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Bianchi type I bulk viscous fluid tilted cosmological model filled with disordered
radiation and heat conduction is investigated. We assume that the eigenvalue σ1

1 of

the shear tensor σj
i is proportional to the expansion (θ) which leads to A = (BC)n

between metric potentials A, B, C with n = constant and ζθ = K(constant),
where ζ is the coefficient of bulk viscosity in the model. To get the deterministic
model in terms of cosmic time t, we discuss some physically valid special models for
different values of parameters. The physical and geometrical aspects of the models
are discussed.
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Keywords: Bianchi type I cosmological model, bulk viscous fluid

1. Introduction

The distribution of matter in the universe is satisfactorily described by a perfect
fluid due to the large-scale distribution of galaxies. However, the realistic treatment
of the problem requires the consideration of material distribution other than the
perfect fluid. In the dynamics of homogeneous cosmological models, the introduc-
tion of viscosity in the fluid content has been found to explain many physical
aspects of the universe. A different picture at the initial stage of the cosmological
evolution may appear due to the dissipative process caused by viscosity, as vis-
cosity counteracts the cosmological collapse. Several researchers have attempted
to find exact solutions of Einstein’s field equations by considering viscous effect
in isotropic as well as anisotropic models. Misner [1, 2] studied the effect of vis-
cosity on the evolution of cosmological models. Heller and Klimek [3] obtained a
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viscous fluid cosmological solution without an initial singularity. They have shown
that introduction of bulk viscosity effectively removes the initial singularity in cer-
tain classes of cosmological models. Murphy [4] obtained a solution for flat FRW
(Friedmann-Robertson-Walker) model considering the effect of the bulk viscosity
only. Belinski and Khalatnikov [5] investigated Bianchi Type I cosmological model
under the influence of viscosity and found that gravitational field creates matter
near the initial singularity. Roy and Prakash [6, 7] investigated some plane symmet-
ric cosmological models for viscous fluid distribution with a free gravitational field
of Petrov type I and non-degenerate Petrov type I model. Banerjee and Santos
[8] have given some exact solutions for Bianchi type I viscous fluid cosmological
models and discussed the role of viscosity in determining the nature of singularity.
Banerjee et al. [9] also investigated spatially homogeneous and locally rotationally
symmetric Bianchi type II cosmological model under the influence of shear and
bulk viscosity for barotropic equation of state and considering a linear relationship
between ρ, θ2 and σ2, where ρ is the fluid density, θ the expansion and σ the
shear. Spatially homogeneous anisotropic homogeneous bulk viscous fluid cosmo-
logical model without shear viscosity was investigated by Mohanty and Pattanaik
[10]. Bali and Jain [11,12] obtained two viscous fluid Bianchi type I cosmological
models in general relativity. In the first model, the coefficient of shear viscosity is
assumed to be constant, while in the second model, the coefficient of shear viscos-
ity is proportional to the rate of expansion in the model. Bali and Pradhan [13]
have investigated Bianchi type III time-dependent bulk viscous string cosmological
model in general relativity.

In the above mentioned studies, orthogonal viscous fluid universes in which the
fluid flow vector is normal to the hypersurface of homogeneity have been discussed.
The tilted cosmological models in which the fluid flow vector is not normal to the
hypersurface of homogeneity are more complicated than the non-tilted ones. The
general dynamics of tilted models have been studied by King and Ellis [14], Ellis
and King [15], Collins and Ellis [16]. Bradley and Sviestins [17] found that the heat
flow is expected for tilted cosmological models. The cosmological models with heat
flow were studied by a number of authors, like Ray [18], Roy and Banerjee [19], Co-
ley and Tupper [20, 21], Coley [22]. Pradhan and Rai [23, 24], and Bali and Meena
[25] investigated tilted cosmological model filled with disordered radiation of perfect
fluid with heat flow. Bali and Sharma [26] obtained some tilted Bianchi type I cos-
mological models for barotropic perfect fluid with heat flow, using A = tℓ, B = tm,
C = tn, where A, B and C are metric potentials and ℓ, m and n are constants. Re-
cently, Pradhan et al. [27] investigated plane symmetric viscous fluid cosmological
models with variable cosmological constant (Λ). To get the deterministic model,
they also assumed that the coefficient of bulk viscosity is a power function of the
mass density, and the coefficient of shear viscosity is proportional to the rate of
expansion in the model.

