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Exact solutions of the Einstein’s field equations describing a spherically symmetric
cosmological model without a big bang or any other kind of singularity recently
obtained by Dadhich and Patel (2000) are revisited. The matter content of the
model is a shear-free perfect fluid with isotropic pressure and a radial heat flux.
Three different exact solutions are obtained both for perfect fluid and fluid with
bulk viscosity. It turns out that the cosmological term Λ(t) is a decreasing function
of time, which is consistent with recent observations of type Ia supernovae.
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1. Introduction

The problem of cosmological singularity is one of the most fundamental issues in
modern theoretical cosmology. Due to the powerful singularity theorem [1, 2], it was
widely believed that cosmological models must have initial singularity. However, in
1990 Senovilla [3] obtained the first singularity-free cosmological perfect-fluid (with
a realistic equation of state 3p = ρ) solution of the Einstein equation, and since
then the possibility of constructing regular cosmologies was renewed. The interest
for regular cosmologies had stifled for nearly 30 years due to the powerful sin-
gularity theorems, which seemed to preclude such spacetimes under very general
requirements, such as chronology protecting, energy and generic conditions. The
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open way to regular cosmologies was found in violation of some technical premises
of the theorems. The remarkable feature is the absence of an initial singularity, the
curvature and matter invariants being regular and smooth everywhere. This cor-
responds to a cylindrically-symmetric spacetime filled with an isotropic radiation
perfect fluid. For instance, it was shown by Chinea et al. [4] that the Senovilla
spacetime did not possess a compact achronal set without edge and could not have
closed trapped surfaces. However, the first results were not encouraging. The ex-
tension of the Senovilla solution to a family of spacetime left the set of regular
models limited to a zero-measure subset surrounded by spacetime with Ricci and
Weyl curvature singularities [5]. A thorough discussion of the model of such type
can be found in Senovilla [6]. This family is shown to be included in a wider class
of separable cosmological models, which comprises FLRW universe [7]. Other prop-
erties of these solutions, such as their inflationary behaviour, generalized Hubble
law and the feasibility of constructing a realistic non-singular cosmological model
are studied therein.

A large family of non-singular cosmological models and generalization thereof
have been considered but they all are cylindrically symmetric [8] − [10]. For practi-
cal cosmology the spherical symmetry, however, is more appropriate. It is therefore
pertinent to seek spherically symmetric nonsingular models. The first model of this
kind was obtained by Dadhich [11] with an imperfect fluid with a heat flux. The
model satisfied all energy conditions and had no singularity of any kind. Dadhich et
al. [12] also obtained a non-singular model with null radiation flux. These models
are both inhomogeneous and anisotropic and have a typical behaviour beginning
with low density at t → −∞, contracting to high density at t = 0 and then again
expanding to low density at t → ∞. An interesting feature of the spacetime met-
ric of these models is that it contains an arbitrary function of time which can be
constrained to comply with the demand of non-singularity and energy conditions.
Dadhich and Raychaudhuri [13] later showed how a particular choice of this func-
tion leads to a model of an ever existing spherically symmetric universe, oscillating
between two regular states, which involves blue shifts as in the quasi steady state
cosmological model of Hoyle, Burbige and Narlikar [14] and is filled with a non-
adiabatic fluid with anisotropic pressure and radial heat flux. These observations
led to the search of spherically symmetric singularity-free cosmological models with
a perfect fluid source characterized by isotropic pressure. In this search, Tikekar
[15] constructed two spherically symmetric singularity-free relativistic cosmological
models, describing universes filled with non-adiabatic perfect fluid, accompanied
by heat flow along radial direction. Recently, many researchers [16] − [20] have
studied non-singular cosmological models in different context. From a purely the-
oretical point of view, the investigation of nonsingular cosmological models gives
invaluable insight into the spacetime structure, the inherent nonlinear character of
gravity and its interaction with matter fields. As a by-product, it also deepens our
understanding of the singularity theorem, in particular the assumptions lying in
their base [7].

