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A new class of plane-symmetric inhomogeneous cosmological models of perfect fluid
distribution with electromagnetic field is obtained. The source of the magnetic field
is due to an electric current produced along the z-axis. F12 is the non-vanishing
component of electromagnetic field tensor. The free gravitational field is assumed
to be of Petrov type-II non-degenerate. We have studied three cases : (i) cosine
hyperbolic (ii) linear and (ii) cosine form. Some geometric and physical properties
of the models in the presence and absence of magnetic field are also discussed.
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1. Introduction

The standard Friedman-Robertson-Walker (FRW) cosmological model pre-
scribes a homogeneous and an isotropic distribution of matter in the description of
the present state of the universe. At the present state of evolution, the universe is
spherically symmetric and the matter distribution in the universe is on the whole
isotropic and homogeneous. But in the early stages of evolution, it could have not
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had such a smoothed picture. Close to the big bang singularity, neither the as-
sumption of spherical symmetry nor that of isotropy can be strictly valid. So we
consider plane-symmetry, which is less restrictive than spherical symmetry and can
provide an avenue to study inhomogeneities. Inhomogeneous cosmological models
play an important role in understanding some essential features of the universe
such as the formation of galaxies during the early stages of evolution and process of
homogenization. The early attempts at the construction of such models have been
done by Tolman [1] and Bondi [2] who considered spherically symmetric models.
Inhomogeneous plane-symmetric models were considered by Taub [3, 4] and later
by Tomimura [5], Szekeres [6], Collins and Szafron [7], and Szafron and Collins [8].
Recently, Senovilla [9] obtained a new class of exact solutions of Einstein’s equations
without the big bang singularity, representing a cylindrically symmetric, inhomo-
geneous cosmological model filled with perfect fluid which is smooth and regular
everywhere, satisfying energy and causality conditions. Later, Ruiz and Senovilla
[10] have examined a fairly large class of singularity-free models through a compre-
hensive study of general cylindrically-symmetric metric with separable function of
r and t as metric coefficients. Dadhich et al. [11] have established a link between
the FRW model and the singularity-free family by deducing the latter through a
natural and simple in-homogenization and anisotropization of the former. Recently,
Patel et al. [12] presented a general class of inhomogeneous cosmological models
filled with non-thermalized perfect fluid by assuming that the background space-
time admits two space-like commuting Killing vectors and has separable metric
coefficients. Singh, Mehta and Gupta [13] obtained inhomogeneous cosmological
models of perfect fluid distribution with electromagnetic field. Recently, Pradhan
et al. [14] have investigated plane-symmetric inhomogeneous cosmological models
in various contexts.

The occurrence of magnetic field on the galactic scale is well-established fact
today, and their importance for a variety of astrophysical phenomena is gener-
ally acknowledged as pointed out by Zeldovich et al. [15]. Also, Harrison [16] has
suggested that magnetic field could have a cosmological origin. As a natural conse-
quences, we should include magnetic fields in the energy-momentum tensor of the
early universe. The choice of anisotropic cosmological models in the Einstein system
of field equations leads to the cosmological models more general than Robertson-
Walker model [17]. The presence of primordial magnetic field in the early stages
of the evolution of the universe has been discussed by several authors [18]−[27].
Strong magnetic field can be created due to adiabatic compression in clusters of
galaxies. Large-scale magnetic field gives rise to anisotropies in the universe. The
anisotropic pressure created by the magnetic fields dominates the evolution of the
shear anisotropy and it decays slower than the case when the pressure was isotropic
[28, 29]. Such fields can be generated at the end of an inflationary epoch [30]−[34].
Anisotropic magnetic field models have significant contribution in the evolution of
galaxies and stellar objects. Bali and Ali [35] obtained a magnetized cylindrically-
symmetric universe with an electrically neutral perfect fluid as the source of matter.
Pradhan et al. [36] have investigated magnetized viscous fluid cosmological models
in various contexts.
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Bali and Tyagi [37] have investigated a plane-symmetric inhomogeneous cos-
mological model of perfect fluid distribution with electromagnetic field. In this pa-
per, we have revisited their solution and obtained a new class of plane-symmetric
inhomogeneous cosmological models of perfect fluid distribution with electromag-
netic field. We assume the free gravitational field to be of the Petrov type-II non-
degenerate. The paper is organized as follows. The metric and the field equations
are presented in Section 2. In Section 3, we deal with the three types of solutions
of the field equations in presence of magnetic field, whereas Section 4 includes
the solutions in the absence of magnetic field. Finally, the results are discussed in
Section 5.

