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Abstract 

A fast and facile electrochemical sensor for the detection of an important anticancer drug, 5-fluorouracil, is 
fabricated using CuFe2O4 nanoparticles modified screen printed graphite electrode (CuFe2O4 NPs/SPGE). The 
electrochemical activity of the modified electrode was characterized by chronoamperometry, cyclic voltam-
metry (CV) and differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) experiments. The 
CuFe2O4 NPs improved the electrochemical properties of the electrodes and enhanced their electroanalytical 
performance. Electrochemical measurements using differential pulse voltammetry showed a wide linear 
relationship between 5-fluorouracil concentration and peak height within the range 0.1 to 270.0 µM with a low 
detection limit (0.03 µM). Further, the sensor was testified with a urine sample and 5-fluorouracil injection 
sample, and the observed remarkable recovery results replicate its practical applicability. 

©2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Cancer is a class of diseases characterized by out-of-control cell growth. Due to ineffective drugs, cancer 

is the cause of most deaths worldwide. Therefore it's essential to develop cancer research in order to identify 

causes and develop strategies for prevention, diagnosis, treatments and cure [1,2]. 

5-Fluorouracil is an antimetabolite fluoropyrimidine analog prescribed as a chemotherapy drug. 

5-fluorouracil, a derivative of uracil in which the 5th positioned hydrogen is replaced by fluorine, is used as an 

excellent antineoplastic agent in treatment of cancer such as colorectal, breast, stomach, pancreatic, and 

cervical. It acts on cancer cells by directly incorporating into nucleic acids and inhibiting the thymidylate 

synthase enzyme, which is involved in nucleotide synthesis [3-6] . 

However, an overdose of 5-Fluorouracil may result in very toxic side effects such as mucositis, leukopenia, 

nausea, diarrhea, alopecia, neurotoxicity, ocular toxicity, and cardiac toxicity by accumulation. Consequently, 

controlling the dose of this drug in biological samples and studying the purity of its pharmaceutical forms can 

help manage its side effects [7-9]. 
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Currently, there are several analytical techniques for the determination of 5-fluorouracil, such as capillary 

electrophoresis [10], high-performance liquid chromatography [11], Raman spectroscopy [12] and mass 

spectrometry [13]. In spite of their good performance, these techniques are generally expensive, time-

consuming and require relatively complex procedures for sample preparation. 

The use of electrochemical sensors presents an alternative to the aforementioned analyses for the 

determination of 5-Fluorouracil. Electrochemical methods are highlighted and deserve special attention since 

they present high sensitivity, selectivity, reproducibility, low cost, and rapid response generation, and related 

to dyes, they present functional groups that can undergo redox reactions, enabling their determination. 

Among the electrochemical techniques, voltammetry deserves special attention once different sensors 

(modified or not) can be applied [14-27]. 

Magnification of the above properties can be achieved by the application of chemically modified elec-

trode. Electrode modification in analytical chemistry has always been an interesting field. Modifiers effecti-

vely transport electrons between the electrodes to an analyte. It works by minimizing the over-potential 

required for the electrode reactions and increasing the electrode's sensitivity and selectivity [28-39]. 

With the advent of nanoscience, various kinds of nanoparticles are utilized for electrochemical sensors in 

several analytical methods due to their unique character. Owing to their small size (normally in the range of 

1–100 nm), nanoparticles exhibit unique chemical, physical and electronic properties that are different from 

those of respective bulk materials and can be used to construct novel and improved sensing devices. 

Compared with the traditional macroelectrodes, nanostructured electrodes show an increased mass-

transport rate, a decreased influence of the solution resistance and a higher signal-to-noise ratio [40-54]. 

In order to develop a miniaturized sensor, screen-printed electrodes (SPEs) are a valuable choice. SPEs 

produced by printing different inks on plastic or ceramic supports are gaining widespread applicability for the 

electrochemical monitoring field. Recently, SPEs have emerged as a simple, disposable, nontoxic and low-

cost alternative to mercury-based and conventional solid electrodes for the voltammetric determination of 

many substances. Moreover, they have been shown to be a convenient substrate for nanoparticle 

modification [55-58]. 

In the present work, we synthesized CuFe2O4 nanoparticles (CuFe2O4 NPs) and screen-printed graphite 

electrodes were modified with CuFe2O4 NPs using the drop-casting method. The resulting modified electrode 

is applied to the determination of 5-fluorouracil by differential pulse voltammetry. 