Models with a dynamic cosmological term Λ(t) are becoming popular as the
cosmological-constant problem gets ameliorated in a natural way. There are signifi-
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cant observational evidence for the detection of Einstein’s cosmological constant, Λ
or a component of material content of the universe, that varies slowly with time and
space and so acts like Λ. New observations of type Ia supernovae (Garnavich et al.
[21], Perlmutter et al. [22], Riess et al. [23], Schmidt et al. [24]), cosmic microwave
background (CMB) anisotropies (e.g., Lineweaver [25]), galaxy surveys (e.g., La-
hav and Bridle [26]), gravitational lensing (e.g., Chiba and Yoshii [27]), and the
Lyα forest (e.g., Weinberg et al. [28]) argue for a nonzero cosmological “constant”
with ΩΛ(≡ Λ/3H2

0 ) ≈ 0.6 − 0.7. This quantity may not be constant as has been
appreciated for 30 years (Bergmann [29], Wagoner [30], Linde [31], Kazanas [32]).
Scalar fields (Dolgov [33], Abbott [34], Barr [35], Peeble and Ratra [36], Friemann
et al. [37], Moffat [38], Starobinsky [39]), tensor fields (Hawking [40], Dolgov [41]),
D-branes (Ellis, Mavromatos and Nanopoulos [42]), nonlocal effects (Banks [43],
Linde [44]), wormholes (Coleman [45]), inflationary mechanisms (Brandenberger
and Zhitnitsky [46], Peebles and Vilenkin [47]), and cosmological perturbations
(Abramo, Brandenberger and Mukhanov [48]) have all been shown to give rise to
an effective cosmological term that decays with time. Earlier researches on this
topic, are contained in Zeldovich [49], Weinberg [50], Dolgov [51], Bertolami [52],
Felten and Isaacman [53], Charlton and Turner [54], Sandaga [55], Carroll, Press
and Turner [56]. Some of the recent discussions on the cosmological-constant “prob-
lem” and consequences on cosmology with a time-varying cosmological-constant
have been discussed by Dolgov and Silk [57], Sahni and Starobinsky [58], Peebles
[59], Padmanabhan [60], Carroll [61], Vishwakarma [62], and Pradhan et al. [63].
This motivates us to study the cosmological models with Λ varying with time.

Recently, Dadhich and Patel [64] obtained a shear-free nonsingular spherical
model with heat flux. This model satisfies the weak and strong energy conditions
and also has a physically acceptable fall-off behaviour in both r and t for physical
and kinematic parameters. In this paper, motivated by the situation discussed
above, we shall focus on the problem with varying cosmological constant in the
presence of a perfect fluid and also in the presence of a bulk viscous fluid. We
do this by extending the work of Dadhich and Patel [64] by including a varying
cosmological constant. The remainder of this paper is organized as follows. In Sec. 2
we give a description of the cosmological models with their dynamical equations
and solve them under the initial conditions inspired by Dadhich and Patel. We also
investigate three different cosmological models for different values of the function
P (t) and discuss results for these regimes. Sec. 3 comprises bulk viscous universe.
We present our discussion and conclusions in Sec. 4.

2. A perfect fluid universe revisited

In this section, we review the solutions obtained by Dadhich and Patel [64]. The
metric of the model is given in the form

ds2 = (r2 + P )2ndt2 − (r2 + P )2m
[

dr2 + r2(dθ2 + sin2 θ dφ2)
]

, (1)
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where

2n = 2m ±
√

8m2 + 8m + 1,

in particular,

2m = 1 −
√

3

2
< 0, 2n =

√

3

2
. (2)

Here P = P (t) which can be chosen freely. The Einstein field equations for a perfect
fluid with time-dependent cosmological constant and a radial heat flux read

Rik − 1

2
Rgik + Λgik = −

[

(ρ + p)uiuk − pgik +
1

2
(qiuk + qkui)