2. The metric and field equations

We consider the metric in the form

ds2 = A2(dx2 − dt2) + B2dy2 + C2dz2, (1)

where the metric potentials A, B and C are functions of x and t. The energy
momentum tensor is taken as

T j
i = (ρ + p)viv

j + pgj
i + Ej

i , (2)

where Ej
i is the electromagnetic field given by Lichnerowicz [38] as

Ej
i = µ̄

[

hlh
l(viv

j +
1

2
gj

i ) − hih
j

]

. (3)

Here ρ and p are the energy density and isotropic pressure, respectively, and vi is
the flow vector satisfying the relation

gijv
ivj = −1. (4)

µ̄ is the magnetic permeability and hi the magnetic flux vector defined by

hi =
1

µ̄
∗Fjiv

j , (5)

where ∗Fij is the dual electromagnetic field tensor defined by Synge [39]

∗Fij =

√
−g

2
ǫijklF

kl. (6)

Fij is the electromagnetic field tensor and ǫijkl is the Levi-Civita tensor density.
The coordinates are considered to be comoving so that v1 = 0 = v2 = v3 and v4

= 1/A. We consider that the current is flowing along the z-axis so that h3 /= 0,
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h1 = 0 = h2 = h4. The only non-vanishing component of Fij is F12. The Maxwell’s
equations

Fij;k + Fjk;i + Fki;j = 0 (7)

and
[

1

µ̄
F ij

]

;j

= J i (8)

require that F12 be function of x alone. We assume that the magnetic permeability is
a function of x and t both. Here the semicolon represents a covariant differentiation.

The Einstein’s field equations (in gravitational units c = 1, G = 1)

Rj
i −

1

2
Rgj

i + Λgj
i = −8πT j

i , (9)

for the line element (1) has been set up as

8πA2

(

p +
F 2

12

2µ̄A2B2

)

= −B44

B
− C44

C
+

A4

A

(

B4

B
+

C4

C

)

+
A1

A

(

B1

B
+

C1

C

)

+
B1C1

BC
− B4C4

BC
− ΛA2, (10)

8πA2

(

p +
F 2

12

2µ̄A2B2

)

= −
(

A4

A

)

4

+

(

A1

A

)

1

− C44

C
+

C11

C
− ΛA2, (11)

8πA2

(

p − F 2
12

2µ̄A2B2

)

= −
(

A4

A

)

4

+

(

A1

A

)

1

− B44

B
+

B11

B
− ΛA2, (12)

8πA2

(

ρ +
F 2

12

2µ̄A2B2

)

= −B11

B
− C11

C
+

A1

A

(

B1

B
+

C1

C

)

+
A4

A

(

B4

B
+

C4

C

)

− B1C1

BC
+

B4C4

BC
+ ΛA2, (13)

0 =
B14

B
+

C14

C
− A1

A

(

B4

B
+

C4

C

)

− A4

A

(

B1

B
+

C1

C

)

, (14)

where the sub-indices 1 and 4 in A, B, C and elsewhere indicate ordinary differen-
tiation with respect to x and t, respectively.
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3. Solutions of the field equations

Equations (10) - (12) lead to

(

A4

A

)

