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A new class of exact solutions of Einstein’s field equations with bulk viscous fluid
for an locally rotationally symmetric Bianchi type-I spacetime is obtained by using
a variable deceleration parameter. We have described three cases, depending on the
different forms of deceleration parameter, in which six models of the universe are
obtained. The value of Hubble’s constant H0 is found to be less than unity for these
models which are of the physical interest. Some physical and geometric properties
of the models are also discussed.
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1. Introduction

The Bianchi cosmologies play an important role in theoretical cosmology and
have been much studied since the 1960s. A Bianchi cosmology represents a spatially
homogeneous universe, since by definition the spacetime admits a three-parameter
group of isometries whose orbits are space-like hyper-surfaces. These models can be
used to analyze aspects of the physical Universe which pertain to or which may be
affected by anisotropy in the rate of expansion, for example, the cosmic microwave
background radiation, nucleosynthesis in the early universe, and the question of the
isotropization of the universe itself [1]. For simplification and description of the large
scale behaviour of the actual universe, locally rotationally symmetric [ henceforth
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referred as LRS] Bianchi type-I spacetime, have been widely studied [2]−[6]. When
the Bianchi type-I spacetime expands equally in two spatial directions it is called
locally rotationally symmetric spacetime. These kinds of models are interesting
because Lidsey [7] showed that they are equivalent to a flat (FRW) universe with a
self-interacting scalar field and a free massless scalar field, but produced no explicit
example. Some explicit solutions were pointed out in Refs. [8] and [9].

The Einstein’s field equations are a coupled system of highly non-linear dif-
ferential equations and we seek physical solutions to the field equations for their
applications in cosmology and astrophysics. In order to solve the field equations,
we normally assume a form for the matter content or that spacetime admits killing
vector symmetries [10]. Solutions to the field equations may also be generated by
applying a law of variation for Hubble’s parameter which was proposed by Berman
[11]. In simple cases, the Hubble law yields a constant value of the deceleration
parameter. It is worth observing that most of the well-known models of Einstein’s
theory and Brans-Dicke theory with curvature parameter k = 0, including inflation-
ary models, are models with a constant deceleration parameter. In earlier literature,
cosmological models with a constant deceleration parameter have been studied by
Berman [11], Berman and Gomide [12], Johri and Desikan [13], Singh and Desikan
[14], Maharaj and Naidoo [15], Pradhan et al. [16] and others. But redshift mag-
nitude test has had a chequered history. During the 1960s and the 1970s, it was
used to draw very categorical conclusions. The deceleration parameter q0 was then
claimed to lie between 0 and 1 and thus it was claimed that the Universe is decel-
erating. Recent observations [17, 18] of Type Ia Supernovae (SNe) allow to probe
the expansion history of the Universe. The main conclusion of these observations is
that the expansion of the Universe is accelerating. So we can consider the cosmo-
logical models with variable deceleration parameter. The readers are advised to see
the papers by Vishwakarma and Narlikar [19] and Virey et al. [20] and references
therein for a review on the determination of the deceleration parameter from the
Supernovae data.

Most cosmological models assume that the matter in the Universe can be de-
scribed by ‘dust’ (a pressure-less distribution) or at best a perfect fluid. The role of
the bulk viscosity in the cosmic evolution, especially at its early stages, seems to be
significant. The general criterion for bulk viscosity was given by Israel and Vardalas
[21], Klimek [22] and Weinberg [23]. For example, the existence of the bulk viscosity
is equivalent to a slow process of restoring equilibrium states (Landau and Lifshitz
[24]). The presently observed high entropy per baryon in the Universe can be ex-
plained by involving some kind of dissipative mechanism (e. g., bulk viscosity). Bulk
viscosity is associated with the GUT phase transition and string creation. Thus, we
should consider the presence of a material distribution other than a perfect fluid
to have realistic cosmological models (see Grøn [25] for a review on cosmological
models with bulk viscosity). The model studied by Murphy [26] possessed an inter-
esting feature in that the big bang type of singularity of infinite spacetime curvature
does not occur to be at finite past. However, the relationship assumed by Murphy
between the viscosity coefficient and the matter density is not acceptable at large
density. The effect of bulk viscosity on the cosmological evolution has been investi-
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gated by a number of authors within the framework of general theory of relativity
(Padmanabhan and Chitre [27], Pavon [28], Johri and Sudarshan [29], Maartens
[30], Zimdahl [31], Santos et al. [32], Pradhan, Sarayakar and Beesham [33], Kalyani
and Singh [34], Singh, Beesham and Mbokazi [35], Pradhan et al. [36]), Singh et al.
[37], Bali and Pradhan [38]). This motivates the study cosmological bulk viscous
fluid model.

