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The most remarkable recent astrophysical event concerns the discovery of the
cosmic accelerated expansion of the Universe. In fact, recent observations of the
Type SNIa distant supernovae and of the cosmic microwave background anisotropy
have led to the idea that our universe is undergoing a super-expansion or accelerated
expansion such that ä > 0 where a(t) is the scale factor of the Universe, tending
to a flat de-Sitter space-time as predicted by the standard old inflation theory
[1 – 3]. These observations suggests from theoretical point of view the presence of
a mysterious dark energy with negative pressure obeying the equation of state
parameter (EOSP) w = p/ρ < −1/3 and accounting for the missing energy if one
really believes inflation theory in all its aspects predicting Ω = 1. In fact, analysis of
recent observational data support w ≤ −1 strongly, violating strong or weak energy
conditions [4 – 6]. The critical value w = −1 corresponds to the phantom barrier.
On the other hand, investigations of recent findings of BOOMERANG experiments
[7] strongly suggest that the cosmos is spatially flat in agreement with inflationary
framework. Up to now, many theoretical candidates and phenomenological theories
have been postulated to fit various observations and to try to explain the physical
nature of the dark fluid, including the ΛCDM model [8] consisting a mixture of
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cosmological constant Λ and cold dark matter (CDM) or WIMPS composed of
weakly interacting massive particles which must be relics of a grand unified phase
of the Universe, quintessence with a very shallow many-forms potential [9], K-
essence [10], viscous fluid [11], Chaplygin gas [12, 13], generalized Chaplygin gas
model (GCGM) which mimics both dark matter and dark energy [14, 15], Brans–
Dicke (BD) pressureless solutions [16 – 18], decaying Higgs fields [19], dilaton field
of string theories with gaugino condensation [20], tachyon as a dark energy source
[21], etc.

Most of these theories face many difficulties. For example, within the framework
of the ΛCDM model, the vacuum energy is set to be constant with time while the
energy density of matter decays with cosmic time. Their ratio must be set to a
specific infinitesimally small value (10−120) in the early Universe so as to nearly
coincide today, i.e. there exists a huge of discrepancy of about 120 orders of magni-
tude between the predicted and the observed values of the cosmological constant.
This is called the “cosmic coincidence” problem (CCP). It has been recently proved
that when dark energy (DE) is driven by tachyon, non-minimally coupled with cur-
vature, it decays lately to dark matter, a scenario giving a possible solution to CCP
[21]. In fact, it is found that the ratio ρCDM/ρDE grows with time, but keeping itself
less than unity, thus provides a possible solution to CCP. Despite this interesting
feature, the model is constrained by one-type potential: a self-interacting inverse
cubic one. In the GCGM, the density perturbations in the theory exhibit large
oscillations in the resulting power spectrum which do not appear in the observed
spectrum of mass agglomeration [22]. Other difficulties associated with quintessence
scenarios are that the couplings of the scalar field to matter can lead to observ-
able long-range forces and time variation of fundamental constants of nature, in
particular the gravitational constant and the celerity of light.

Many different alternative theoretical models have been developed including the
higher-derivative theory with an additional quadratic scalar curvature [23 – 29]. In
reality, generalizations of Einstein’s theory of general relativity (EGR) are not new,
it was first considered by Eddington [30]. These theories, deviating from the general
relativity with small polynomial corrections in Ricci scalar curvature (for example
as Rn, R2, R3, RµνRµν , RµνρσRµνρσ, 2R, R2R, f(R) subject to lim f(R)/R = 0
when R → 0, etc.)1, may mimic the effects of DE on the Hubble flow. In addition,
if non-linear term of scalar curvature (the main ingredient of the higher-derivative
gravity) is added to Einstein–Hilbert part of the Lagrangian, it was theoretically
found that DE and dark matter (DM) may emerge from the gravitational sector and
exact appealing cosmological solutions may exist despite the fourth-order mathe-
matically complicated field equations (early Universe singularity may be avoided
in some cosmological solutions) [31 – 36]. It is worth-mentioning that such higher-
order terms in curvature invariants are unavoidable if we want to construct an
effective theory of gravity closed to the Planck epoch. In fact, the double role (ge-
ometrical and spinless physical field) of the Ricci curvature scalar is the key part
of non-Newtonian theory of gravity, where space-time geometry has a vital role.