4

− B44

B
+

A4

A

(

B4

B
+

C4

C

)

− B4C4

BC
=

(

A1

A

)

1

+
C11

C
− A1

A

(

B1

B
+

C1

C

)

− B1C1

BC
= a (a constant) (15)

and
8πF 2

12

µ̄B2
=

B44

B
− B11

B
+

C11

C
− C44

C
. (16)

Eqs. (10) - (14) represent a system of five equations in six unknowns A, B, C, ρ,
p and F12. For the complete determination of these unknowns, one more condition
is needed. As in the case of general-relativistic cosmologies, the introduction of
inhomogeneities into the cosmological equations produces a considerable increase
in mathematical difficulty: non-linear partial differential equations must now be
solved. In practice, this means that we must proceed either by means of approxi-
mations which render the non-linearities tractable, or we must introduce particular
symmetries into the metric of the space-time in order to reduce the number of
degrees of freedom which the inhomogeneities can exploit. In the present case, we
assume that the metric is Petrov type-II non-degenerate. This requires that

(

B11 + B44 + 2B14

B

)

−
(

C11 + C44 + 2C14

C

)

=

2(A1 + A4)(B1 + B4)

AB
− 2(A1 + A4)(C1 + C4)

AC
. (17)

Let us consider that

A = f(x)ν(t),

B = g(x)µ(t),

C = h(x)µ(t). (18)

Using (18) in (14) and (17), we get

g1

g
+

h1

h
f1

f

=

2µ4

µ
µ4

µ
− ν4

ν

= b (a constant) (19)
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and
g11

g
+

h11

h
g1

g
− h1

h

− 2f1

f
= 2

(

µ4

µ
− ν4

ν

)

= L (a constant). (20)

Equation (19) leads to

f = n(gh)1/b, b /= 0 (21)

and

µ = mνb/(b−2), (22)

where m and n are constants of integration.
From Eqs. (15), (18) and (19), we have

1

b

g11

g
+

(

1 + b

b

)

h11

h
− 2

b

(

g2
1

g2
+

h2
1

h2

)

− (2 + b)

b

g1h1

gh
= a (23)

and
2

b

(

µ44

µ
+

µ2
4

µ2

)

= −a. (24)

Let us assume

g = eU+V , h = eU−V . (25)

Eqs. (20) and (25) lead to

V1 = M exp

(

Lx +
2(2 − b)

b
U

)

, (26)

where M is an integration constant. From Eqs. (23), (25) and (26), we have

(

2 + b

b

)

U11 −
4

b
U2

1 − 2bM exp

(

Lx +
2(2 − b)

b
U

)

−

ML exp

(

Lx +
2(2 − b)

b
U

)

+ 2M2 exp

(

2Lx +
4(2 − b)

b
U

)

= a. (27)

Equation (27) leads to

U =
Lbx

2(b − 2)
, b /=2 (28)

Equations (26) and (28) lead to

V = Mx + log N, (29)
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where N is the constant of integration.
Equation (24) leads to

µ =





β cosh1/2(
√

| α |t + t0) when ab < 0
(c1t + t0)

1/2 when ab = 0
β cos1/2(

√
αt + t0) when ab > 0

(30)

where α = ab, β is constant and c1, t0 are constants of integration.

3.1. Case(i): ab < 0

In this case we obtain

f = n exp

(

Lx

(b − 2)

)

, (31)

µ = β cosh1/2(
√

| α |t + t0), (32)

ν = r cosh(b−2)/2b(
√

| α |t + t0), (33)

g = N exp

(

Lbx

2(b − 2)
+ Mx

)

, (34)

h =
1

N
exp

(

Lbx

2(b − 2)
− Mx

)

, (35)

where r = (β/m)(b−2)/b.
Therefore, we have

A = E exp

(

Lx

(b − 2)

)

cosh(b−2)/2b (
√

| α |t + t0), (36)

B = G exp

(

Lbx

2(b − 2)
+ Mx

)

cosh1/2 (
√

| α |t + t0), (37)

C = H exp

(

Lbx

2(b − 2)
− Mx

)

cosh1/2 (
√

| α |t + t0), (38)

where E = nr, G = Nβ, H = β/N .