Recently, Paul [39] has investigated LRS Bianchi type-I cosmological models
with a variable deceleration parameter. In this paper, we propose to find LRS
Bianchi type-I cosmological models in the presence of a bulk viscous fluid and we
will generalize the solutions [39].

2. The metric and field equations

We consider the LRS Bianchi type-I metric in the form [5]

ds2 = dt2 − A2dx2 − B2(dy2 + dz2) , (1)

where A and B are functions of x and t. The stress energy-tensor in the presence
of bulk stress has the form

Tij = (ρ + p̄)uiuj − p̄gij , (2)

where
p̄ = p − ξui

;i . (3)

Here ρ, p, p̄ and ξ are the energy density, thermodynamical pressure, effective
pressure and bulk viscous coefficient, respectively, and ui is the four-velocity vector
satisfying the relations

uiu
i = 1 . (4)

The Einstein’s field equations (in gravitational units c = 1, G = 1) read as

Rij − 1
2
Rgij = −8πTij , (5)

where Rij is the Ricci tensor and R = gijRij is the Ricci scalar. The Einstein’s
field equations (5) for the line element (1) has been set up as

2B̈

B
+

Ḃ2

B2
− B′2

A2B2
= −8πp̄ , (6)

Ḃ′ − B′Ȧ
A

= 0 , (7)
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Ä

A
+

B̈

B
+

ȦḂ

AB
− B′′

A2B
+

A′B′

A3B
= −8πp̄ , (8)

2B′′

A2B
− 2A′B′

A3B
+

B′2

A2B2
− 2ȦḂ

AB
− Ḃ2

B2
= −8πρ . (9)

The energy conservation equation yields

ρ̇ + (p̄ + ρ)

(
Ȧ

A
+

2Ḃ

B

)
= 0 , (10)

where dots and primes indicate partial differentiation with respect to t and x,
respectively.

3. Solution of the field equations

Equation (7), after integration, yields

A =
B′

�
, (11)

where � is an arbitrary function of x. Equations (6) and (8), with the use of Eq.
(11), reduce to

B

B′
d
dx

(
B̈

B

)
+

Ḃ

B′
d
dt

(
B′

B

)
+

�2

B2

(
1 − B

B′
�′

�

)
= 0 . (12)

Since A and B are explicit functions of x and t, so B′
B is a function of x alone.

Hence, after integrating Eq. (12) gives

B = �S(t) , (13)

where S is a scale factor which is an arbitrary function of t. Thus from Eqs. (11)
and (13), we have

A =
�′

�
S . (14)

Now the metric (1) is reduced to the form

ds2 = dt2 − S2
[
dX2 + e2X(dy2 + dz2)

]
, (15)

where X = ln �. The mass-density, effective pressure and Ricci scalar are obtained
as

8πρ =
3
S2

[
Ṡ2 − 1

]
, (16)
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8πp̄ =
1
S2

[
1 − Ṡ2 − 2SS̈

]
, (17)

R =
6
S2

[
SS̈ + Ṡ2 − 1

]
. (18)

The function S(t) remains undetermined. To obtain its explicit dependence on t,
one may have to introduce additional assumption. To achieve this, we assume the
deceleration parameter to be variable, i.e.

q = −SS̈

Ṡ2
= −

(
Ḣ + H2

H2

)
= b (variable) , (19)

where H = Ṡ
S is the Hubble parameter. The above equation may be rewritten as

S̈

S
+ b

Ṡ2

S2
= 0 . (20)

The general solution of Eq. (20) is given by∫
e
∫

(b/S)dSdS = t + m , (21)

where m is an integrating constant.

