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Plane symmetric viscous fluid cosmological models of the universe with a variable
cosmological term are investigated. The viscosity coefficient of bulk viscous fluid is
assumed to be a power function of mass density, whereas the coefficient of shear
viscosity is taken as a constant. To get the deterministic solutions of the Einstein’s
field equations, the free gravitational field is assumed to be of type D which is of
the next order in the hierarchy of Petrov classification. The cosmological constant
Λ is found to be a decreasing function of time and positive which is corroborated
by the results from recent supernovae Ia observations. The physical and geometric
aspects of the models are discussed.
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1. Introduction

The problem of the cosmological constant is salient yet unsettled in cos-
mology. The smallness of the effective cosmological constant recently observed
(Λ0 ≤ 10−56cm−2) poses the most difficult problems involving cosmology and ele-
mentary particle physics theory. To explain the striking cancellation between the
“bare” cosmological constant and the ordinary vacuum energy contributions of the
quantum fields, many mechanisms have been proposed [1]. The “cosmological con-
stant problem” can be expressed as the discrepancy between the negligible value of
Λ for the present universe as seen by the successes of Newton’s theory of gravita-
tion [2], whereas the values 1050 larger is expected by the Glashow-Salam-Weinberg
model [3], and by grand unified theory (GUT) it should be 10107 larger [4]. The
cosmological term Λ is then small at the present epoch simply because the universe
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is too old. The problem in this approach is to determine the right dependence of Λ
upon R or t.

Models with a relic cosmological constant Λ have received ample attention
among researchers recently for various reasons (see Refs. [5] – [10] and references
therein). Some of the recent discussions on the cosmological constant “problem”
and on cosmology with a time-varying cosmological constant by Ratra and Peebles
[11], Dolgov et al. [12, 13], Dolgov [14], and Sahni and Starobinsky [15] point out
that in the absence of any interaction with matter or radiation, the cosmological
constant remains a “constant”, however, in the presence of interactions with matter
or radiation, a solution of Einstein equations and the assumed equation of covariant
conservation of stress-energy with a time-varying Λ can be found. For these solu-
tions, conservation of energy requires decrease in the energy density of the vacuum
component to be compensated by a corresponding increase in the energy density of
matter or radiation. Earlier researches on this topic, are contained in Zeldovich [16],
Weinberg [1] and Carroll, Press and Turner [17]. Recent observations by Perlmut-
ter et al. [18] and Riess et al. [19] strongly favour a significant and positive value
of Λ. Their findings arising from the study of more than 50 type Ia supernovae
with redshifts in the range 0.10 ≤ z ≤ 0.83 suggest Friedmann models with nega-
tive pressure matter such as a cosmological constant (Λ), domain walls or cosmic
strings (Vilenkin [20], Garnavich et al. [21]). Recently, Carmeli and Kuzmenko [22],
and Behar and Carmeli [23] have shown that the cosmological relativistic theory
predicts the value for cosmological constant Λ = 1.934×10−35s−2. This value of “Λ”
is in excellent agreement with the measurements recently obtained by the High-Z
Supernova Team and Supernova Cosmological Project (Garnavich et al. [21], Perl-
mutter et al. [18], Riess et al. [19], Schmidt et al. [24]) The main conclusion of
these observations is that the expansion of the universe is accelerating.

Several ansätze have been proposed in which the Λ term decays with time (see

Refs. Gasperini [25], Berman [26], Berman et al. [27], Özer and Taha [7], Freese
et al. [8], Peebles and Ratra [23], Chen and Hu [29], Abdussattar and Viswakarma
[30], Gariel and Le Denmat [31], Pradhan [32], Pradhan et al. [33]). Of the special
interest is the ansatz Λ ∝ S−2 (where S is the scale factor of the Robertson-
Walker metric) by Chen and Wu [29], which has been considered or modified by
several authors (Abdel-Rahaman [34], Carvalho et al. [9], Silveira and Waga [10],
Vishwakarma [35]).

Astronomical observations of large-scale distribution of galaxies of our universe
show that the distribution of matter can be satisfactorily described by a perfect
fluid. However, it has been conjectured that some time during an earlier phase
in the evolution of the universe when galaxies were formed, the material distribu-
tion behaved like a viscous fluid. Bulk viscosity is associated with the GUT phase
transition and string creation. It is, therefore, of great interest to obtain cosmo-
logical models in such distributions. It is also well known that there is a certain
degree of anisotropy in the actual universe. We, therefore, choose the metric for
the cosmological model to be plane-symmetric.