After using suitable transformation of coordinates, the metric (1) reduces to the
form

ds2 = E2 exp

(

2LX

(b − 2)

)

cosh(b−2)/b (
√

| α |T )(dX2 − dT 2)+
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exp

(

LbX

(b − 2)
+ 2MX

)

cosh(
√

| α |T )dY 2+

exp

(

LbX

(b − 2)
− 2MX

)

cosh(
√

| α |T )dZ2. (39)

The expressions for pressure p and density ρ for the model (39) are given by

8πp =
1

E2
exp

(

2LX

(2 − b)

)

cosh(2−b)/b (
√

| α |T )×

[

| α |
{

(b + 1)

4b
tanh2(

√

| α |T ) − 1

}

+
b(b + 4)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

− Λ, (40)

8πρ =
1

E2
exp

(

2LX

(2 − b)

)

cosh(2−b)/b (
√

| α |T )×

[ | α | (3b − 4)

4b
tanh2(

√

| α |T ) +
b(4 − 3b)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

+ Λ. (41)

The non-vanishing component F12 of electromagnetic field tensor is given by

F12 =

√

µ̄

8π

2MLb

(2 − b)
G exp

{(

Lb

b − 2
+ 2M

)

X

2

}

cosh(
√

| α |T ), (42)

where µ̄ remains undetermined as a function of X and T .

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
(3b − 2)

√

| α |
2bE

exp

(

LX

(2 − b)

)

cosh(2−b)/(2b) (
√

| α |T ) tanh(
√

| α |T ). (43)

Now the shear scalar σ2, acceleration vector v̇i and proper volume V 3 are given by

σ2 =
| α |

3b2E2
exp

(

2LX

(2 − b)

)

cosh(2−b)/b (
√

| α |T ) tanh2(
√

| α |T ), (44)

v̇i =

(

L

(b − 2)
, 0, 0, 0

)

, (45)

V 3 =
√−g = E2 exp

(

(b + 2)LX

(b − 2)

)

cosh2(b−1)/b(
√

| α |T ). (46)
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From Eqs. (43) and (44), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (47)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0 ,

(ii) ρ + p ≥ 0 ,

lead to

exp

(

2LX

2 − b

) [

(2b − 5) | α |
4b

tanh2(
√

| α |T )+ | α | − L2b2

(b − 2)2

]

+2ΛE2 cosh
(b−2)

b (
√

| α |T ) ≥ 0 (48)

and

(4b − 3) | α |
4b

tanh2(
√

| α |T ) ≥| α | +2M2 − 2MLb

(b − 2)
+

L2b(b − 4)

2(b − 2)2
(49)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,

lead to

(4b − 3) | α |
4b

tanh2(
√

| α |T ) > | α | +2M2 − 2MLb

(b − 2)
+

L2b(b − 4)

2(b − 2)2
(50)

and

exp

(

2LX

2 − b

)[

(6b − 1) | α |
4b

tanh2(
√

| α |T )− | α | +
4bL2

(b − 2)2
− 4M2 +

4MLb

(b − 2)

]

> 2ΛE2 cosh(b−2)/b(
√

| α |T ). (51)

The model (39) represents an expanding, shearing and non-rotating universe. Since
σ/θ is constant, the model does not approach isotropy.
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3.2. Case(ii): ab = 0

In this case we obtain

f = n exp

(

Lx

(b − 2)

)

, (52)

µ = (c1t + t0)
1/2, (53)

ν =

(

1

m

)(b−2)/b

(c1t + t0)
(b−2)/(2b), (54)

g = N exp

(

Lbx

2(b − 2)
+ Mx

)

, (55)

h =
1

N
exp

(

Lbx

2(b − 2)
− Mx

)

. (56)

Therefore, we have

A = E0 exp

(

Lx

(b − 2)

)

(c1t + t0)
(b−2)/(2b), (57)

B = N exp

(

Lbx

2(b − 2)
+ Mx

)

(c1t + t0)
1/2, (58)

C = H0 exp

(

Lbx

2(b − 2)
− Mx

)

(c1t + t0)
1/b, (59)

where E0 = nm(2−b)/b and H0 = 1/N .