In order to solve the problem completely, we have to choose
∫
(b/S)dS in such

a manner that Eq. (21) be integrable.

Of course, the choice of b, in (21) is quite arbitrary but, since we are looking for
physically viable models of the Universe consistent with observations, we consider
the following three cases:

4. Solution for b = −aS/Ṡ2, where a is constant

In this case, on integrating, Eq. (20) gives the exact solution

S =
1
2
at2 + kt + d , (22)

where k and d are constants of integration.

In this case, the mass-density, pressure and Ricci scalar are given by

8πρ =
3
S2

[
(k + at)2 − 1

]
, (23)
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8π(p − ξθ) = − 1
S2

[
(k + at)2 − 1 + 2a(

1
2
at2 + kt + d)

]
, (24)

R =
6
S2

[
(k + at)2 − 1 + a(

1
2
at2 + kt + d)

]
. (25)

Here ξ, in general, is a function of time. The expression for kinematical parameter
expansion θ is given by

θ =
3(k + at)

S
. (26)

Thus, given ξ(t), we can solve the equations. In most of investigations involving
bulk viscosity it is assumed to be a simple power function of the energy density [28]
−[30]

ξ(t) = ξ0ρ
n, (27)

where ξ0 and n are constants. For small density, n may even be equal to unity as
used in Murphy’s work for simplicity [7]. If n = 1, Eq. (27) may correspond to a
radiative fluid [23]. However, more realistic models [32] are based on n lying in the
regime 0 ≤ n ≤ 1

2 .
On thermodynamical grounds, in conventional physics, ξ has to be positive; this

being a consequence of the positive entropy change in irreversible processes. For
simplicity and realistic models of physical importance, we consider the following
two cases depending on (n = 0, 1):

4.1. Model I: solution for ξ = ξ0

When n = 0, Eq. (27) reduces to ξ = ξ0 = constant. Hence in this case Eq.
(24), with the use of (26), leads to

8πp =
24πξ0

S
(k + at) − 1

S2

[
(k + at)2 − 1 + 2a(

1
2
at2 + kt + d)

]
. (28)

4.2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (27) reduces to ξ = ξ0ρ. Hence in this case Eq. (24), with the
use of (26), reduces to

8πp =
{(k + at)2 − 1}

S3
[9ξ0(k + at) − S] − 2a(1

2at2 + kt + d)
S2

. (29)

Physical behaviour of the models:

The effect of the bulk viscosity is to produce a change in perfect fluid and hence
exhibit essential influence on the character of the solution. We also observe here
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that Murphy’s condition [7] about the absence of a big-bang-type singularity in the
finite past in models with bulk viscous fluid, in general, is not true.

From Eqs. (23) and (25), it is observed that

ρ > 0 and R > 0 for t >
1 − k

a
, (30)

where k < 1. From Eqs. (25), (27) and (28), it is also observed that ρ, R and θ
decrease as t increases.

We find that shear σ = 0 in the models. Hence σ/θ = 0, which shows that the
models are isotropic. From Hubble’s parameter equation, H = Ṡ/S, we have an
epoch time t0 given by

t0 =
1

H0
− k

a
+

√
a2 + H0

2(k2 − 2ad)

aH0
, (31)

which gives that

at0 + k =
a

H0
− 1 +

√
a2 + H0

2(k2 − 2ad)

H0
> 0 . (32)

From above equation we conclude that

a

H0
− 1 > 0 , (33)

which reduces to
H0 < a . (34)

From Eq. (31), we observe that t0 > 0 for H0 < a/k and k2 > 2ad, i.e.

H0 <
k

2d
. (35)

From Eq. (27), R > 0 implies that

(k + at)2 >

√
[1 − a(

1
2
at2 + kt + d)]2. (36)

It is evident from Eqs. (30) and (36) that a < 1 and hence from (34) we obtain

H0 < 1 . (37)

The models, in general, represent expanding, non-shearing and isotropic universe.
The models in the presence of bulk viscosity start expanding with a big bang at
t = 0 when d = 0 and the expansion in the models decreases as time increases and
the expansion stops at t = ∞ and t = −k/a.
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5. Solution for b = −atS/Ṡ2, where a is constant

In this case, on integrating, Eq. (20) gives the exact solution

S =
1
6
at3 + kt + d , (38)

where k and d are constants of integration.

