My - Mo.
Here M, and Ms are the scale factors that satisfy the equation

My = M (2)
where the parameter H is called the Hurst exponent [14]. The roughness factor or
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the Hurst exponent H is given by

Hyip =

In M2 (3>

WlthMlgMQandOSHgl

It is the parameter which is characterizing the anisotropy of the system under
study. For H = 0, M; = 1, and the scaling property does not exist in that direction.
For H = 1, M, = M,, the self-affine transform reduces to a self-similar one, i.e., the
system is isotropic in these two directions. For 0 < H < 1, the nontrivial self-affine
fractality exists. The Hurst exponent can be deduced from the data by fitting the
one-dimensional second-order factorial moment saturation curves [6],

Fg(i) (M;) = a; — b; M “ where 1=1,2 (4)

as prescribed by Agababyan et al. [12].

We have performed our analysis in two dimensional (7, ¢) space. The Hurst
exponent can be determined from the from the parameter ¢; as

1+¢
H;j = . 5
i T (5)
As mentioned earlier, 0 < H <1, and
if ¢, >cy, then H= 4o, and M, = Mg (6)
. l+ec H
if ¢, <cy, then H= 1"‘02 and M, = M,

It is clear from Eq. (2) that the scale factors M,, and My cannot simultaneously
be integer, so that the size of elementary phase space cell can be take continuously
varying values.

To perform the analysis with non-integral value of scale factor (M), we adopt
the following method. For simplicity, consider one-dimensional space (y) and let

M=N+a (7)

where N is an integer and 0 < a < 1. When we use the elementary bin of width
0y = Ay/M as ‘scale’ to ‘measure’ the region Ay, we get N of them and a smaller
bin of width aAy/M left. Putting the smaller bin at the last (or first) place of the
region and doing the average with only the first (or last) N bins, we have

N
Fq(éx) _ % Z <nm(nm — 1)<nm>(qnm —q+ 1)> (8)

m=1
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M determined by Eq. (7) can be any positive real number and so can vary contin-
uously.

Our work has been performed in two-dimensional pseudorapidity — azimuthal
angle (w.r.t. the beam direction) space. As shape of this distribution influences the
scaling behaviour of the factorial moments, we have used the “cumulative” variables
X, and X, instead of n and ¢ [15]. The corresponding region of investigation for
both variables then becomes (0,1). The cumulative variable X (z) is given by the
relation

J ola")oa’
X() = 2 (9)

[ p(a’)oa’

where z1 and z2 are two extreme points in the distribution p(x), between which X
varies from 0 to 1. However, to avoid confusion we have called the variables X, and
X¢ as n and ¢, and later in this paper, wherever we mention n and ¢, we actually
mean X, and Xg.

The intermittent behaviour of multiplicity distribution manifests itself as the
power-law dependence of factorial moment on the cell size as the cell size — 0,

(Fy) o< (dndd) = . (10)

The exponent «, is the slope characterizing linear rise of (In Fj,) with — In(dnd¢).
The strength of the intermittency is characterized by the exponent oy, and can be
obtained from a linear fit of the form

In(F,) = —a,In(dnde) + A (11)

where A is a constant.

The above anomalous scaling of Fj, with non vanishing indices o, is an evidence
for the existence of the dynamical fluctuation.

The multifractal dimension D, is defined by
Dy =1-0aq/(g—1) (12)

Both the intermittency exponent a4, and multifractal dimension D, are re-
lated to the strength of the dynamical fluctuations. But they have their own
physical meaning and, hence, cannot be taken directly as a measure of the fluc-
tuation strength. Liu Lianshou, Fu Jinghua and Wu Yuanfang [16] proposed a
method of determining the strength of fluctuation from the intermittency expo-
nent o, and multifractal dimension D;. The strength of the fluctuation is given

by /812(1 — D,). However, for ¢ = 2 this formula reduces to the simpler form
q q

V/3In2(1 — Dy) &~ /2(1 — Ds). Thus the strength of the fluctuation can be ob-
tained from above formula. The formula for the strength of fluctuation is obtained
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from the « cascading model. For the general case, when the underlying dynam-
ics is unclear, it is really difficult to obtain the expression for the strength of the
fluctuation. However, we can obtain an approximate estimation of the fluctuation
strength. For an arbitrary process, the effective fluctuation strength is given by

et = /2(1 — D3) = 203 (13)