Experimental  

Apparatus and chemicals  

All the electrochemical measurements were carried out on a PGSTAT302N potentiostat/galvanostat Auto-

lab. The measurement cell consisted of SPGE (DropSens; DRP-110: Spain) containing a graphite counter electro-

de, a graphite working electrode, and a silver pseudo-reference electrode. Solution pH values were determined 

using a 713 pH meter combined with a glass electrode (Metrohm, Switzerland). 5-fluorouracil  and all chemicals 

used were of analytical grade and were used as received without any further purification and were obtained 

from Merck and Sigma Aldrich. Orthophosphoric acid was utilized to prepare the phosphate buffer solutions 

(PBSs), and sodium hydroxide was responsible for adjusting the desired pH values (pH range between 2 and 9).  

Preparation of modified electrode 

CuFe2O4 NPs/SPGEs were prepared by modifying the bare working electrode of an SPGE using the drop-

casting method. Briefly, 4 µL of the solution of CuFe2O4 NPs (1 mg/mL) were dropped onto the working 



ADMET & DMPK 11(2) (2023) 201-210 CuFe2O4 nanoparticles for determination of 5-fluorouracil 

doi: http://dx.doi.org/10.5599/admet.1691 203 

electrode surface and dried at room temperature. The obtained electrode was noted as CuFe2O4 NPs/SPGE. 

The surface areas of the CuFe2O4 NPs/SPGEs and the un-modified SPGEwere obtained by CV using 1 

mM K3Fe(CN)6 at various scan rates. Using the Randles–Sevcik equation for CuFe2O4 NPs/SPGEs, the 

electrode surface was found to be 0.113 cm2 which was about 3.6 times greater than un-modified SPE. 

Results and discussion 

Electrochemical behavior of 5-fluorouracil at the surface of various electrodes 

The effect of the electrolyte pH on the oxidation of 50.0 μM 5-fluorouracil was investigated at CuFe2O4 

NPs/SPGE using differential pulse voltammetry (DPV) measurements in the PBS in the pH range from 2.0 to 

9.0. According to the results, the oxidation peak current of 5-fluorouracil depends on the pH value and 

increases with increasing pH until it reaches the maximum at pH 7.0 and then decreases at higher pH values. 

The optimized pH corresponding to the higher peak current was 7.0, indicating that protons are involved in 

the reaction of 5-fluorouracil oxidation. 

Figure 1 displays CV responses from the electrochemical oxidation of 100.0 μM 5-fluorouracil at the 

surface of CuFe2O4 NPs/SPGE (curve b) and bare SPGE (curve a). The results showed that the oxidation of 5-

fluorouracil is very weak on the surface of the bare SPGE, but the presence of CuFe2O4 NPs in SPGE could 

enhance the peak current and decrease the oxidation potential (decreasing the overpotential). A substantial 

negative shift of the currents starting from oxidation potential for 5-fluorouracil and a dramatic increase of 

the current indicates the catalytic ability of CuFe2O4 NPs/SPGE to 5-fluorouracil oxidation. The results showed 

that the using of CuFe2O4 nanoparticles (curve b) definitely improved the characteristics of 5-fluorouracil 

oxidation, which was partly due to excellent characteristics of CuFe2O4 NPs, such as good electrical 

conductivity and high chemical stability. 

 
Figure 1. Cyclic voltammograms of a) bare SPGE, b) CuFe2O4 NPs/SPGE in the presence of 100.0 μM  

5-fluorouracil in 0.1 M phosphate buffer solution, pH 7.0. 

Effect of scan rate on the determination of 5-fluorouracil at CuFe2O4 NPs/SPGE 

The influence of potential scan rate (ν) on Ip of 100.0 μM 5-fluorouracil at the CuFe2O4 NPs/SPGE was 

studied by linear sweep voltammetry (LSV) at various sweep rates (Figure 2). As shown in Figure 2, the peak 
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currents of 5-fluorouracil grow with the increasing scan rates and there are good linear relationships between 

the peak currents and ν1/2 (square root of scan rate) (Figure 2 inset). The regression equation is Ipa = 1.0767 

ν1/2 +1.4301 (Ipa/ μA, ν / mV s−1, R2= 0.9985), indicating the oxidation process of 100.0 μM 5-fluorouracil at 

the CuFe2O4 NPs/SPGE was diffusion-controlled. 

 
Figure 2. Linear sweep voltammograms of 5-fluorouracil at CuFe2O4 NPs/SPGE at different scan rates, 1-7 

correspond to 10, 30, 70, 100, 200, 300 and 400 mV s−1 in 0.1 M phosphate buffer solution, pH 7.0. Inset 

shows a plot of Ipa versus ν1/2 for the oxidation of 5-fluorouracil at CuFe2O4 NPs/SPGE.  

To obtain further information on the rate-determining step, the Tafel plot for oxidation of 100.0 µM 5-flu-

orouracil at the surface of CuFe2O4 NPs/SPGE using the data derived from the raising part of the current–voltage 

curve has been recorded in Figure 3. Using the slope of the Tafel plot at a scan rate of 10 mV s-1, the value of 

electron transfers coefficient (α) was determined as 0.6, confirming an irreversible process for the oxidation of 

5-fluorouracil on the surface of CuFe2O4 NPs/SPGE. 