In this case, the mass-density, pressure and Ricci scalar are given by

8πρ =
3
S2

[(
k +

1
2
at2
)2

− 1

]
, (39)

8π(p − ξθ) = − 1
S2

[(
k +

1
2
at2
)2

− 1 + 2at

(
1
6
at3 + kt + d

)]
, (40)

R =
6
S2

[(
k +

1
2
at2
)2

− 1 + at

(
1
6
at3 + kt + d

)]
. (41)

The expression for the kinematical parameter expansion θ is given by

θ =
3
S

(
k +

1
2
at2
)

, (42)

where S is given by (41).

For simplicity and realistic models of physical importance, we consider the fol-
lowing two subcases:

5.1. Model I: solution for ξ = ξ0

When n = 0, Eq. (27) reduces to ξ = ξ0 = constant. Hence in this case Eq.
(40), with the use of (42), leads to

8πp =
24πξ0

S

(
k +

1
2
at2
)
− 1

S2

[(
k +

1
2
at2
)2

− 1 + 2at

(
1
6
at3 + kt + d

)]
. (43)
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5.2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (27) reduces to ξ = ξ0ρ. Hence in this case Eq. (40), with the
use of (42), reduces to

8πp =
{(k + 1

2at2)2 − 1}
S3

[
9ξ0(k +

1
2
at2) − S

]
− 2a(1

6at3 + kt + d)
S2

. (44)

Physical behaviour of the models:

From Eqs. (39) and (41), it is observed that ρ > 0 and R > 0 for t >√
(2/a)(1 − k), where k < 1. From (42), we observe that θ decreases as t increases.

We find that shear σ = 0 in the models. Hence σ/θ = 0 which shows that the
models are isotropic. At any intermediate time t =

√
(2/a)(2 − k), R > 0 implies

that

3 +
4
3
(2 − k)(1 + k) + d

√
2a(2 − k) > 0 , (45)

where k < 2. From Eq. (45), it is evident that

d
√

2a(2 − k) > 0 . (46)

From Hubble’s parameter, H = Ṡ/S, we obtain a cubic equation in t0

t0
3 − 3t0

2

H0
+

6kt0
a

− 6
aH0

(k − dH0) = 0 . (47)

Solving Eq. (47), we obtain

t0 =
1

H0
, a = 2kH0

2 and d =
a

3H0
3 , (48)

where t0 is an epoch time. Thus from Eq. (46)

4H0
2k(2 − k) > 0 . (49)

Hence Eq. (49), for k < 2, implies that

H0 > 0 . (50)

The models, in general, represent expanding, non-shearing and isotropic universe.
The models in the presence of bulk viscosity start expanding with a big bang at
t = 0 when d = 0 and the expansion in the models decreases as time increases and
the expansion stops at t = ∞ and t2 = −2k/a.
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6. Solution for b = −KS/Ṡ3, where K is constant

In this case, on integrating, Eq. (20) gives the exact solution

S = β +
(α + 2Kt)3/2

3K
, (51)

where α and β are constants of integration.

In this case, the mass-density, pressure and Ricci scalar are given by

8πρ =
3
S2

[(α + 2Kt) − 1] , (52)

8π(p − ξθ) =
1
S2

[
1 − (α + 2Kt)− 2K

(α + 2Kt)1/2

{
β +

(α + 2Kt)
3
2

3K

}]
, (53)

R =
6
S2

[
(α + 2Kt) − 1 +

K

(α + 2Kt)1/2

{
β +

(α + 2Kt)
3
2

3K

}]
. (54)

The expansion θ is calculated as

θ =
3
S

(α + 2Kt)1/2. (55)

For simplicity and realistic models of physical importance, we consider the following
two subcases:

6.1. Model I: solution for ξ = ξ0

When n = 0, Eq. (27) reduces to ξ = ξ0 = constant. Hence in this case Eq.
(53), with the use of (55), leads to