After using suitable transformation of coordinates, the metric (1) reduces to the
form

ds2 = E2
0 exp

(

2LX

(b − 2)

)

(c1T )(b−2)/b (dX2 − dT 2)+

exp

(

LbX

(b − 2)
+ 2MX

)

(c1T )dY 2 + exp

(

LbX

(b − 2)
− 2MX

)

(c1T )dZ2, (60)

The expressions for the pressure p and density ρ for model (60) are given by

8πp =
1

E2
0

exp

(

2LX

(2 − b)

)

(c1T )(2−b)/b×
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[

1

4T 2
+

(b − 2)

2b
+

b(5b − 8)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

− Λ, (61)

8πρ =
1

E2
0

exp

(

2LX

(2 − b)

)

(c1T )(2−b)/b×

[

(3b − 4)

4b

1

T 2
+

b(4 − 3b)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

+ Λ. (62)

The non-vanishing component F12 of electromagnetic field tensor is given by

F12 =

√

µ̄

8π

2MLb

(2 − b)
N exp

{(

Lb

b − 2
+ 2M

)

X

2

}

(c1T )1/2, (63)

where µ̄ remains undetermined as a function of X and T .

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
c2(3b − 2)

2bE0
exp

(

LX

(2 − b)

)

T (2−3b)/(2b), (64)

where c2 = c
(2−b)/(2b)
1 . Now the shear scalar σ2, acceleration vector v̇i and proper

volume V 3 are given by

σ2 =
c2
2

3b2E2
0

exp

(

2LX

(2 − b)

)

T (2−3b)/(2b), (65)

v̇i =

(

L

(b − 2)
, 0, 0, 0

)

, (66)

V 3 =
√−g = E2

0 exp

(

(b + 2)LX

(b − 2)

)

(c1T )2(b−1)/b. (67)

From Eqs. (64) and (65), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (68)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0 ,

(ii) ρ + p ≥ 0 ,
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lead to

exp

(

2LX

2 − b

)[

(b − 2)

2b

1

T 2
+

b(3 − 2b)L2

(b − 2)2
+

(2 − b)

2b

]

+2ΛE2
0(c1T )(b−2)/b ≥ 0, (69)

and
(b − 1)

b

1

T 2
+

b(b − 2)

2(b − 2)2
+

(b − 2)

2b
≥ 2M2 +

2MLb

(2 − b)
. (70)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,

lead to
(b − 1)

b

1

T 2
+

b(b − 2)

2(b − 2)2
+

(b − 2)

2b
> 2M2 +

2MLb

(2 − b)
. (71)

and

exp

(

2LX

2 − b

) [

(3b − 2)

2T 2
+

3(b − 2)

2b
+

b(3b − 5)L2

(b − 2)2
− 4M2 +

4MLb

(b − 2)

]

> 2ΛE2
0(c1T )(b−2)/b. (72)

For 2/b > 3, the model (60) represents an expanding, shearing and non-rotating
universe. For 2/b < 3, the model has singularity at T = 0. It starts from a big bang
at T = 0 and continues to expand untill T = ∞. Since σ/θ = const., the model
does not approach isotropy.