In this paper we investigate the Bianchi type I bulk viscous fluid tilted cos-
mological model filled with disordered radiation and heat conduction. To get the
deterministic model, we assume the conditions A = (BC)n where A, B and C are
metric potentials, n is a constant and ζθ = constant, where ζ is the coefficient
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of bulk viscosity and θ the expansion in the model. We also investigate a special
model. The physical and geometrical aspects of the model are also discussed.

2. Metric and field equations

We consider the Bianchi type I metric in the form

ds2 = −dt2 +A2dx2 +B2dy2 + C2dz2 , (1)

where A, B and C are functions of t alone.

The energy-momentum tensor for heat conduction given by Ellis [28] and for
bulk viscosity given by Landau and Lifshitz [29] is given by

T j
i = (ǫ+ p)viv

j + pgji + qiv
j + viq

j − ζθ(gji + viv
j) , (2)

together with

gijv
ivj = −1 , (3)

qiv
i = 0 , (4)

qiq
i > 0 , (5)

where p is the isotropic pressure, ǫ the matter density and qi the heat conduction
vector orthogonal to vi. The fluid flow vector vi has the components

(

sinhλ

A
, 0, 0, coshλ

)

,

satisfying (3), λ being the tilt angle.

The Einstein’s field equation

Rj
i −

R

2
gji =−8πT j

i , in the geometrized unit, where c=1, G=1 and taking Λ= 0,

for the line element (1) leads to

B44

B
+

C44

C
+

B4C4

BC
= −8π

[

(ǫ+ p) sinh2 λ+ p+ 2q1
sinhλ

A
−K cosh2 λ

]

, (6)

A44

A
+

C44

C
+

A4C4

AC
= −8π(p−K) , (7)

A44

A
+

B44

B
+

A4B4

AB
= −8π(p−K) , (8)
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A4B4

AB
+
A4C4

AC
+
B4C4

BC
= −8π

[

−(ǫ+ p) cosh2 λ+ p− 2q1
sinhλ

A
+K sinh2 λ

]

, (9)

(ǫ+ p)A sinhλ coshλ+ q1 coshλ+ q1
sinh2 λ

coshλ
−KA sinhλ coshλ = 0 , (10)

where the subscript ‘4’ denotes the ordinary differentiation with respect to ‘t’.

3. Solution of the field equations

Equations from (6) – (10) are five equations in seven unknowns, A, B, C, ǫ,
p, λ and q1. For the complete determination of these quantities, we assume that
universe is filled with disordered radiation, which leads to

3p = ǫ . (11)

To get the deterministic solution, we assume a special relation between the metric
potentials A, B and C as follows

(i) A = (BC)n and (ii) ζθ = K , (12)

where n and K are constants.

The motive behind assuming the condition (i) A = (BC)n is explained as
follows: Referring to Thorne [30], the observations of velocity-redshift relation for
extra-galactic sources suggest that the Hubble expansion of the universe is isotropic
to within 30% [31, 32]. More precisely, the redshift studies place the limit σ/H ≤
0.30 where σ is the shear and H the Hubble constant. Collins et al. [33] have
pointed out that for a spatially homogeneous metric, the normal congruence to the
homogeneous hypersurface satisfies the condition σ/θ = constant. The condition
σ1
1/θ = constant leads to A = (BC)n when the tilt angle is λ = 0. Here σ1

1 is the

eigenvalue of shear tensor σj
i .

The condition ζθ = constant is due to the peculiar characteristic of the bulk
viscosity. It acts like a negative energy field in an expanding universe (Johri and
Sudarshan [34] ), i.e. ζθ = constant. In other words, when expansion increases,
then bulk viscosity decreases.

Equations (6) and (9) lead to

B44

B
+

C44

C
+

2B4C4

BC
+

A4B4

AB
+

A4C4

AC
= 8π

[

(ǫ− p) +K
]

. (13)

Using the disordered radiation condition 3p = ǫ given by (11) in (13), we have

B44

B
+

C44

C
+

2B4C4

BC
+

A4

A

(

B4

B
+

C4

C

)

= 2(8πp) + 8πK . (14)

22 FIZIKA B 18 (2009) 1, 19–34



bali and kumawat: bianchi type i bulk viscous fluid tilted cosmological . . .