8πp=
24πξ0

S
(α+2Kt)1/2− 1

S2

[
α+2Kt−1+

2K

(α+2Kt)1/2

{
β+

(α+2Kt)
3
2

3K

}]
. (56)

6.2. Model II: solution for ξ = ξ0ρ

When n = 1, Eq. (27) reduces to ξ = ξ0ρ. Hence in this case Eq. (53), with the
use of (55), reduces to

8πp=
(α+2Kt−1)

S3

[
9(α+2Kt)1/2−S

]
− 2K

S2(α+2Kt)1/2

{
β+

(α+2Kt)
3
2

3K

}
. (57)
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Physical behaviour of the models:

From Eq. (52), it is observed that ρ > 0 for t > (1−α)/2K, where α < 1. From
(55), we observe that θ decreases as t increases.

We find that shear σ = 0 in the models. Hence σ/θ = 0 which shows that the
models are isotropic in nature.

From the Hubble’s parameter, H = Ṡ/S, we obtain

χ0
3 − 3K

(
χ0

H0
− β

)
= 0 , (58)

where χ0 =
√

α + 2Kt0 and t0 is an epoch time. For the solution of Eq. (58) let us
assume χ0 = β and hence we have

β2 = 3K

(
1

H0
− 1
)

. (59)

From Eq. (54), R > 0 implies that

4χ3 − 3χ + 3βK > 0 , (60)

where χ =
√

α + 2Kt.
Solving Eq. (60) at any intermediate time, t = (3 − α)/2K, where α < 3, we

obtain
3 + K > 0 . (61)

From χ0 =
√

α + 2Kt0 = β, we have

α + 2K
3 − α

2K
= β2,

which reduces to
β2 = 3 . (62)

From Eqs. (59) and (62), we obtain

K =
1

(1/H0) − 1
. (63)

From Eqs. (61) and (63), we have

H0 < 1.5 . (64)

From (63) in order that K > 0, H0 < 1. Hence the value of Hubble’s constant
is less than unity.
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7. Conclusions

In this paper we have described a new class of LRS Bianchi type-I cosmological
models with a bulk viscous fluid as the source of matter by applying a variable
deceleration parameter. Generally, the models are expanding, non-shearing and
isotropic in nature. The models in the presence of bulk viscosity start expanding
with a big bang at t = 0 when d = 0, the rate of expansion decreases as time
increases and the expansion stops at t = ∞ and t = −k/a. The study of the results
of the three deceleration parameter models of the universe showed that the Hubble’s
constant is less than 1.0. These mathematical results are of the physical interest.
The scale factor is not obtained to be linearly related to the time as in the case of
supernova cosmology model [40]. If ξ = 0 is set in the solutions obtained in this
paper, we get the solutions obtained by Paul [39]. But in his paper [39], there are
errors in the equations (15) and (16) which propagate throughout the paper and
affect all results.

The coefficient of bulk viscosity is taken to be a power function of mass density.
The effect of the bulk viscosity is to produce a change in perfect fluid and hence
exhibit essential influence on the character of the solution. Murphy [26] has studied
perfect fluid cosmological models with bulk viscosity and obtained that the big bang
singularity may be avoided in the finite past. We also observe here that Murphy’s
condition [7] about the absence of a big bang type singularity in the finite past in
models with bulk viscous fluid, in general, not true.
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VOLUMNI VISKOZNI KOZMOLOŠKI MODELI U OPĆOJ RELATIVNOSTI

Izveli smo novu klasu egzaktnih rješenja Einsteinovih jednadžbi polja za volumnu
viskoznu tekućinu i lokalno rotacijski simetričan prostor-vrijeme Bianchijevog tipa
I, primjenjujući varijabilan parametar usporavanja. Opisali smo tri slučaja, ovisno
o izrazu za parametar usporavanja, kojima smo postigli šest modela Svemira. U
tim modelima nalazimo vrijednosti Hubbleove konstante H0 manje od jedan, što je
od interesa za fiziku. Raspravljamo neka fizička i geometrijska svojstva tih modela.
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