3.3. Case(iii): ab > 0

In this case we obtain

f = n exp

(

Lx

(b − 2)

)

, (73)

µ = β cos1/2(
√

αt + t0), (74)

ν = r cos(b−2)/(2b)(
√

αt + t0), (75)

g = N exp

(

Lbx

2(b − 2)
+ Mx

)

, (76)
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h =
1

N
exp

(

Lbx

2(b − 2)
− Mx

)

. (77)

Therefore, we have

A = E exp

(

Lx

(b − 2)

)

cos(b−2)/2b (
√

αt + t0), (78)

B = G exp

(

Lbx

2(b − 2)
+ Mx

)

cos1/2(
√

αt + t0), (79)

C = H exp

(

Lbx

2(b − 2)
− Mx

)

cos1/2(
√

αt + t0). (80)

Here E, G and H are already defined in subsection 3.1.

After using suitable transformation of coordinates, the metric (1) reduces to the
form

ds2 = E2 exp

(

2LX

(b − 2)

)

cos(b−2)/b(
√

αT )(dX2 − dT 2)+

exp

(

LbX

(b − 2)
+ 2MX

)

cos(
√

αT )dY 2+

exp

(

LbX

(b − 2)
− 2MX

)

cos(
√

αT )dZ2, (81)

The expressions for pressure p and density ρ for model (39) are given by

8πp =
1

E2
exp

(

2LX

2 − b

)

cos(2−b)/b(
√

αT )×

[

α

{

(3b − 4)

4b
tan2(

√
αT ) + 1

}

+
b(b + 4)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

− Λ, (82)

8πρ =
1

E2
exp

(

2LX

(2 − b)

)

cos(2−b)/b(
√

αT )×

[

(3b − 4)α

4b
tan2(

√
αT ) +

b(4 − 3b)L2

4(b − 2)2
− M2 +

MLb

(b − 2)

]

+ Λ. (83)

The non-vanishing component F12 of electromagnetic field tensor is given by

F12 =

√

µ̄

8π

2MLb

(2 − b)
G exp

{(

Lb

b − 2
+ 2M

)

X

2

}

cos(
√

αT ), (84)
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where µ̄ remains undetermined as function of X and T .

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
(2 − 3b)

√
α

2bE
exp

(

LX

(2 − b)

)

cos(2−b)/(2b)(
√

αT ) tan(
√

αT ). (85)

Now the shear scalar σ2, acceleration vector v̇i and proper volume V 3 are given by

σ2 =
α

3b2E2
exp

(

2LX

(2 − b)

)

cos(2−b)/b(
√

αT ) tan2(
√

αT ), (86)

v̇i =

(

L

(b − 2)
, 0, 0, 0

)

, (87)

V 3 =
√−g = E2 exp

(

(b + 2)LX

(b − 2)

)

cos2(b−1)/b(
√

αT ). (88)

From Eqs. (85) and (86), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (89)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0 ,

(ii) ρ + p ≥ 0 ,

lead to

2ΛE2 cos(b−2)/b(
√

αT ) ≥ exp
2LX

(2 − b)

[

b2L2

(b − 2)2
+ α

]

, (90)

and

α

[

(3b − 4)

2b
tan2(

√
αT ) + 1

]

+
b(4 − b)L2

2(b − 2)2
+

2MLb

(b − 2)
− 2M2 ≥ 0. (91)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,
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lead to

α

[

(3b − 4)

2b
tan2(

√
αT ) + 1

]

+
b(4 − b)L2

2(b − 2)2
+

2MLb

(b − 2)
− 2M2 > 0. (92)

and

exp

(

2LX

2 − b

)[

(3b − 4)α

b
tan2(

√
αT ) + 3α +

4bL2

(b − 2)2
− 4M2 +

4MLb

(b − 2)

]

> 2ΛE2 cos(b−2)/b(
√

αT ). (93)

For 2/b > 3, the model (81) starts expanding at T = 0 and attains its maximum
value at T = π/(4

√
α). After that θ decreases to attain its minimum negative

value at T = 3π/(4
√

α). The model oscillates with the period π/(2
√

α). The model
is shearing and non-rotating. Since σ/θ = const., the model does not approach
isotropy.