Using (8) in (14), we have

B44

B
+

C44

C
+

2B4C4

BC
+

A4

A

(

B4

B
+

C4

C

)

= −2

[(

A44

A
+

B44

B
+

A4B4

AB

)

− 12πK

]

.

(15)
Equations (7) and (8) lead to

(

B44

B
−

C44

C

)

+
A4

A

(

B4

B
−

C4

C

)

= 0 . (16)

Equation (12) leads to

A4

A
= n

(

B4

B
+

C4

C

)

. (17)

Thus equation (16) becomes

CB44 −BC44

CB4 −BC4
+ n

(

B4

B
+

C4

C

)

= 0 , (18)

which on integration leads to

C2

(

B

C

)

4

= b(BC)−n , (19)

where b is a constant of integration. Let

BC = µ and
B

C
= ν . (20)

Using (20) in (19), we have
ν4
ν

= bµ−(n+1) . (21)

Using the assumptions (20) and (12) in (15), we have

µ44

µ
+ n

µ2
4

µ2
=−2

[(

2n+1

2

)

µ44

µ
+
ν44
ν

+

(

n2−
n

2
−
1

4

)

µ2
4

µ2
−
1

4

ν24
ν2

+

(

n+1

2

)

µ4ν4
µν

−12πK

]

.

(22)
Equations (21) and (22) lead to

2µ44 +
(4n2 − 1)µ2

4

2(n+ 1)µ
= −

b2

2(n+ 1)
µ−2n−1 +

24πK

(n+ 1)
µ . (23)

Let us assume that

µ4 = f(µ) . (24)
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Thus

µ44 =
dµ4

dt
= ff ′ and f ′ =

df

dµ
. (25)

Therefore, Eq. (23) leads to

df2

dµ
+

(4n2 − 1)

2(n+ 1)

f2

µ
= −

b2

2(n+ 1)
µ−2n−1 +

24πK

(n+ 1)
µ . (26)

From Eq. (26), we have

f2 =
b2

(4n+ 1)
µ−2n +

48πK

(4n2 + 4n+ 3)
µ2 + Lµ−(4n2−1)/[2(n+1)] . (27)

Equation (21) leads to
dν

ν
=

b

µ(n+1)

dt

dµ
dµ .

Thus, we have

log ν =

∫

b

µ(n+1)

dµ
√

b2

(4n+1)
µ−2n+

48πK

(4n2+4n+3)
µ2+Lµ−(4n2−1)/[2(n+1)]

. (28)

Hence the metric (1) reduces to the form

ds2 = −
(

dt

dµ2

)

dµ2 + µ2ndx2 + µ
(

νdy2 + ν−1dz2
)

, (29)

which leads to

ds2 = −
dT 2

b2

(4n+ 1)
T−2n +

48πK

(4n2 + 4n+ 3)
T 2 + LT−(4n2−1)/[2(n+1)]

+T 2ndX2 + T (νdY 2 + ν−1dZ2) , (30)

where ν is determined by (28) and µ = T .

In the absence of bulk viscosity, i.e. when K → 0, the metric (30) reduces to

ds2 = −
dT 2

b2

(4n+ 1)
T−2n + LT−(4n2−1)/[2(n+1)]

+T 2ndX2+T (νdY 2+ν−1dZ2) , (31)

where ν is determined by (28) when K = 0.
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4. Some physical and geometrical features

The isotropic pressure (p), the matter density (ǫ), the expansion (θ), coshλ, v1,
v4, q1, q4, σ11 and σ14 are given by

8πp =
4πK(−4n2 + 2n+ 3)

4n2 + 4n+ 3
+

4n+ 1

8(n+ 1)

L

Tα
, (32)

where

α =
4n2 + 4n+ 3

2(n+ 1)
, (33)

8πǫ = 12πK
−4n2 + 2n+ 3

4n2 + 4n+ 3
+

3(4n+ 1)

8(n+ 1)