]

, (3)

where we have set 8πG/c2 = 1, uiu
i = 1 = −qiq

i, qiu
i = 0, ρ and p denote the

fluid density and isotropic pressure, and qi is the radial heat flux vector.
From Eqs. (1) and (3) we obtain

ρ =
3m2Ṗ 2

(r2 + P )2n+2
− 4m{3P + (m + 1)r2}

(r2 + P )2m+2
+ Λ, (4)

p = − m

(r2 + P )2n+2

[

2(r2 + P )P̈ + (3m − 2n − 2)Ṗ 2
]

+
4

(r2 + P )2m+2

[

(m + n)P + n2r2
]

− Λ, (5)

q =
4m(n + 1)rṖ

(r2 + P )n+2
, (6)

where qi = qg1
i
. The expansion and acceleration are obtained as

θ =
3mṖ

(r2 + P )n+1
, (7)

u̇r = − nr

r2 + P
. (8)

We have the freedom of choosing the function P (t) so as to give a non-singular
behaviour to the above parameters. As a matter of fact, there are multiple choices

(see, Dadhich and Patel [64]), for instant, P (t) = a2 + b2t2, a2 + e−bt
2

, a2 +
b2 cos ωt, a2 > b2. For all these choices, it is observed that all physical and kinematic
parameters remain regular and finite for the entire range of variables. Note that
the model admits an interesting oscillating behaviour in time, with oscillations
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between two finite regular states. Oscillating nonsingular models are quite novel
and interesting in their own accord.

For a complete determinacy of the system, we assume an equation of state of
the form

p = γρ, 0 ≤ γ ≤ 1, (9)

where γ is a constant.

2.1. Model 1

We set P (t) = a2 + b2t2, a2 > b2. In this case the matter density ρ, the fluid
pressure p, the heat flux parameter q and kinematic parameter of expansion θ are
found to be given by the following expressions

ρ =
12m2b4t2

(r2 + a2 + b2t2)2n+2
− 4m

[

3(a2 + b2t2) + (m + 1)r2
]

(r2 + a2 + b2t2)2m+2
+ Λ, (10)

p = −4mb2
[

r2 + a2 + (3m − 2n − 1)b2t2
]

(r2 + a2 + b2t2)2n+2
+

4
[

(m + n)(a2 + b2t2) + n2r2
]

(r2 + a2 + b2t2)2m+2
− Λ,

(11)

q =
8m(n + 1)rb2t

(r2 + a2 + b2t2)n+2
, (12)

θ =
6mb2t

(r2 + a2 + b2t2)n+1
. (13)

Equations (10) and (11), with the use of (9), reduce to

(1 + γ)Λ = −4mb2
[

r2 + a2 + (3m − 2n − 1 + 3mγ)b2t2
]

(r2 + a2 + b2t2)2n+2

+
4
[

(m + n + 3mγ)(a2 + b2t2) + {n2 + m(m + 1)γ}r2
]

(r2 + a2 + b2t2)2m+2
. (14)

From the above equations, it is evident that the matter density is always and
everywhere positive, while positivity of pressure is ensured if 3m − 2n < 1. The
heat flux parameter q > 0 for t < 0, q = 0 for t = 0 and q < 0 for t > 0. Equation
(13) implies that the model describes an expanding universe for t < 0 with q > 0
and a contracting universe for t > 0 for q < 0, the switching from contracting phase
to phase of expansion occurring at t = 0.

From Eq. (14), we observe that the cosmological constant Λ is a decreasing
function of time (see Fig. 1). We also observe that Λ approaches a small and positive
value at late times which is supported by recent type Ia supernova observations [21]
− [24].
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Fig. 1. Variation of Λ with time for 2.1 Model 1. The values of parameters are:
m = 1, n = 1 +

√
17/2, γ = 0.5, a = 2, b = 1 and r = 1.