4. Results and discussion

To perform the two-dimensional analysis of fluctuation pattern of pions, we
must first find the correct partition condition in 7 and ¢ directions with the Hurst
exponent taking care of the anisotropy of phase space. For extracting the value of
H we calculate first the one-dimensional factorial moment F» for n and ¢ space for
2< M <30,2<M<1515< M <30,10< M < 20 and 12 < M < 25 for both
the interactions. The parameters a, b and ¢ can be calculated by fitting the data in
Fig. 1 using Eq. (4). We have used the Marquardt-Levenberg algorithm to find the
parameters that give the best fit of Eq. (4) to the data. This algorithm seeks the
values of the parameters that minimize the sum of the squared differences between
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Fig. 1. Plot of F5 vs. In M for both interactions in n and ¢ space in bin ranges: Page
at left (top) 2 < M < 30, (bottom) 2 < M < 15, this page (top) 15 < M < 30,
(middle) 10 < M < 20 and (bottom) 12 < M < 25.

the values of the observed and predicted values of the dependent variable. This
process is iterative. We begin with aguess of the parameters, the process contin-
ues until convergence is achieved. We have performed an un-weighted least-squares
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curve fit. The values of the parameters a, b, ¢ and the calculated values of H are
provided in Table 1. The correct partition condition in n and ¢ directions can be
obtained according to Eq. (6). Two-dimensional factorial moments of the second
order are then calculated. The value of intermittency exponent cs can be extracted
from the slope of the linear fit in the plot of In{Fy) vs. —In(éndp). x2/d.o.f. is

TABLE 1. Values of the parameters a, b, ¢ and H for different ranges of M for

both interactions.

24Mg-AgBr interaction at 4.5 GeV
M Space a b c H

2< M <30 n 15.8034£0.423|4.8144+0.413(0.103£0.011|0.9604+0.011 — 1.0
¢ |5.816£0.219]4.393+0.207|0.149£0.010

2<M<15| n |2.882+0.084|1.762+0.072|0.2884+0.022|0.988+0.033 — 1.0
¢ 13.62140.168|2.907+0.148]0.272+0.025

15< M <300 n |7.28240.48116.67540.453]0.0954+0.010{0.968+0.027— 1.0
¢ [5.726%£0.546(4.961+0.485(0.131£0.022

10< M <20] n ]3.95940.715|3.4504+0.507|0.2334+0.009|0.886+0.025— 0.9
¢ |6.69841.104|5.707£1.101]0.092+0.023

12< M <25 n |4.2454+0.85413.936+0.587|0.2294+0.009(0.876+0.021 — 0.9
¢ |7.750£1.267|6.753£1.230|0.076=£0.019

325 AgBr interaction at 200 GeV
M Space a b c H

2<M <30 | 7 [1.9054+0.045]0.8654+0.042|0.5994+0.011|0.836+0.032— 0.9
¢ 12.41240.149(1.436+0.105|0.337+0.007

2< M <15 n |1.785£0.056|0.715+0.062|0.791+£0.023| 0.630+0.097 — 0.6
¢ |3.777£0.256]2.7184+0.249|0.128+0.016

15 <M <30] n ]2.07940.092|1.02640.062|0.3934+0.012{0.9794+0.069 — 1.0
¢ 12.22140.129(1.168+0.138|0.423+0.017

10< M <20 n |2.11040.131]1.08940.156|0.38540.013{0.935+0.088 — 0.9
¢ [2.565%0.451(1.592+0.216|0.295+0.018

12< M <25| n ]2.0174+0.064|1.05640.089|0.4734+0.011|0.9804+0.066 — 1.0
¢ 12.21840.157|1.232+0.146|0.443+0.020
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also calculated. The x?/d.o.f. values are obtained by considering the statistical
errors calculated independently of each point and they form the diagonal terms of
the complete covariance matrix. The off-diagonal terms of the covariance matrix
arise due to the correlation between data points. To have a detailed idea of the
full covariance matrix, this correlation between data points should be taken into
account. However, it is seen in different works [12] that the contributions to the
x?%/d.o.f. values come mainly from the diagonal terms of the complete covariance
matrix. The changes in the values of x?/d.o.f. are insignificant when the effects of
the off-diagonal terms are considered.

e is calculated using the Eq. (13). The respective values are provided in Table
2. The variation of aes with the different bins (scales) for both the interactions is
shown in Fig 2. Both at 4.5 AGeV and 200 AGeV, the degree of anisotropy is
different at different scales. At 4.5 AGeV, the fluctuation pattern is self similar in
bins 2 < M < 30,2 < M <15 and 15 < M < 30, while it is self-affine in bins
10 < M <20 and 12 < M < 25. High values of the Hurst exponent suggest that
the anisotropy is not strong in this case.