Recently, Pradhan et al. [36] have investigated a new class of plane symmetric
viscous fluid cosmological models of the universe with a variable cosmological con-
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stant where the coefficient of shear viscosity is taken to be proportional to the rate
of expansion in the model. In the present paper, by considering the free gravita-
tional field to be of type D, a new class of plane symmetric viscous fluid cosmological
models is obtained which is of the next order in the hierarchy of Petrov classifi-
cation. The paper is organized as follows. The metric and the field equations are
presented in Section 2. In Section 3, the general solutions of the field equations
by considering the free gravitational field to be of the Petrov type D classification
is discussed. In Subsections 3.1 and 3.2, two types of models are found and their
physical and geometric features are discussed. The bulk viscosity is assumed to
be simple power of energy density ξ = ξ0ρ

n and the coefficient of shear viscosity
is considered to be constant η0. In both subsections we consider the solutions for
n = 0 and n = 1. Finally in Section 4 main conclusion is presented.

2. The metric and field equations

We consider the metric in the form of Marder [37]

ds2 = A2(dx2 − dt2) +B2dy2 + C2dz2, (1)

where the metric potentials A, B and C are functions of t alone. This ensures
the model to be spatially homogeneous. This is a transform form of the metric
of Bianchi type I spacetime in comoving coordinates which has been studied by a
number of authors (e.g., Heckmann and Schucking [38], Thorne [39] and Roy and
Prakash [40]).

The energy-momentum tensor for a viscous fluid distribution is given by Landau
and Lifshitz [41]

T j
i = (ρ+ p)viv

j + pgji − η(vji: + vj;i + vjvlvi;l + viv
lvj;l)

−
(

ξ − 2

3
η

)

vl;l(g
j
i + viv

j) . (2)

Here ρ, p, η and ξ are energy density, isotropic pressure, the coefficient of shear
Viscosity and bulk viscous coefficient respectively and vi is the flow vector satisfying
the relation

gijv
ivj = −1. (3)

The semicolon (;) indicates covariant differentiation. We choose the coordinates to
be comoving, so that v1 = v2 = v3 = 0 and v4 = 1/A.

The Einstein’s field equations (in gravitational units c = 1, G = 1) read as

Rj
i −

1

2
Rgji + Λgji = −8πT j

i , (4)
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for the line element (1) has been set up as

1

A2

[

ȦḂ

AB
+

ȦĊ

AC
− ḂĊ

BC
− B̈

B
− C̈

C

]

− Λ(t) = 8π

[

p− 2η
Ȧ

A2
−
(

ξ − 2

3
η

)

vl;l

]

, (5)

1

A2

[

Ȧ2

A2
− Ä

A
− C̈

C

]

− Λ(t) = 8π

[

p− 2η
Ḃ

AB
−
(

ξ − 2

3
η

)

vl;l

]

, (6)

1

A2

[

Ȧ2

A2
− Ä

A
− B̈

B

]

− Λ(t) = 8π

[

p− 2η
Ċ

AC
−
(

ξ − 2

3
η

)

vl;l

]

, (7)

1

A2

[

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC

]

+ Λ(t) = 8πρ . (8)

Here, and also in the following expressions a dot indicates ordinary differentiation
with respect to t.

3. Solutions of the field equations

Equations (5)-(8) are four equations in eight unknowns A, B, C, p, ρ, η, ξ and
Λ. Equations (5)-(8) are not independent, but are related by the contracted Bianchi
identities. In the present case, they lead to the single condition

dρ

dt
+ (p+ ρ) ln (ABC)−

(

ρ− 2

3
η

)

1

A

(

d

dt
ln (ABC)

)2

−

2η

A

(

Ȧ2

A2
+

Ḃ2

B2
+

Ċ2

C2

)

= 0 . (9)

For complete solutions of equations (5) – (8), we need four extra conditions. The co-
efficient of shear viscosity η is taken as constant η0. The research on exact solutions
is based on some physically reasonable restrictions used to simplify the Einstein
equations. Although the distribution of matter at each point determines the na-
ture of expansion in the model, the latter is also affected by the free gravitational
field through its effect on the expansion, vorticity and shear in the fluid flow. A
prescription of such a field may, therefore, be made on an a priori basis. The cos-
mological models of Friedmann, Robertson and Walker, as well as the universe of
Einstein and de Sitter, have vanishing free gravitational fields. Here we choose the
free gravitational field to be of type D which is of the next order in the hierarchy
of Petrov classification. This requires that either

(a) C12
12 = C13

13,
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or

(b) C12
12 = C23

23.