2.2. Model 2

We set P (t) = a2 + e−bt
2

, a2 > b2. In this case the matter density ρ, the fluid
pressure p, the heat flux parameter q and kinematic parameter of expansion θ are
found to be biven by the following expressions

ρ =
12m2b2t2e−2bt

2

(r2 + a2 + e−bt2)2n+2
−

4m
[

3(a2 + e−bt
2

) + (m + 1)r2

]

(r2 + a2 + e−bt2)2m+2
+ Λ, (15)

p = −
4mbe−bt

2

[

(r2 + a2)(2bt2 − 1) − e−bt
2

+ (3m − 2n)bt2e−bt
2

]

(r2 + a2 + e−bt2)2n+2

+
4
[

(m + n)(a2 + e−bt
2

) + n2r2

]

(r2 + a2 + e−bt2)2m+2
− Λ, (16)

q = − 8mbr(n + 1)te−bt
2

(r2 + a2 + e−bt2)n+2
, (17)

θ = − 6mbte−bt
2

(r2 + a2 + e−bt2)n+1
. (18)
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By using Eq. (9) and eliminating ρ(t) between (15) and (16), we obtain

(1 + γ)Λ = −
4mbe−bt

2

[

{3(1 + γ)m − 2n}bt2e−bt
2

+ (r2 + a2)(2bt2 − 1) − e−bt
2

]

(r2 + a2 + e−bt2)2n+2

+
4
[

{(1 + 3γ)m + n}(a2 + e−bt
2

) + {m(m + 1)γ + n2}r2

]

(r2 + a2 + e−bt2)2m+2
. (19)

From the above equations, it is observed that the matter density is always and
everywhere positive, while positivity of pressure is ensured if 3m − 2n > 0. Thus
it is also observed that the requirements of weak and strong energy conditions are
fulfilled throughout the spacetime of this model. The dominant energy condition,
which requires ρ ≥ p, cannot, however, be satisfied, it is clearly violated for large r.
Thus this model satisfies weak and strong but not the dominant energy condition.

From Eq. (19), it is observed that Λ first decreases, reaches a negative value
then increases and becomes a constant small positive value (see Fig. 2). This could
play the role of dark energy.

-10

-5

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5

Lambda

time

Lambda vs time

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 2.5  3  3.5  4  4.5  5

La
m

bd
a

time

Lambda vs time

Fig. 2. Variation of Λ with time for 2.2 Model 2. The parameters are: m = 1, n =
1 −

√
17/2, γ = 0.5, r = 1, a = 2 and b = 1.

2.3. Model 3

We set P (t) = a2 + b2 cos ωt, a2 > b2. In this case the matter density ρ, the
fluid pressure p, the heat flux parameter q and kinematic parameter of expansion
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θ are given by the following expressions

ρ =
3m2b4ω2 sin2 ωt

(r2 + a2 + b2 cos ωt)2n+2
− 4m[3(a2 + b2 cos ωt) + (m + 1)r2]

(r2 + a2 + b2 cos ωt)2m+2
+ Λ, (20)

p =
mb2ω2

[

2(r2 + a2 + b2 cos ωt) cos ωt − (3m − 2n − 2) sin2 ωt
]

(r2 + a2 + b2 cos ωt)2n+2

+
4[(m + n)(a2 + b2 cos ωt) + n2r2]

(r2 + a2 + b2 cos ωt)2m+2
− Λ, (21)

q = − 4m(n + 1)rb2ω sin ωt

(r2 + a2 + b2 cos ωt)n+2
, (22)

θ = − 3b2ω sinωt

(r2 + a2 + b2 cos ωt)n+1
. (23)

Equations (20) and (21), with the use of (9, give

(1+γ)Λ = −mb2ω2
[

{3(1 + b2γ)m − 2 (n + 1)} sin2 ωt − 2(r2 + a2 + b2 cos ωt) cos ωt
]