1When n → 1 or R becomes small, the EGR is recovered where Lagrangian density is R/(2κ)
and κ = 8πG is the gravitational constant.
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But in fact, the crucial features of inflationary and quintessence models refer
to the universe dominated by a nonminimally coupled scalar field [35 – 37]. A se-
ries of theoretical arguments imply that the investigations of inflationary theory
with minimal coupling in the framework of general relativity are in fact theoreti-
cally inconsistent. Nevertheless, a correct treatment of inflationary cosmology im-
plies highly the presence of non-minimal coupling between the inflaton with the
scalar field φ and the Ricci scalar curvature. Recently, we have investigated a
particular cosmological model with complex scalar self-interacting inflation field
non-minimally coupled to gravity, based on supergravities argument [38, 39]. It
was shown that in the case of non-minimal conformal coupling between the scalar
curvature and the density of the scalar field, L = −(1/12)

√−gRφφ∗ (φ∗ is the
complex conjugate of φ and g is the scalar metric), and for the particular scalar

complex potential field (QPF) Ṽ (φφ∗) = −(3/4)m2 + (3/4)m2ωφ2φ∗2, ω ≪ 1,
ultra-light masses m (|m2| ≈ H2, H is the Hubble parameter) are implemented
naturally in the Einstein field equations (EFE), leading to a cosmological constant
Λ in accord with observations. The induced (second) cosmological constant was
found to be Λm ≡ Λinduced ≈ −3m2/4. These ultra-light masses are in fact too
low, while they may have desirable feature for the description of the accelerated
universe [35, 40 – 46]. It is in fact required in many quintessence models based on
supergravity arguments. Several alternative possible solutions have been proposed,
including a time-varying energy density, dilaton from string theory, supersymmet-
ric exotic particles, massive neutrinos, holographic dark energy, N = 8 and N = 2
supergravity, M/string theory, phantom energy etc. [23 – 25]. In most of these the-
ories, we still find difficulties to solve the cosmological constant problem, to find
a suitable dynamical theoretical scenario generating a small “lambda” and explain
at the same time the recent astrophysical observed parameters.

We believe that higher than quadratic terms in the action are also likely to be
involved in the theory, e.g. the presence of cubic terms in the action can produce
important changes in the whole cosmological scenario. Motivated by these consid-
erations, we are going to study a generalization of EGR with non-minimal coupling,
where the action is taken as

S = SHE + S(Rα) + S(R2) + S(Rβ) + S(R3) + Sint + S(φφ∗)

=

∫ √−g d4x

(

R + 2Λ

2κ
− aRα + bR2 − cRβ + dR3

−1

2
gµν

(

∂µφ∗∂νφ + ∂µφ∂νφ∗
)

− Ṽ (φφ∗) − ξRφφ∗

2

)

, (1)

where Sg = (2κ)−1
∫

d4x
√−g(R + 2Λ) is the Einstein–Hilbert gravitational part

of the action, Sint = −(1/12)
∫

d4x
√−gRφφ∗ is the non-minimal interaction term

between the gravitational and the complex scalar fields, ξ is the non-minimal cou-
pling term (= 1/6 for conformal coupling case), S(φφ∗) describes the material part
of the action associated with the complex scalar field, α and β are real numbers
such that 1 < α < 2 and 2 < β < 3 (of course α and β may be larger than 2 and 3
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respectively), a, b, c and d are dimensionless coupling constants different from zero
to avoid the ghost problem. It is worth-mentioning that the current accelerated
universe could be produced by modified gravitational dynamics, in particular when
the curvature of the universe reaches nearly zero values. Thus, one expects that the
dimensionless coupling parameter “a” is much bigger in comparison to the other
dimensionless parameters in the theory (asymptotically, the curvature is small).
One expects that order larger than three are mathematically difficult and may dis-
play singular or particular perturbation behaviour. In fact, one may consider also
terms evolving as R−1, R−γ , etc, where γ is a positive number. In other words,
the extended Lagrangian is of the form L = R + Rm + R−n + . . ., where m and
n are positive parameters. However, the solutions obtained are piecewise and are
treated separately, i.e. large and small values of the scalar curvature, corresponding
to early and late time behaviour of the model, respectively [23]. There is in addition
a criticism against negative power of the scalar curvature due to the occurrence of
many stability problems, unsuitable for local astrophysics. The present work shows
that a combination of nonlinear contributions from the Ricci curvature scalar in the
Lagrangian can drive a late time acceleration of expansion of the universe without
involving any kind of phantom or tachyon dark energies.

