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A class of non-static solutions around a global monopole, resulting from the break-
ing of a global SO(3) symmetry based on Lyra geometry, are obtained. The so-
lutions are derived using the functional separability of the metric coefficients. We
have shown that the monopole exerts attractive gravitational effects on test parti-
cles.
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1. Introduction

Global monopoles, predicted to exist in the grand unified theory, are supposed to
have been created during a phase transition in the early Universe [1]. They are stable
topological defects produced when global SO(3) symmetry is spontaneously broken
in U(1). Monopoles exhibit some interesting properties, particularly in relation to
the appearance of non-trivial space time topologies [1, 2]. Using a suitable scalar
field, it can be shown that spontaneous symmetry breaking can give rise to such
objects which are nothing but the topological knots in the vacuum expectation
value of the scalar field, and most of their energy is concentrated in a small region
near the monopole core. From the topological point of view, they are formed in
the vacuum manifold M when M contains surfaces which can not be continuously
shrunk to a point i.e. when π2(M) /= I. Such monopoles have Goldstone fields with
energy density decreasing with the distance as the inverse square law. They are
also found to have some interesting features in the sense that a monopole exerts no
gravitational force on its surrounding non-relativistic matter, but space around it
has a deficit solid angle [2].
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At first, Barriola and Vilenkin (BV) [3] showed the existence of such a monopole
solution resulting from the breaking of global SO(3) symmetry of a triplet scalar
field in a Schwarzschild background. After that, many articles have been published
on general relativistic static models of the global monopole space time [4]. In the
recent past, Chakraborty [5, 6] and Farook [7] have derived the solutions to the
Einstein’s field equations for the non-static space time metric outside the core of a
global monopole.

In the last few decades, there has been a considerable interest in alternative the-
ories of gravitation. The most important among them being scalar-tensor theories
proposed by Lyra [8] and Brans-Dicke [8]. Lyra proposed a modification of Rie-
mannian geometry by introducing a gauge function into the structure less manifold
that bears a close resemblances to the Weyl’s geometry. In general relativity, Ein-
stein succeeded in geometrising gravitation by identifying the metric tensor with
the gravitational potentials. In the scalar tensor theory of Brans-Dicke, on the
other hand, the scalar field remains alien to the geometry. Lyra’s geometry is more
in keeping with the spirit of Einstein’s principle of geometrisation, since both the
scalar and tensor fields have more or less intrinsic geometrical significance.

In subsequent investigations, Sen [9] and Sen and Dunn [9] proposed a new
scalar-tensor theory of gravitation and constructed an analog of the Einstein field
equation based on Lyra’s geometry which in normal gauge may be written as

Rik −
1

2
gikR +

3

2
φiφk −

3

4
gikφmφm = −8πGTik , (1)

where φi is the displacement vector and other symbols have their usual meaning as
in Riemannian geometry.

Halford [10] has pointed out that the constant displacement field φi in Lyra’s
geometry plays the role of cosmological constant Λ in the normal general relativistic
treatment. According to Halford, the present theory predicts the same effects within
observational limits, as far as the classical solar system tests are concerned, as well
as tests based on the linearized form of field equations. Soleng [11] has pointed
out that the constant displacement field in Lyra’s geometry will either include a
creation field and be equal to Hoyle’s creation field cosmology or contain a special
vacuum field which together with the gauge vector term may be considered as a
cosmological term.

Subsequent investigations were done by several authors in scalar-tensor theory
and cosmology within the frame work of Lyra geometry [12]. Recently, Rahaman et
al. have studied some topological defects within the frame work of Lyra geometry
[13].

In this work, we shall deal with the monopole with constant displacement vectors
based on Lyra geometry in normal gauge, i.e. displacement vector

φi = (β, 0, 0, 0) , (2)

and look forward whether the monopole shows any significant properties due to the
introduction of the gauge field in the Riemannian geometry.
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2. The basic equations

Here we closely follow the formalism of Chakraborty [6] and take the Lagrangian
that gives rise to monopoles as

L =
1

2
gµν∂µΦa∂γΦa −

1

4
λ(ΦaΦa − η2)2 , (3)

where Φa is the triplet scalar field, a = 1, 2, 3, and η is the energy scale of symmetry
breaking. For a non-static monopole, we do not write the explicit form of the field
configuration of Φa but take it as an implicit form.