(r2 + a2 + b2 cos ωt)2n+2

+
4
[

{(1 + 3γ)m + n}(a2 + b2 cos ωt) + {m(m + 1)γ + n2}r2
]

(r2 + a2 + b2 cos ωt)2m+2
. (24)

From the above equations, it is observed that the matter density is always posi-
tive, whereas the pressure is non-negative if 3m− 2n < 0. Thus it can be seen that
the requirements of weak and strong energy conditions are fulfilled throughout the
spacetime of this model but not the dominant energy condition. From Eq. (23), the
expansion parameter indicates the universe of this model in the phase of contrac-
tion for 2απ < ωt < (2α + 1)π, where α takes on integer values only. During the
phase of contraction q < 0 and during the expansion phase q > 0, while q vanishes
when switching from contraction to expansion and from expansion to contraction
occurs.

From Eq. (24), it is observed that the Λ is oscillating due to the properties
of sinusoidal functions (see Fig. 3). It is also worth-noting that the average value
(with respect to one period) of Λ is positive. Here we will have negative equation
of state at late times required to support the current acceleration of universe.
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Fig. 3. Variation of Λ with time for 2.3 Model 3. Here m = 1, n = 1 +
√

17/2, γ =
0.5, r = 1, a = 2, b = 1 and ω = π/6.

3. Bulk viscous universe

The equations of bulk viscosity can be obtained from the general relativistic
field equation when replace the effective pressure [49]

p̄ = p − ξθ, (25)

where p is the pressure due to the present perfect fluid, ξ is the coefficient of
bulk viscosity and θ is the expansion scalar. Thus, given ξ(t), we can solve for
cosmological parameters. In most of investigations involving bulk viscosity, it is
assumed to be a simple power function of the energy density (Pavon [65], Maartens
[66], Zimdahl [67])

ξ(t) = ξ0ρ
k, (26)

where ξ0 and k are constants. If k = 1, Eq. (26) may correspond to a radiative fluid
(Weinberg[50]). However, more realistic models (Santos[68]) are based on k lying
in the range 0 ≤ k ≤ 1/2.

Introducing (25) and (26) into (5), we obtain

p =
3mξ0ρ

kṖ

(r2 + P )n+1
− m

(r2 + P )2n+2

[

2(r2 + P )P̈ + (3m − 2n − 2)Ṗ 2
]

+
4

(r2 + P )2m+2

[

(m + n)P + n2r2
]

− Λ. (27)

3.1. Model 1

We set P (t) = a2 + b2t2, a2 > b2. In this case we consider two following cases.
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3.1.1. Case I : solution for ξ = ξ0

When k = 0, Equation (26) reduces to ξ = ξ0 (constant) and hence Eq. (27) with
the help (9) and (10) reduces to the form

(1 + γ)ρ =
6mb2ξ0t

(r2 + a2 + b2t2)n+1
+

4mb2
[

(2n + 1)b2t2 − (r2 + a2)
]

(r2 + a2 + b2t2)2n+2

−4
[

(2m − n)(a2 + b2t2) + {m(m + 1) − n2}r2
]

(r2 + a2 + b2t2)2m+2
. (28)

Eliminating ρ(t) between Eqs. (10) and (28), we get

(1 + γ)Λ =
6mb2ξ0t

(r2 + a2 + b2t2)n+1
− 4mb2

[

r2 + a2 + {3(1 + γ)m − 2n − 1}b2t2
]

(r2 + a2 + b2t2)2n+2

+
4
[

{(1 + 3γ)m + n}(a2 + b2t2) + {n2 + m(m + 1)γ}r2
]

(r2 + a2 + b2t2)2m+2
. (29)

3.1.2. Case II : solution for ξ = ξ0ρ

When k = 1, Eq. (26) reduces to ξ = ξ0ρ and hence Eq. (27), with the help of
Eqs. (9) and (10), takes the form

[

1 + γ − 6ξ0mb2t

(r2 + a2 + b2t2)n+1

]