The action (1) yields the following gravitational field equations [36]

(

1

2κ
− ξφ∗φ

)

Gµν + (∂µφ∗∂νφ + ∂µφ∂νφ∗) − gµν∂λφ∗∂λφ

+gµν

(

Λ − 3

4
m2 +

3

4
m2ωφ2φ∗2

)

+
1

3
(gµν2φ∗φ −∇ν∂µφ∗φ)

−a

[

α
{

∇µ∇νR(α−1) − 2gµν2R(α−1) + αR(α−1)Rµν

}

− 1

2
gµνR(α)

]

+2b[R;µν − gµν2R + RRµν ] − 1

2
gµνR2

−c

[

β
{

∇µ∇νR(β−1) − 2gµν2R(β−1) + αR(β−1)Rµν

}

− 1

2
gµνR(β)

]

+d

[

{

3∇µ∇νR2 − 3gµν2R2 + 3R2Rµν

}

− 1

2
gµνR3

]

= 0, (2)

where the operator

2 =
1√−g

∂

∂xµ

(√−ggµν ∂

∂xν

)

denotes the d’Alembertien, ∇ν is the covariant derivative, µ, ν = 0, 1, 2, 3 and gµν

82 FIZIKA B (Zagreb) 16 (2007) 2, 79–88



el-nabulsi: cosmology from extended general relativity

are the metric tensor components. Taking trace of Eq. (2) gives

2R − 2 − α

R
∇µR∇µR − 1

3α(α − 1)

[

R(3−α)

2κa
− (2 − α)R2

]

+
R

12κb

−2 − β

R
∇νR∇νR − 1

3β(β − 1)

[

R(β−1)

2κc
+ (β − 2)R2

]

+
1

R
∇µR∇µR +

1

36κd
− R2

18

=
4Λ − 3m2 + 3m2ωφ2φ∗2

12(1 − ξκφ∗φ)

(

R2−α

2a
+

Rβ−2

2c
− 1

36dR
− 1

2a

)

. (3)

In most of the cosmological models, the cosmological constant, and as a result the
ultra-light masses, decrease as a power law like Λ = Λ0t

−q (m2 = m2
0t

−q), where t
is the cosmic time and q ≤ 2, Λ0 and m2

0 are positive parameters [33, 34], whereas
the Ricci scalar may decreases as R = Cã−r, where ã is the scale factor, C is a
constant and r is a non-zero real number but less than unity [31, 32]. The effective
Ricci scalar curvature yields then ã = ã0t

q/r, ã0 is some constant. Moreover, in
most of the non-minimally coupled scalar fields, the scalar field evolves as a power
law φ = φ0t

p, p is also a real parameter and φ0 is a positive parameter similar to
the phantom field used to describe the inflationary phase of the Universe (the same
rule holds for the complex scalar field). For a flat FRW cosmological spacetime, the
cosmological dynamical equation takes one of the following forms:

R̈ + 3
˙̃a

ã
Ṙ − (2 − α)

Ṙ2

R
− 1

12κb
− 1

3α(α − 1)

[

R(3−α)

2κa
− (2 − α)R2

]

− 1

3β(β − 1)

[

R(β−1)

2κc
+ (β − 2)R2

]

+
1

36κd
− R2

18

=
4Λ0 − 3m2

0 + 3m2
0ωφ2

0φ
∗2
0 t4p

12tq(1 − ξκφ2
0t

2p)

(

R2−α

2a
+

Rβ−2

2c
− 1

36dR
− 1

2a

)

≈ − m2
0ωφ2

0φ
∗2
0

4ξκφ2
0t

q−2p

(

R2−α

2a
+

Rβ−2

2c
− 1

36dR

)

, (4)

¨̃a

ã
+ (2 − r(α + β + 1))

( ˙̃a

ã

)2

=
1

3α(α − 1)

[

− ãr(2−α)

aκr
+ (2 − α)

C

rãr

]

+
1

3β(β − 1)

[

− ãr(β−2)

cκr
+ (β − 2)

C

rãr

]