 
Figure 3. Linear sweep voltammograms response for 100.0 μM 5-fluorouracil with 10 mV s-1 scan rate. Inset: 

The Tafel plot derived from the rising part of the corresponding voltammogram 
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Chronoamperometric studies 

The electrochemical oxidation of 5-fluorouracil by a CuFe2O4 NPs/SPGE was also studied by chronoam-

perometry. Chronoamperometric measurements of different concentrations of 5-fluorouracil at CuFe2O4 

NPs/SPGE were done by setting the working electrode potential at 1000 mV (Figure 4). In chronoampero-

metric studies, we have determined the diffusion coefficient, D, of 5-fluorouracil. The experimental plots of 

I versus t−1/2 with the best fits for different concentrations of 5-fluorouracil were employed (Figure 4 A). The 

slopes of the resulting straight lines were then plotted versus the 5-fluorouracil -concentrations (Figure 4 B), 

from whose slope and using the Cottrell equation (1):  

I =nFAD1/2Cbπ-1/2t-1/2  (1) 

We calculated a diffusion coefficient of 8.3×10-5 cm2 s−1 for 5-fluorouracil. 

 
Figure 4. Chronoamperograms obtained at the CuFe2O4 NPs/SPGE in 0.1 M phosphate buffer solution, pH 7.0, 
for different concentrations of 5-fluorouracil. The 1-4 correspond to 0.1, 0.5, 0.9 and 1.7 mM of 5-fluorouracil. 
(A) Plots of I vs. t-1/2 for electrooxidation of 5-fluorouracil obtained from chronoamperometry. (B) Plot of the 

slope of the straight lines against 5-fluorouracil concentration. 

Calibration curve and limit of detection 

Since DPV has a much higher current sensitivity than cyclic voltammetry, we used the DPV method for the 

determination of 5-fluorouracil (Step potential=0.01 V and pulse amplitude=0.025 V). Figure 5 shows DPVs 

of different concentrations of 5-fluorouracil and the obtained calibration curve. The results showed a linear 

segment for 5-fluorouracil concentration from 0.1 to 270.0 μM 5-fluorouracil (Figure 5), with a regression 

equation of Ip = 0.0793C5-fluorouracil + 0.6877 (R2= 0.9994, n=9). The detection limit, LOD, was obtained by using 

the equation (2): 

LOD= 3Sb/m  (2) 

where Sb is the standard deviation of the blank response (n=15) and m is the slope of the calibration plot. The 

limit of detection was determined to be 0.03 μM for 5-fluorouracil. 
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Figure 5. Differential pulse voltammograms of the CuFe2O4 NPs/SPGE in 0.1 M phosphate buffer 

solution (pH7.0) containing different concentrations of 5-fluorouracil, Numbers 1–9 correspond to 

0.1, 5.0, 15.0,30.0, 70.0, 100.0, 150.0, 200.0 and 270.0 µM of 5-fluorouracil. (B) the plot of the voltammetric 
peak current as a function of 5-fluorouracil concentration. 

Real sample analysis  

To investigate the applicability of the proposed sensor for the voltammetric determination of 5-fluorouracil 

in real samples, we selected urine and 5-fluorouracil injection samples for the analysis of 5-fluorouracil 

contents. The 5-fluorouracil contents were measured after sample preparation using the standard addition 

method. The results are given in Table 1. According to the table, the recovery values within 98.0-103.6 % 

confirm the powerful ability of CuFe2O4 NPs/SPGE for the determination of 5-fluorouracil in real samples. 

Table 1. The application of CuFe2O4 NPs/SPGE for determination of 5-fluorouracil in real samples (n=3) 

Sample 
C / µM 

Recovery, % RSD,  % 
Spiked Found 

Urine 
0 - - - 

5.0 4.9 98.0 1.9 
7.0 7.2 102.9 3.0 

5-fluorouracil injection 
0 3.0 - 3.2 

2.5 5.7 103.6 1.6 
4.5 7.4 98.7 2.8 

Conclusions 

The fabrication of sensors for the measurement of 5-fluorouracil was achieved using screen-printed 

graphite electrodes modified with CuFe2O4 NPs. The CuFe2O4 NPs remarkably decreased overvoltage and 

improved the electrochemical response of 5-fluorouracil in terms of specificity, sensitivity and current 

response. Under optimized conditions, differential pulse voltammetry exhibited linear dynamic ranges from 

0.1-270.0 µM with a detection limit of 0.03 µM. Also, the CuFe2O4 NPs/SPGE was used to detect 5-fluorouracil 

in real samples and produced satisfactory results. 

Conflict of interest: Authors declare no conflict of interest. 
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