ρ =
4mb2{(2n + 1)b2t2 − (r2 + a2)}

(r2 + a2 + b2t2)2n+2

+
4
[

(n − 2m)(a2 + b2t2) + r2{n2 − m(m + 1)}
]

(r2 + a2 + b2t2)2m+2
. (30)

Eliminating ρ(t) between Equations (30) and (10), we get

[(1 + γ)(r2 + a2 + b2t2)n+1 − 6ξ0mb2t]Λ =

24ξ0m
2b2t ×

[

3mb4t2

(r2 + a2 + b2t2)2n+2
− 3(a2 + b2t2) + (m + 1)r2

(r2 + a2 + b2t2)2m+2

]

−4mb2
[

r2 + a2 + {3(1 + γ)m − 2n − 1}b2t2
]

(r2 + a2 + b2t2)n+1
+

4
[

{(1 + 3γ)m + n}(a2 + b2t2) + (n2 − m2 + 1)r2
]

(r2 + a2 + b2t2)2m−n+1
. (31)
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From Eqs. (29) and (31), we observe that the Λ is a decreasing function of
time (see Fig. 4), and it approaches a small positive value which is similar to the
previously discussed in Model 1 (Sec. 2.1).
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Fig. 4. Variation of Λ with time for 3.1 Model 1, case I (lower panel) and II (upper

panel). Here m = 1, n = 1 +
√

17/2, γ = 0.5, r = 1, a = 2, b = 1 and ξ0 = 1.

3.2. Model 2

We set P (t) = a2 + e−bt
2

, a2 > b2. In this case we consider two following cases.

3.2.1. Case I : solution for ξ = ξ0

When k = 0, Eq. (26) reduces to ξ = ξ0 (constant) and hence Eq. (27) with the
help of (9) and (15) reduces to the form

(1 + γ)ρ = − 6mbξ0te
−bt

2

(r2 + a2 + e−bt2)n+1
+

4mbe−bt
2

[

(2nbt2 + 1)e−bt
2 − (r2 + a2)(2bt2 − 1)

]

(r2 + a2 + e−bt2)2n+2

−
4
[

(2m − n)(a2 + e−bt
2

) + {m(m + 1) − n2}r2

]

(r2 + a2 + e−bt2)2m+2
. (32)

Eliminating ρ(t) between Eqs. (15) and (32), we get

(1 + γ)Λ = − 6mbξ0te
−bt

2

(r2 + a2 + e−bt2)n+1
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−
4mbe−bt

2

[

{3(1 + γ)m − 2n}bt2e−bt
2

+ (r2 + a2)(2bt2 − 1) − e−bt
2

]

(r2 + a2 + e−bt2)2n+2

+
4
[

{(1 + 3γ)m + n}(a2 + e−bt
2

) + {m(m + 1)γ + n2}r2

]

(r2 + a2 + e−bt2)2m+2
. (33)

3.2.2. Case II : solution for ξ = ξ0ρ

When k = 1, Eq. (26) reduces to ξ = ξ0ρ and hence Eq. (27) takes the form

[

γ − 6mbξ0e
−bt

2

(r2 + a2 + e−bt2)n+1

]

ρ =

−
4mbe−bt

2

[

(r2 + a2)(2bt2 − 1) − e−bt
2

+ (3m − 2n)bt2e−bt
2

]

(r2 + a2 + e−bt2)2n+2

+
4
[

(m + n)(a2 + e−bt
2

) + n2r2

]

(r2 + a2 + e−bt2)2m+2
. (34)

Eliminating ρ(t) between Eqs. (34) and (15), we get

[(1 + γ)(r2 + a2 + e−bt
2

)n+1 − 6mbξ0e
−bt

2

]Λ =

24m2bξ0e
−bt

2

[

3mb2t2e−2bt
2

(r2 + a2 + e−bt2)2n+2
− 3(a2 + e−bt

2

) + (m + 1)r2

(r2 + a2 + e−bt2)2m+2

]