− 1

6bκr
+

1

18

[

ãr

dκr
+

C

rãr

]
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−
(

4Λ0 − 3m2
0

12qC(t/a)q(1 − ξκφ2
0t

2p)
+

3m2
0ωφ2

0φ
∗2
0 t4p

12qC(t/a)q(1 − ξκφ2
0t

2p)

)

×
(

Eãr(2−α)

2a
+

F ãr(β−2)

2c
− ãr

36dC
− 1

2a

)

≈ 1

3α(α − 1)

[

− ãr(2−α)

aκr

]

+
1

3β(β − 1)

[

− ãr(β−2)

cκr

]

− 1

6bκr
+

1

18

[

ãr

dκr

]

(5)

+
1

12qCξκφ2
0

(

R0a
q

t2p+q
+

3m2
0ωφ2

0φ
∗2
0 aq

tq−2p

)(

Eãr(2−α)

2a
+

F ãr(β−2)

2c
− ãr

36dC

)

,

where E and F are constants and R0 = 4Λ0 − 3m2
0. In Eqs. (4) and (5), we have

assumed that 4Λ0 ≈ 3m2
0 for later convenience and a ≫ 1 for reasons mentioned

above. Equation (5) integrates easily to the following equation

ȧ2

a2
= − A

a[3−r(α+β+1)]
+

1

3α(α−1)

[

− ãr(2−α)

aκr
(

r(2−α)+2[3−r(α+β+1)]
)

C2−α

+
(2 − α)C

r
(

−r+2[3−r(α+β+1)]
)

ãr

]

+
1

3β(β−1)

[

(β − 2)C

3r
(

−r+2 [3−r(α+β+1)]
)

ãr

+
ãr(β−2)

cκr
(

r(β − 2) + 2 [3 − r(α + β + 1)]
)

Cβ−2

]

+
1

72bκr[3 − r(β + 3)]

+
1

18

[

ãr

cκr
(

r + 2[3 − r(α + 4)]
)

C
+

C

3r
(

−r + 2[3 − r(α + 4)]
)

ãr

]

+
R0rã

(2p+q)q/r
0

(

Ẽã−[(2p+q)q−qr−r2(2−α)]/r + F̃ ã−[(2p+q)q−qr−r2(β−2)]/r
)

24aqCξκφ2
0

(

(2p + q)q − qr − r2(2 − α) + 2r[3 − r(α + β + 1]
)

+
m2

0rωφ∗2
0 ã

(q−2p)q/r
0 a

(

Ẽã−[(q−2p)q−qr−r2(2−α)]/r + F̃ ã−[(q−2p)q−qr−r2(β−2)]/r
)

8qaCξκ
(

(q − 2p)q − qr − r2(2 − α) + 2r [3 − r(α + β + 1)]
)

− R0ã
(2p+q)q/r
0 ã−[(2p+q)q−qr−r2]/r

432dqC2ξκφ2
0

(

(2p + q)q − qr − r2

r
+ 2 [3 − r(α + β + 1)]

)

− m2
0ωφ∗2

0 ã
(q−2p)q/r
0 ã−[(q−2p)q−qr−r2]/r

144dqC2ξκ

(

(q − 2p)q − qr − r2

r
+ 2 [3 − r(α + β + 1)]

) , (6)

where Ẽ and F̃ are other constants in the theory function of C. Setting r = 3
[31, 32] this equation is the modified Friedman equation which can be written at
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late times as
ȧ2

a2
=

8πG

3
(ρDE + ρ1 + ρ2 + . . . + ρ13) (7)

where

ρDE ∝ A0 a−3(α+β), ρ1 ∝ A1 ã6−3α, ρ2 ∝ A2 ã−3, ρ3 ∝ A3 ã3β−6,

ρ4 ∝ A4 ã−3, ρ5 ∝ A5 ã0 = cte, ρ6 ∝ A6 ã3, ρ7 ∝ A7 ã−3,

ρ8 ∝ A8 ã−[(2p+q)q−3q−9(2−α)]3, ρ9 ∝ A9 ã−([2p+q)q−3q−9(β−2)]/3,

ρ10 ∝ A10 ã−[(q−2p)q−3q−9(2−α)]/3, ρ11 ∝ A11 ã−[(q−2p)q−3q−9(β−2)]/3,

ρ12 ∝ A12 ã−[(2p+q)q−3q−9]/3, ρ13 ∝ A13 ã−[(q−2p)q−3q−9]/3.