L

Tα
, (34)

coshλ =

(

− βn+ a1/T
α
)1/2

(

− β + a2/Tα
)1/2

, (35)

where

β =
24πK(2n− 1)

4n2 + 4n+ 3
, (36)

a1 =
8n2 + 14n+ 3

8(n+ 1)
L , (37)

a2 =
8n2 + 6n+ 1

4(n+ 1)
L , (38)

θ = vi;i =
1

√
−g

∂

∂xi
(vi

√
−g)

=
1

ABC

[

∂

∂x
(v1

√
−g) +

∂

∂t
(v4

√
−g)

]

=
1

ABC

[

∂

∂x

{

sinhλ

A
(ABC)

}

+
∂

∂t

{

coshλ(ABC)
}

]

=
1

ABC

[

0 + (ABC)
∂

∂t
coshλ+ coshλ(A4BC +AB4C +ABC4)

]

(∵ λ is a function of t alone)

=
∂

∂t
(v4

√
−g)
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=
∂

∂t

[

coshλ (ABC)
]

=
1

ABC

[

(ABC)
∂

∂t
coshλ+ coshλ(A4BC +AB4C +ABC4)

]

=
∂

∂t
coshλ+ coshλ

(

A4

A
+

B4

B
+

C4

C

)

.

We now introduce the following abbreviations for the expressions which repeatedly
occur in subsequent equations:

E1 =
b2

4n+ 1

1

T 2n+2
+

48πK

4n2 + 4n+ 3
+

L

Tα
,

E2 = −nβ +
a1
Tα

,

E3 = (a1 + na2)
6πK

(n+ 1)Tα
,

E4 = β +
a2
Tα

,

and

E5 = −(n+ 1)β +
a1 − a2
Tα

.

With these abbreviations, one obtains

θ =
E

1/2
1

[

− E3(2n− 1) + (n+ 1)E2E4

]

E
1/2
2 E

3/2
4

, (39)

v1 =
E

1/2
5

TnE
1/2
4

, (40)

v4 =
E

1/2
2

E
1/2
4

, (41)

σ11 =
(2n− 1)T 2nE

1/2
1 E

1/2
2

[

E4E2 − 2E3

]

3E
5/2
4

, (42)
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σ14 =
−(2n− 1)TnE

1/2
1 E

1/2
5

[

E4E2 − 2E3

]

3E
5/2
4

, (43)

σ11v
1 + σ14v

4 =
(2n− 1)TnE

1/2
1 E

1/2
2 E

1/2
5

[

E4E2 − 2E3

]

(1− 1)

3E3
4

= 0 . (44)

Similarly

ω11v
1 + ω14v

4 = 0 , (45)

q1 = −
1

8π

E
1/2
5 E2

E
1/2
4 Tn

, (46)

q4 = −
1

8π

E5E
1/2
2

E
1/2
4

. (47)

In the absence of bulk viscosity, the above mentioned quantities lead to

8πǫ =
3(4n+ 1)

8(n+ 1)

L

Tα
, (48)

8πp =
(4n+ 1)

8(n+ 1)

L

Tα
, (49)

where

α =
4n2 + 4n+ 3

2(n+ 1)
,

coshλ =

√

a1
a2

, (50)

θ =

(

b2

4n+ 1

1

T 2n+2
+

L

Tα

)1/2

(n+ 1)

√

a1
a2

, (51)

v1 =

√
a1 − a2
Tn

√
a2

, (52)

v4 =

√

a1
a2

, (53)
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σ11 =

(2n− 1)T 2n

[

b2

4n+ 1

1

T 2n+2
+

L

Tα

]1/2 √
a1 (a1a2)

3a
5/2
2

, (54)

σ14 =

−(2n− 1)Tn

[

b2

4n+ 1

1

T 2n+2
+

L

Tα

]1/2 √
a1 − a2 (a1a2)

3a
5/2
2

. (55)

Thus

σ11v
1 + σ14v

4 = 0 . (56)

Similarly

ω11v
1 + ω14v

4 = 0 , (57)

The physical significance of conditions (44), (45), (46) and (57) are explained by
Ellis [35]: The shear tensor (σij) determines the distortion arising in the fluid flow,
leaving the volume invariant. The direction of principal axis is unchanged by the
distortion, but all other directions are changed. Thus we have

σijv
j = 0 ,

which leads to

σ11v
1 + σ14v

4 = 0 (∵ v1 /=0, v4 /=0) .