−
4mbe−bt

2

[

{3(1 + γ)m − 2n}bt2e−bt
2

+ (r2 + a2)(2bt2 − 1) − e−bt
2

]

(r2 + a2 + e−bt2)n+1

+
4
[

{(1 + 3γ)m + n}(a2 + e−bt
2

) + {m(m + 1)γ + n2}r2

]

(r2 + a2 + e−bt2)2m−n+1
. (35)

From Eq. (33), we observe that the value of Λ first increases slowly and suddenly
reaches to peak, then it has sharp decrease to a negative value, again, it has a slow
increment and finally becomes a small positive constant value (see Fig. 5 upper
panel). From Eq. (35) we observe that Λ first decreases and then increases and
finally approaches a small positive constant. This could play the role of dark energy.
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Fig. 5. Variation of Λ with time for 3.2 Model 2, cases I (lower panel) and II (upper

panel). Here m = 1, n = 1 −
√

17/2, γ = 0.5, r = 1, a = 2, b = 1 and ξ0 = 1.

3.3. Model 3

We set P (t) = a2 + b2 cos ωt, a2 > b2. In this case we consider two following
cases.

3.3.1. Case I : solution for ξ = ξ0

When k = 0, Eq. (26) reduces to ξ = ξ0(constant) and hence Eq. (27), with the
help of (9) and (20), reduces to the form

(1 + γ)ρ =
3ωb2ξ0 sin ωt

(r2 + a2 + b2 cos ωt)n+1
+

mb2ω2
[

{3m(b2 − 1) + 2(n + 1)} sin2 ωt + 2(r2 + a2 + b2 cos ωt) cos ωt
]

(r2 + a2 + b2 cos ωt)2n+2

−4[(a2 + b2 cos ωt)(2m − n) − n2r2]

(r2 + a2 + b2 cos ωt)2m+2
. (36)

Eliminating ρ(t) between Eq. (20) and (36), we get

(1 + γ)Λ =
3ωb2ξ0 sinωt

(r2 + a2 + b2 cos ωt)n+1

−mb2ω2
[

{3(1 + b2γ)m − 2n} sin2 ωt − 2(r2 + a2 + b2 cos ωt) cos ωt
]

(r2 + a2 + b2 cos ωt)2n+2
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+
4
[

{(1 + 3γ)m + n}(a2 + b2 cos ωt) + {m(m + 1)γ + n2}r2
]

(r2 + a2 + b2 cos ωt)2m+2
. (37)
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Fig. 6. Variation of Λ with time for 3.3 Model 3, case I (lower panel) and II (upper

panel). Here m = 1, n = 1+
√

17/2, γ = 0.5, r = 1, a = 2, b = 1, ξ0 = 1, ω = π/6.

3.3.2. Case II : solution for ξ = ξ0ρ

When k = 1, Eq. (26) reduces to ξ = ξ0ρ and hence Eq. (27) takes the form

[

γ − 3ξ0b
2ω sin ωt

(r2 + a2 + b2 cos ωt)n+1

]

ρ =

mb2ω2
[

2(r2 + a2 + b2 cos ωt) cos ωt − (3m − 2n − 2) sin2 ωt
]

(r2 + a2 + b2 cos ωt)2n+2

+
4[(m + n)(a2 + b2 cos ωt) + n2r2]

(r2 + a2 + b2 cos ωt)2m+2
. (38)

Eliminating ρ(t) between Eqs. (37) and (20), we obtain

[

(1 + γ)(r2 + a2 + b2 cos ωt)n+1 + 3ξ0b
2ω sin ωt

]

Λ =

+3ξ0b
2mω sinωt

[

3mb4ω2 sin2 ωt

(r2 + a2 + b2 cos ωt)2n+2
− 4{3(a2 + b2 cos ωt) + (m + 1)r2}

(r2 + a2 + b2 cos ωt)2m+2

]