Ai, i = 0, 1, 2, ..., 13 are constants which are functions of the dimensionless param-
eters in the theory.

In summary, thirteen different densities arise: ρ2,4,7 represent the density of
pressureless matter. ρ5 is negative and can be viewed as a new negative cosmological
constant emerging in the theory. The sign of this cosmological constant can explain
why the present cosmological constant is too small. ρDE is the dark energy density
and is proportional to ã3(α+β). It is interesting to note that the dark energy density
increases with time. Note that −3 < 3α − 6 < 0 and −3 < 6 − 3β < 0, and
consequently ρ1 and ρ3 will contribute to the formation of more dark energy in the
Universe. The density ρ6 arises due to the curvature of order three. It is recognized
also as DE component. As for ρ8,9,10,11,12,13, they arise from the critical power-
law behavior of the complex scalar field, the decaying ultra-light masses and the
evolution of the scale factor of the Universe. If we set α = β = 10/3, then ρ1 and
ρ3 will contribute to the radiation matter. They may also contribute to the DE or
to the cosmological constants if the scale factor exponents are well-adjusted. There
exist in literature some indications that q = 4 and p = 1 are favorable values, i.e.
Λ,m2 ∝ t−4 and φ ∝ t [40 – 48]. Then, one get easily

ρ8 ∝ A8 ã−(9α−6)/3
(

− 4 < (6 − 9α)/3 < −1
)

,

ρ9 ∝ A9 ã−(30−9β)/3
(

− 4 < (9β − 30)/3 < −1
)

,

ρ10 ∝ A10 ã−(9α−22)/3
(

4/3 < (22 − 9α)/3 < 13/3
)

,

ρ11 ∝ A11 ã−(14−9β)/3
(

4/3 < (9β − 14)/3 < 13/3
)

,

ρ12 ∝ A12 ã−1, ρ13 ∝ A13 ã13/3. (8)

That is to say that ρ10,11,13 will contribute certainly to the DE, while ρ8,9,12 will
contribute to matter and radiation (combined effect of the power-curvature expo-
nents and non-minimal coupling). It is worth-mentioning that for q = 2, p = 1 and
r = 3, that is for ã ∝ t2/3, the Universe is not accelerating with time, whereas the
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cosmological constant is reduced to a value less than that of the standard FRW cos-
mology with more dark energy. This seems also interesting since neither the weak
energy nor the strong energy conditions are violated as in phantom cosmologies.
In fact, note that accelerated cosmology is not favored by 100% of astrophysicists.
Many claimed that recent astrophysical observations, in particular the SNIa distant
supernovae must be carefully reexamined.

This shows the role of the higher-order terms of the Ricci scalar as well as the
role of the non-minimal coupling term in dual gravity theory and its dominance in
the DE density arising from higher derivative dual theory. The higher curvature
order terms (HCOT) in R model described in this work have some interesting
features and are somewhat promising: the contribution of the HCOT on dark
energy problem, the role played by the non-minimally coupled scalar field, and
the role of the ultra-light tiny masses and the vacuum cosmological constant. The
model introduces a third cosmological constant Λ3 ∝ −ρ5 in the theory which is
negative and consequently explains the smallness of the cosmological constant. The
effective cosmological constant is then

Λeffective = ΛEinstein − Λm − Λ3. (9)

These results emphasize the need for careful and critical examination of models
with nonlinear contribution from the Ricci scalar curvature in differential geometry
in general and cosmology in particular. Further details and analysis, in particular
the presences of negative and exponential powers of curvature [49 – 52] in different
dimensions [53] are in progress.
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KOZMOLOGIJA ZASNOVANA NA PROŠIRENOJ OPĆOJ RELATIVNOSTI

Istražujemo posebnu kozmologiju zasnovanu na proširenoj općoj relativnosti u kojoj
je lagranžijan proširen nelinearnim analitičkim funkcijama skalarne zakrivljenosti R
do trećeg reda, kompleksno skalarno polje i konformno vezanje. Nalazimo i rasprav-
ljamo važne značajke te teorije.

88 FIZIKA B (Zagreb) 16 (2007) 2, 79–88