The energy momentum tensor for the above Lagrangian is given by [6]

T γ
µ = ∂µΦa∂γΦa − Lδγ

µ . (4)

The metric ansatz describing a monopole can be written as

ds2 = −Adt2 + Bdr2 + CdΩ2
2 . (5)

Here, A, B and C are functions of r and t.

The field equations (1) for the metric (5) reduce to

1

2
B

[

2
C ′′

C
+

1

2

(

C ′

C

)2

−
B′C ′

BC

]

−
1

2
A

[

1

2

(

C∗2

C

)2

+
B∗C∗

BC

]

−
1

C
+

3

4

1

A
β2

=
1

2

[

−
1

A
(Φa∗)2 −

1

B
(Φa′)2 +

1

2
(ΦaΦa − η2)2

]

, (6)

1

2
B

[

(

C ′

C

)2

+
A′C ′

AC

]

−
1

2
A

[

2
C∗∗

C
+

1

2

(

C∗

C

)2

−
A∗C∗

AC

]

−
1

C
−

3

4

1

A
β2

=
1

2

[

1

A
(Φa∗)2 +

1

B
(Φa′)2 +

1

2
λ(ΦaΦa − η2)2

]

, (7)

1

2
B

[

C ′′

C
+

A′′

A
+

1

2

(

A′

A

)2

+
1

2

(

C ′

C

)2

−
1

2

B′C ′

BC
−

B′A′

BA
+

1

2

A′C ′

AC

]

+
1

2
A

[

−
C∗∗

C
−

B∗∗

B
−

1

2

(

C∗2

C

)2

−
1

2

(

B∗2

B

)2

+
A∗C∗

2AC
+

A∗B∗

2AB
−

B∗C∗

2BC

]

−
3

4A
β2

=
1

2

[

1

A
(Φa∗)2 −

1

B
(Φa′)2 +

1

2
λ(ΦaΦa − η2)2

]

, (8)

FIZIKA B (Zagreb) 16 (2007) 4, 223–230 225



rahaman and mondal: non-static global monopole in Lyra geometry

−
C∗′

C
−

1

2

C∗C ′

C2
+

1

2

A′C∗

AC
+

1

2

B∗C ′

BC
= Φa∗Φa′ . (9)

The field equation for the scalar triplet Φa is

1

A

[

−
Φa∗∗

Φa
+

Φa∗

Φa

{

−
A∗

A
+

B∗

B
+ 2

C∗

C

}]

+
1

B

[

−
Φa′′

Φa
+

Φa′

Φa

{

−
A′

A
+

B′

B
− 2

C ′

C

}]

+ λ(ΦaΦa − η2)2 = 0 . (10)

[The symbols ‘ * ’ and ‘ ’ ’ represent the differentiation with respect to t and r,
respectively.]

3. Solutions to the field equations

To get exact solutions, we follow the method of separation of variables and
assume the separable form of the metric coefficients as

A = A1(r)A2(t), B = B1(r)B2(t), C = C1(r)C2(t) . (11)

Further, without any loss of generality, one can assume

A2(t) = B1(r) = 1 , (12)

since A2(t) or B1(r) different from unity result in a scaling of time or radial coor-
dinates.

Also, we have taken the scalar field triplet in the separable form as

Φa(r, t) = Φa
1(r) + Φa

2(t) . (13)

We shall now solve these equations with the following relations among the metric
coefficients

A1 = aCn
1 and B2 = bCm

2 , (14)

where a, b, m and n are arbitrary constants.

From Eq. (9), by using Eqs. (11) – (14), we get

Φa
2
∗ = q

(

m + n −
3

2

)

C∗

2

C2
and Φa

1
′ =

1

q

C ′

1

C1
, (15)

where q is the separation constant.
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Now, eliminating Φa
1
′, using the separable forms and taking Eq. (6) + Eq. (7)

- 2×Eq. (8), we get

C ′′

1

C1
+ d

(

C ′

1

C1

)2

= eC−n
1 , (16)

where d = 1
2 [3n2 − n + (2/q2)], e = p/(2a) and p is the separation constant.