Shear (σ) is given by

σ2 =
1

2
σijσ

ij .

Thus σ2 ≥ 0 and σ = 0 ⇔ σij = 0.

The vorticity tensor (ωij) determines a rigid rotation of cluster of galaxies with
respect to a local inertial rest frame. Thus, we have

ωij = ηijkℓω
kωℓ ,

where ηijkℓ is pseudo tensor and

ωi =
1

2
ηijkℓvjωkℓ .

Thus

ωijv
j = 0 .

This leads to

σ11v
1 + σ14v

4 = 0 (∵ v1 /=0, v4 /=0) .
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The magnitude of ωij is ω and is defined as

ω2 =
1

2
ωijω

ij ,

ω = 0 ⇔ ωij = 0 ,

q1 = −
1

8π

(a1 − a2)
1/2 a1√

a2Tα+n
, (58)

q4 = −
1

8π

(a1 − a2)
√
a1√

a2Tα
, (59)

4.1. Discussion

The model (30) represents a tilted model, ǫ → ∞ when T → 0 and α > 0.
The model (30) starts with a big-bang at T = 0, and the expansion in the model
decreases as time increases. σijv

j = 0 and ωijv
j = 0 are satisfied as σ11v

1+σ14v
4 =

0 and ω11v
1+ω14v

4 = 0. Since limT→∞ σ/θ /=0. Hence the model does not approach
isotropy for large values of T . The model (30) has the point-type singularity at
T = 0 when n > 0, and it has the cigar-type singularity at T = 0 [36] when n < 0.

In the absence of bulk viscosity ǫ → ∞, when T → 0 and α > 0, and ǫ → 0
when T → ∞ and α > 0. The reality conditions ǫ + p > 0, ǫ + 3p > 0 given by
Ellis [37] are satisfied when 4n+ 1 > 0. The model (31) represents a tilted model.
The model (31) starts with a big-bang at T = 0 when α > 0 and n + 1 > 0. The
expansion in the model decreases as time increases. The model (31) has point-type
singularity at T = 0 when n > 0 and it has cigar-type singularity at T = 0 when
n < 0. σ/θ /=0. Hence the model (31) represents an anisotropic universe.

5. Special cases

To get the deterministic model in terms of cosmic time t, we assume b = 0 and
n = 1

2 . Thus Eq. (21) leads to

v = constant = M . (60)

Now using n = 1
2 in equation (27), we have

dµ
√

µ2 + α2
=

√
8πK dt , (61)

where

α2 =
L

8πK
, (62)
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which leads to

µ =

√
L

√
8πK

sinh(
√
8πK t) . (63)

Hence the metric (1) reduces to the form

dS2 = −dt2 +

√
L

√
8πK

sinh(
√
8πK t)

(

dx2 +Mdy2 +
dz2

M

)

. (64)

In the absence of bulk viscosity, i.e. when K → 0, the metric (64) leads to

dS2 = −dT 2 + T
(

dX2 + dY 2 + dZ2
)

, (65)

where L1/4x = X, L1/4
√
My = Y , L1/4 1√

M
z = Z and t=T.

5.1. Physical and geometrical features

The isotropic pressure (p),the matter density (ǫ), the expansion (θ), coshλ, v1,
v4, q1, q4, σ11 and σ44 are given by

p =
8πK

32π
coth2(

√
8πK t) , (66)

ǫ = 3
8πK

32π
coth2(

√
8πK t) , (67)

coshλ = 1 , (68)

θ =
3

2

√
8πK coth(

√
8πK t) , (69)

v1 = 0 , (70)

v4 = 0 , (71)

σ11 = 0 , (72)

σ14 = 0 . (73)

Thus

σ11v
1 + σ14v

4 = 0 . (74)

Similarly

ω11v
1 + ω14v

4 = 0 , (75)
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σ22 = 0, σ33 = 0, σ44 = 0 , (76)

q1 = 0, q4 = 0 . (77)

The deceleration parameter (q) is given by

q = −
2− coth2(

√
8πK t)

coth2(
√
8πK t)

. (78)

In the absence of viscosity, the above quantities lead to

ǫ =
3

32π

1

t2
, (79)

p =
1

32π

1

t2
, (80)

coshλ = 1 , (81)

θ =
3

2t
. (82)

5.2. Discussion

In the presence of bulk viscosity, the energy density ǫ → ∞ at t = 0. The reality
conditions ǫ + p > 0 and ǫ + 3p > 0, given by [37], lead to coth(

√
8πK t) > 0.