4. Solutions in absence of magnetic field

We consider the following three cases:

4.1. Case(i): ab < 0

When L = 0 and M = 0, we observe that the magnetic field in the model (39)
vanishes and the geometry of the spacetime takes the form

ds2 = E2 cosh(b−2)/b(
√

| α |T )(dX2 − dT 2)+

cosh(
√

| α |T )dY 2 + cosh(
√

| α |T )dZ2, (94)

The expressions for the pressure p and density ρ for model (94) are given by

8πp =
1

E2
cosh(2−b)/b(

√

| α |T )

[

| α |
{

(b + 1)

4b
tanh2(

√

| α |T ) − 1

}

]

− Λ, (95)

8πρ =
1

E2
cosh(2−b)/b(

√

| α |T )

[

| α | (3b − 4)

4b
tanh2(

√

| α |T )

]

+ Λ. (96)

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
(3b − 2)

√

| α |
2bE

cosh(2−b)/(2b)(
√

| α |T ) tanh(
√

| α |T ). (97)
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Now the shear scalar σ2, acceleration vector v̇i and proper volume V 3 are given by

σ2 =
| α |

3b2E2
cosh(2−b)/b(

√

| α |T ) tanh2(
√

| α |T ), (98)

v̇i = (0, 0, 0, 0) , (99)

V 3 =
√−g = E2 cosh2(b−1)/b(

√

| α |T ). (100)

From Eqs. (97) and (98), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (101)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0 ,

(ii) ρ + p ≥ 0 ,

lead to

[

(2b − 5) | α |
4b

tanh2(
√

| α |T )+ | α |
]

+ 2ΛE2 cosh(b−2)/b(
√

| α |T ) ≥ 0 (102)

and

tanh2(
√

| α |T ) ≥ 4b

(4b − 3)
. (103)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,

lead to

tanh2(
√

| α |T ) >
4b

(4b − 3)
, (104)

and

[

(6b − 1) | α |
4b

tanh2(
√

| α |T )− | α |
]

> 2ΛE2 cosh(b−2)/b(
√

| α |T ). (105)
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4.2. Case(ii): ab = 0

In the absence of magnetic field, the geometry of the spacetime of the model
(60) takes the form

ds2 = E2
0(c1T )(b−2)/b(dX2 − dT 2) + (c1T )

(

dY 2 + dZ2
)

. (106)

The expressions for pressure p and density ρ for model (106) are given by

8πp =
1

E2
0

(c1T )(2−b)/b

[

1

4T 2
+

(b − 2)

2b

]

− Λ, (107)

8πρ =
1

E2
0

(c1T )(2−b)/b

[

(3b − 4)

4b

1

T 2

]

+ Λ. (108)

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
c2(3b − 2)

2bE0
T (2−3b)/(2b). (109)

Now the shear scalar σ2, acceleration vector v̇i and proper volume V 3 are given by

σ2 =
c2
2

3b2E2
0

T (2−3b)/(2b), (110)

v̇i = (0, 0, 0, 0) , (111)

V 3 =
√−g = E2

0(c1T )2(b−1)/b. (112)

From Eqs. (109) and (110), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (113)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0

(ii) ρ + p ≥ 0

lead to

[

(b − 2)

2b

1

T 2
+

b(3 − 2b)L2

(b − 2)2
+

(2 − b)

2b

]

+ 2ΛE2
0(c1T )(b−2)/b ≥ 0, (114)
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and
(2 − b)(b − 1)

b(b2 − 2b + 2)
≥ T 2. (115)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,

lead to
(2 − b)(b − 1)

b(b2 − 2b + 2)
> T 2, (116)

and
[

(3b − 2)

2T 2
+

3(b − 2)