The integral form of C1 is

∫
[

D1C
−2d
1 +

2e

2d − n + 2
C

(2−n)
1

]

−1/2

dC1 = ±(r − r0) , (17)

where D1 and r0 are integration constants.

For different choices of the constants, the solutions for C1 are

Case I: p = 0: C1 ∝ (r − r0)
1/(1+d) , (18)

Case II: D1 = 0: C1 ∝ (r − r0)
2/n , (19)

Case III: n = 0, D1 > 0: C1 =
√

(d+1)D1/e sinh
√

e(d+1)(r−r0)
1/(1+d), (20)

Case IV: n = 0, D1 < 0: C1 =
√

(d+1)D1/e cosh
√

e(d+1)(r−r0)
1/(1+d), (21)

Proceeding in a similar way, the integral form of C2 is

∫
[

D2C
−2f
2 +

2g

2f−m+2
C

(2−m)
2 −

6β2

(2m+4)(2f+2)
C2

2

]−1/2

dC2 = ±(t−t0) , (22)

where D2 and t0 are integration constants, f ={3m2+2+2q2(m+n−3/2)2}/(2m+4)
and g = p/[b(2m + 4)].

The solution set for the time part C2 is as follows:

Case I: p = 0: C2 =

√

β2
f+1

2m+4

[

sin

√

2D2
(f+1)(2m+4)

β2
(t−t0)

]1/(f+1)

, (23)

Case II: D2 = 0, m = 0 : C2 = exp

[
√

g

2f
− 3

β2

8(f + 1)
(t − t0)

]

, (24)

Case III: D2 = 0, m = 2 : C2 =

√

2g

3β2
sin

√

3β2

4(f + 1)
(t − t0), (25)

Case IV: f = 1, m = 0 : C2 =2

√

D2

g−(3/2)β2
sinh

√

g−(3/2)β2 (t−t0), (26)

From Eq. (15), we get

Φa
1(r) =

1

q
lnC1 + Φa

01 and Φa
2(t) = q

[

m + n − 3/2
]

lnC2 + Φa
02 , (27)
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where Φa
01 and Φa

02 are integration constants.

4. Concluding remarks

In this paper, we have studied the gravitational field of non-static monopole in
Lyra geometry. The solutions we have obtained in the present paper are not most
general. Nevertheless, the solutions presented here are perhaps the exact analytical
solutions obtained for the first time.

The expression of our metric (5) is

ds2 = −Cn
1 dt2 + Cm

2 dr2 + C1C2dΩ2
2

If we define T =
∫

C
−m/2
2 dt and R =

∫

C
−n/2
1 dr then the above metric can be

written as

ds2 = −dT 2 + dR2 + C1−n
1 C1−m

2 dΩ2
2

The metric describes a solid angle of deficiency which depends both on radial and
time coordinates (except for a conformal factor). It is important to note that our
non-static metric is not conformally flat and, hence, it represents a monopole [6].

Another aspect of the monopole is the effect on a test particle in its gravitational
field. Let us consider an observer with four velocity given by

Vi =
√

C1 δ1
1 .

Then we obtain the acceleration vector Ai as

Ai = V i
; kV k = (C1

1/C1)C
−2
1 δi

r

For the above solutions (18) – (21), one can see that Ar is positive. Hence, the
monopole exhibits an attractive force to the observer.
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NESTATIČKI GLOBALNI MONOPOL U LYRINOJ GEOMETRIJI

Izveli smo klasu nestatičkih rješenja oko globalnog monopola koja se javljaju
lomljenjem globalne SO(3) simetrije zasnovane na Lyrinoj geometriji. Rješenja
smo postigli funkcionalnim razdvajanjem metričkih koeficijenata. Pokazali smo da
monopol ima privlačne gravitacijske učinke na ispitne objekte.
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