The model (64) starts with a big-bang at t = 0 and the expansion in the model
decreases as time increases. The model (64) has a point-type singularity at t = 0

[36]. The deceleration parameter q < 0 if coth2(
√
8πK t) < 2 and, hence, the model

represents an accelerating universe. q > 0 if coth2(
√
8πK t) > 2. Therefore, the

model in this condition represents a decelerating universe. Since coshλ = 1. This
leads to λ = 0. Hence the model in the presence of bulk viscosity represents a
non-tilted model in the special case.

It is possible to discuss entropy for the special model (64) which is obtained
in terms of cosmic time t in the presence of bulk viscosity. To solve the entropy
problem of the standard model, it is necessary to have dS > 0 for at least a part
of the evolution of the universe. In Riemannian geometry without a cosmological
constant, we have

TdS = d(ǫS3) + pd(S3) , (83)

where S is the scale factor. Equation (83) leads to

TdS = ǫ̇+ (ǫ+ p)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

= 0 .
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This again leads to

TdS = ǫ̇+
4

3
ǫθ ,

since θ = Ȧ
A + Ḃ

B + Ċ
C for the metric (1) and for the disordered radiation ǫ = 3p.

For entropy, we have

S > 0.

This leads to
ǫ̇

ǫ
+

4

3
θ > 0 , (84)

which for the metric (64) in the presence of bulk viscosity leads to

2
√
8πK tanh(

√
8πK t) > 0 .

Thus entropy is possible in the presence of bulk viscosity for the special model (64).

In the absence of bulk viscosity ǫ → ∞ when t → 0. The reality condition ǫ > 0
is satisfied. The model (65), in the absence of bulk viscosity, starts with a big-bang
at t = 0, and the expansion in the model decreases as time increases. Since σ = 0.
Hence the model (65) represents an isotropic model. The model (65) has point-type
singularity at T = 0 [36]. The deceleration parameter q = 1 in the absence of bulk
viscosity. The special model, discussed above represents non-tilted, non-shearing,
non-rotating and decelearating universe.

5.3. Some other cases

We also considered the following cases, but these do not give physically valid
results:

(i) For b = 0, n = −1/2, a solution is possible but the matter density is negative
and the tilt angle is not determined in the absence of bulk viscosity.

(ii) For L = 0, the solution is possible but the tilt angle is not determined.

Acknowledgements

The authors are thankful to the referees for their valuable comments and IU-
CAA, Pune (India) for providing facility where this work was carried out.

References

[1] C. W. Misner, Nature 214 (1967) 40.

[2] C. W. Misner, Astrophys. J. 151 (1968) 431.

[3] M. Heller and Z. Klimek, Astrophys. and Space Science 33 (1975) 37.

[4] G. L. Murphy, Phys. Rev. D 8 (1973) 4231.

32 FIZIKA B 18 (2009) 1, 19–34



bali and kumawat: bianchi type i bulk viscous fluid tilted cosmological . . .

[5] V. A. Belinski and I. M. Khalatnikov, Soviet Phys. JETP 42 (1976) 205.

[6] S. R. Roy and S. Prakash, J. Phys. A.: Mathematical and General 9 (1976) 261.

[7] S. R. Roy and S. Prakash, Ind. J. Pure and Appl. Math. 8 (1977) 723.

[8] A. Banerjee, S. B. Duttachoudhary and A. K. Sanyal, J. Mod. Phys. 24 (1983) 2689.

[9] A. Banerjee, S. B. Duttachoudhary and A. K. Sanyal, Gen. Relati. & Grav. 18 (1986)
461.