1.10

| ® 45AGeV
1.054 o 200 AGeV

1.00+
0.954 ) .
0.901
=

51! 0.85-_

0.807 Fig. 2. Plot of aeg vs. ranges

0 75__ of M for both interactions.

0704 ¢ °

0.65+

0.60+—F——F——T——T—
230 215 1530 10-20 1225
Ranges of M

However, in the case of 32S-AgBr interactions at 200 AGeV, the fluctuation
pattern is self-similar in bins 15 < M < 30 and 12 < M < 25, while it is self-
affine in bins 2 < M < 30,2 < M < 15 and 10 < M < 20. Anisotropy in 7
and ¢ directions is pronounced for the bin 2 < M < 15, while for 2 < M < 30
and 10 < M < 20 the anisotropy is not very strong in 1 and ¢ directions. Thus,
we find that the fluctuation pattern is scale-dependent both at the relativistic and
ultra-relativistic energies and the scale dependence w.r.t. degree of anisotropy is
more pronounced at ultra-relativistic energies.
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For 2*Mg-AgBr interactions at 4.5 AGeV, when a given range of values of M,
2 < M < 30 is divided into sub-intervals, then the values of ag varies significantly
for the bins 2 < M < 15,15 < M < 30 and 10 < M < 20, while the change is not
so prominent for the bin range 12 < M < 25. A non-monotonic behaviour of the
fluctuation strength is revealed in this case. However at 200 AGeV, a significant
change from the values of aeg 2 < M < 30 is noticed for the bins 15 < M < 30
and 12 < M < 25. The change is not pronounced for bins 2 < M < 15 and
10 < M < 20. At 200 AGeV, the fluctuation strength is found to be more in those
bins where self-affinity is observed. But unlike in the case of 2*Mg-AgBr interactions
at 4.5 AGeV, aeg decreases when a given interval is spilt into subintervals and no
non-monotonic behaviour is revealed. From the values of aeg provided in Table 2
as well as in Fig. 2, we observe that the effective fluctuation strength as well as its
scale dependence are more pronounced at 4.5 AGeV. Thus we can summarize as
follows:

a) The fluctuation pattern of pions is scale dependent both at relativistic and
ultra-relativistic energies.

b) The scale dependence w.r.t. the degree of anisotropy is more pronounced at
ultra-relativistic energies.

¢) The scale dependence w.r.t. the fluctuation strength is more pronounced at
the lower energy.

TABLE 2. Values of aa, aeg and x?/d.o.f. for different ranges of M for both

interactions.

76

24Mg-AgBr interaction at 4.5 GeV
M ! Qoff x*/d.o.f.
2 < <30 0.443+0.005 0.941+£0.005 0.224
<M <15 0.425+£0.011 | 0.922+0.012 0.373
15 <M <30 | 0.482£0.026 | 0.982+0.026 0.138
10< M <20 | 0417£0.018 | 0.913+0.020 0.067
12< M <25 | 0.451£0.026 | 0.95040.027 0.178
325 AgBr interaction at 200 GeV
M ! Qoff x*/d.o.f.
2< M <30 0.25240.005 | 0.710£0.007 0.419
2<M<15 0.248+0.008 | 0.70440.011 0.268
15 <M <30 | 0.229+0.017 | 0.677+0.025 0.133
10< M <20 | 0.238+0.019 | 0.690+0.028 0.234
12< M <25 | 0.214£0.017 | 0.654+0.026 0.274
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JESU LI KOLEBANJA PIONA U RELATIVISTICKIM I
ULTRARELATIVISTICKIM NUKLEARNIM SUDARIMA OVISNA O
LJESTVICI?

Proucavamo kolebanje piona nastalih u sudarima 2*Mg-AgBr na 4.5 AGeV i 32S-
AgBr na 200 AGeV za §iroko podrucje energije. Nacinili smo dvodimenzijske ana-
lize. Zbog anizotropije faznog prostora, primijenili smo Hurstov eksponent H radi
postizanja ispravne razdjele faznog prostora. Proveli smo strog racun prilagodbe
jednodimenzijskih krivulja zasi¢enja faktorijalnih momenata. Izracunali smo efek-
tivnu jakost kolebanja aeg. Nasli smo ovisnost slike kolebanja o ljestvici za rela-
tivisticke i ultrarelativisticke energije.
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