+
mb2ω2

[

2(r2 + a2 + b2 cos ωt) cos ωt − {3m(1 − γb2) − 2(n + 1)} sin2 ωt
]

(r2 + a2 + b2 cos ωt)n+1
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+
4
[

{(1 + 3γ)m + n}(a2 + b2 cos ωt) + (m + n2 + 1)r2
]

(r2 + a2 + b2 cos ωt)2m−n+1
. (39)

From Eqs. (37) and (39), we observe that the Λ oscillates with time due to the
properties of sinusoidal functions, present in these equations. The behaviour of
cosmological term Λ may be observed from Fig. 6. The nature of these models are
same as already discussed in Model 3 (Sec. 2.3).

4. Conclusions

We have obtained a new class of spherically-symmetric inhomogeneous cosmo-
logical models with a perfect fluid and also a bulk viscous fluid as the source of
matter with a radial heat flux without a big bang or any other singularity. These
are the shear-free nonsingular models. They are inhomogeneous and hence acceler-
ating but not shearing. It is the heat flux that combines with pressure gradient to
avoid singularity. From the point of view of realistic cosmology, these models share
with the standard FRW model, spherical symmetry and the absence of shear.

The cosmological constant is a parameter describing the energy density of the
vacuum (empty space), and a potentially important contribution to the dynamical
history of the universe. The physical interpretation of the cosmological constant
as vacuum energy is supported by the existence of the ”zero point” energy pre-
dicted by quantum mechanics. In quantum mechanics, particle and antiparticle
pairs are consistently being created out of the vacuum. Even though these particles
exist for only a short amount of time before annihilating each other, they do give
the vacuum a non-zero potential energy. In general relativity, all forms of energy
should gravitate, including the energy of vacuum, hence the cosmological constant,
too. A negative cosmological constant adds to the attractive gravity of matter,
therefore universes with a negative cosmological constant are invariably doomed to
re-collapse [69]. A positive cosmological constant resists the attractive gravity of
matter due to its negative pressure. For most universes, the positive cosmological
constant eventually dominates over the attraction of matter and drives the universe
to expand exponentially [70].

The cosmological constants in all models given in Sections 2.1 and 3.1 are de-
creasing functions of time and they all approach a small and positive value at late
times which are supported by the results from type Ia supernova observations re-
cently obtained by the High-z Supernova Team and Supernova Cosmological Project
(Garnavich et al. [21], Perlmutter et al. [22], Riess et al. [23], Schmidt et al. [24]).
Thus, with our approach, we obtain a physically relevant decay law for the cos-
mological term unlike other investigators where adhoc laws were used to arrive at
mathematical expressions for the decaying vacuum energy. Our derived models pro-
vide a good agreement with the observational results. We have derived value for
the cosmological constant Λ and attempted to formulate a physical interpretation
for it.

This paper adds a novel family of shear-free models to Senovilla’s first model
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[3], a large family of cylindrical nonsingular models [5, 7, 8, 10] and a large family of
spherical nonsingular models [11, 12, 64], avoiding cosmic singularity in the absence
of shear.
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NESINGULARNI KOZMOLOŠKI MODELI S PROMJENLJIVIM
KOZMOLOŠKIM ČLANOM Λ

Ponovno razmatramo egzaktna rješenja Einsteinovih jednadžbi polja za sferno
simetrični kozmološki model bez velikog praska i drugih singulariteta, koji su ne-
davno razvili Dadhich i Patel (2000). Sadržaj tvari u modelu je perfektna tekućina
bez posmika s izotropnim tlakom i radijalnim tokom topline. Izveli smo tri egzak-
tna rješenja za perfektnu tekućinu i tekućinu s volumnom viskoznošću. Dobivamo
kozmološki član Λ(t) koji opada s vremenom, što je u skladu s novim opažanjima
supernova tipa Ia.
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