2b
+

b(3b − 5)L2

(b − 2)2

]

> 2ΛE2
0(c1T )(b−2)/b. (117)

4.3. Case(iii): ab > 0

In the absence of the magnetic field, the geometry of the spacetime for the
model (81) takes the form

ds2 = E2 cos(b−2)/b(
√

α T )(dX2 − dT 2)+

cos(
√

αT )
(

dY 2 + dZ2
)

. (118)

The expressions for the pressure p and density ρ for model (118) are given by

8πp =
1

E2
cos(2−b)/b(

√
αT )

[

α

{

(3b − 4)

4b
tan2(

√
αT ) + 1

}]

− Λ, (119)

8πρ =
1

E2
cos(2−b)/b(

√
αT )

[

(3b − 4)α

4b
tan2(

√
αT )

]

+ Λ. (120)

The scalar of expansion θ calculated for the flow vector vi is given by

θ =
(2 − 3b)

√
α

2bE
cos(2−b)/(2b)(

√
αT ) tan(

√
αT ). (121)

Now the shear scalar σ2, acceleration vector v̇i and proper volume V 3 are given by

σ2 =
α

3b2E2
cos(2−b)/b(

√
αT ) tan2(

√
αT ), (122)
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v̇i = (0, 0, 0, 0) , (123)

V 3 =
√−g = E2 cos2(b−1)/b(

√
αT ). (124)

From Eqs. (121) and (122), we have

σ2

θ2
=

4

3(3b − 2)2
= const. (125)

The rotation ω is identically zero.

The dominant energy conditions given by Hawking and Ellis [40],

(i) ρ − p ≥ 0 ,

(ii) ρ + p ≥ 0 ,

lead to

2ΛE2 cos(b−2)/b(
√

αT ) ≥ α, (126)

and

tan2(
√

αT ) ≥ 2b

(4 − 3b)
. (127)

The reality conditions given by Ellis [41],

(i) ρ + p > 0 ,

(ii) ρ + 3p > 0 ,

lead to

tan2(
√

αT ) >
2b

(4 − 3b)
, (128)

and

cos(2−b)/b(
√

αT )
[

3b sec2(
√

αT ) − 4 tan2(
√

αT )
]

>
2bΛE2

α
. (129)

5. Conclusion

We have obtained a new class of plane-symmetric inhomogeneous cosmological
models of electromagnetic perfect fluid as the source of matter. Generally, the model
represents expanding, shearing, non-rotating and Petrov type-II non-degenerate
universe in which the flow vector is geodetic. In the model (39), we observe that
the expansion starts at T = 0 and it continues till T = ∞. In the model (60), we
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also observe the similar behaviour when 2/b > 3 but in the case when 2/b < 3, we
obtain singularity at T = 0. The model (81) is oscillatory. In all models σ

θ = const.,
and hence they do not approach isotropy.

It is worth mentioning here that in presence of magnetic field, all models are in-
homogeneous, whereas in the absence of magnetic field they become homogeneous.
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NOVA KLASA RAVNINSKI-SIMETRIČNIH NEHOMOGENIH
KOZMOLOŠKIH MODELA S PERFEKTNOM RASPODJELOM TEKUĆINE I

ELEKTROMAGNETSKIM POLJEM

Izveli smo novu klasu ravninski-simetričnih nehomogenih kozmoloških modela s
perfektnom raspodjelom tekućine i elektromagnetskim poljem. Izvor magnetskih
polja je električna struja u smjeru z-osi. Različita od nule je jedino komponenta
tenzora elektromagnetskog polja F12. Pretpostavili smo nedegenerirano slobodno
gravitacijsko polje tipa Petrov-II. Razmatrali smo tri slučaja: (i) hiperbolni kosinus,
(ii) linearni i (iii) kosinusni oblik. Raspravljamo takod–er neka geometrijska i fizička
svojstva modela u prisustvu i bez magnetskog polja.
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