[10] G. Mohanty and R. R. Pattanaik, Int. J. Theor. Phys. 30 (1991) 239.

[11] R. Bali and D. R. Jain, Astrophys. and Space Science 141 (1988) 2.

[12] R. Bali and D. R. Jain, Astrophys. and Space Science 185 (1991) 211.

[13] R. Bali and A. Pradhan, Chin. Phys. Lett. 24 (2007) 585.

[14] A. R. King, and G. F. R. Ellis, Comm. Math. Phys. 31 (1973) 209.

[15] G. F. R. Ellis and A. R. King, Comm. Math. Phys. 38 (1974) 119.

[16] C. B. Collins and G. F. R. Ellis, Phys. Rep. 56 (1979) 65.

[17] M. Bradley and E. Sviestins, Gen. Relati. Grav. 16 (1984) 1119.

[18] D. Ray, J. Math. Phys. 21 (1975) 2797.

[19] S. R. Roy and S. K. Banerjee, Astrophys. and Space Science 150 (1988) 213.

[20] A. A. Coley and B. O. J. Tupper, Phys. Lett. A 95 (1983) 357.

[21] A. A. Coley and B. O. J. Tupper, Astrophys. J. 280 (1984) 26.

[22] A. A. Coley, Gen. Relati. Grav. 22 (1990) 3.

[23] A. Pradhan and A. Rai, Astrophys. and Space Science 286 (2003) 347.

[24] A. Pradhan and A. Rai, Astrophys. and Space Science 291 (2004) 149.

[25] R. Bali and B. L. Meena, Astrophys. and Space Science 281 (2002) 565.

[26] R. Bali and and K. Sharma, Astrophys. and Space Science 293 (2004) 367.

[27] A. Pradhan, P. Pandey, K. Jotania and M. K. Yadav, Int. J. Theor. Phys. 46 (2007)
2774.

[28] G. F. R. Ellis, General Relativity and Cosmology, ed. R. K. Sachs, Academic Press,
New York (1971) p. 116.

[29] L. D. Landau, and E. M. Lifshitz, Fluid Mechanics, Vol.6, Pergamon Press, (1963) p.
505.

[30] K. S. Thorne, Astrophys. and Space-Science 148 (1967) 51.

[31] R. Kantowski and R. K. Sachs, J. Math. Phys. 7 (1966) 433.

[32] J. Kristian and R. K. Sachs, Astrophys. J. 143 (1966) 379.

[33] C. B. Collins, E. N. Glass and D. A. Wilkinson, Gen. Relativ. Gravit. 12 (1980) 805.

[34] V. B. Johri, and R. Sudarshan, Proc. Int. Conf. on Mathematical Modelling in Science
and Technology, World Scientific, Singapore (1988).

[35] G. F. R. Ellis, General Relativity and Cosmology, ed. R.K. Sachs, Academic Press,
London (1971) p.113.

[36] M. A. H. MacCallum, Comm. Maths. Phys. 20 (1971) 57.

[37] G. F. R. Ellis, General Relativity and Cosmology, ed. R.K. Sachs, Academic Press,
London (1971) p.117.

FIZIKA B 18 (2009) 1, 19–34 33



bali and kumawat: bianchi type i bulk viscous fluid tilted cosmological . . .

BIANCHIJEV VOLUMNO VISKOZAN ZAKRENUT KOZMOLOŠKI MODEL
TIPA I ISPUNJEN NEREDNIM ZRAČENJEM I VOD– ENJEM TOPLINE

Istražujemo Bianchijev volumno viskozan zakrenut kozmološki model s nerednim
zračenjem i vod–enjem topline. Da bi postigli odred–enost modela, pretpostavili smo
uvjet: svojstvena vrijednost σ1

1 smičnog tenzora σj
i razmjerna je širenju (θ), što

vodi na relaciju A = (BC)n med–u metričkim potencijalima A, B i C, gdje je
n stalan a ζθ = K(const). ζ je koeficijent volumne viskoznosti u modelu. Radi
postizanja odred–enosti modela za kozmičko vrijeme t, raspravljamo neke posebne
fizikalno ispravne modele za različite vrijednosti parametara. Takod–er raspravljamo
fizičke i geometrijske značajke tih modela.
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