Conditions (a) and (b) are identically satisfied if B = C and A = C, respectively.
However, we shall assume A, B, C to be unequal on account of the supposed
anisotropy.

From Eqs. (5) and (6) we obtain

d

dt

(

Ȧ

A

)

+
Ȧ

A

(

Ḃ

B
+

Ċ

C

)

− B̈

B
− ḂĊ

BC
= 16πη0A

(

Ḃ

B
− Ȧ

A

)

. (10)

Also from Eqs. (6) and (7) we obtain

B̈

B
− C̈

C
= 16πη0A

(

Ċ

C
− Ḃ

B

)

. (11)

3.1. The first model

The condition

C12
12 = C13

13 (12)

leads to

B̈

B
− C̈

C
+ 2

Ȧ

A

(

Ċ

C
− Ḃ

B

)

= 0 . (13)

Equations (11) and (13 lead to

A =
1

8πη0t+ a
, (14)

where a is a constant of integration. From Eqs. (13) and (14) we obtain

B̈

B
− C̈

C
= − 16πη0

(8πη0t+ a)

(

Ḃ

B
− Ċ

C

)

, (15)

which on integration gives

ḂC −BĊ =
b

(8πη0t+ a)2
, (16)

where b is an integrating constant. From Eqs. (10) and (14) we get

(

8πη0
8πη0t+ a

)2

+
8πη0

(8πη0t+ a)

(

Ḃ

B
+

Ċ

C

)

+
16πη0

(8πη0t+ a)

Ḃ

B
+

B̈

B
+

ḂĊ

BC
= 0 . (17)
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From Eqs. (16) and (17) we obtain

B =
K(Lt+M)

1

2
+ b

2L

(8πη0t+ a)
, (18)

and

C =
(Lt+M)

1

2
−

b

2L

K(8πη0t+ a)
, (19)

where K, L and M are constants of integration.

Hence, the geometry of the space time (1) takes the form

ds2 =
1

(8πη0t+ a)2
(dx2−dt2)+

K2(Lt+M)1+
b

L

(8πη0t+ a)2
dy2+

(Lt+M)1−
b

L

K2(8πη0t+ a)2
dz2. (20)

The pressure (p) and density (ρ) for the universe (20) are given by

8πp = −192π2η20 +
(L2 − b2)(8πη0t+ a)2

4(Lt+M)2
+

32πη0L(8πη0t+ a)

3(Lt+M)

−8πξ

(

24πη0 −
(8πη0t+ a)L

(Lt+M)

)

− Λ(t) , (21)

8πρ = 192π2η20 −
16πη0L(8πη0t+ a)

(Lt+M)
+

(L2 − b2)(8πη0t+ a)2

4(Lt+M)2
+ Λ(t) . (22)

For the specification of ξ, we assume that the fluid obeys an equation of state of
the form

p = γρ , (23)

where γ (0 ≤ γ ≤ 1) is constant. Thus, given ξ(t) we can solve for the cosmological
parameters. In most of the investigation involving bulk viscosity is assumed to be
a simple power function of the energy density (Pavon [42], Maartens [43], Zimdahl
[44], Santos [45])

ξ(t) = ξ0ρ
n, (24)

where ξ0 and n are constants. For small density, n may even be equal to unity as
used in Murphy’s work [46] for simplicity. If n = 1, Eq. (24) may correspond to a
radiative fluid (Weinberg [2]). Near the big bang, 0 ≤ n ≤ 1

2 is a more appropriate
assumption (Belinskii and Khalatnikov [47]) to obtain realistic models.

For simplicity sake and for realistic models of physical importance, we consider
the following two cases (n = 0, 1).
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3.1.1. Model I: Solution for n = 0

When n = 0, Eq. (24) reduces to ξ = ξ0 = constant. Hence in this case Eq. (21),
with the use of (22) and (23), leads to

8π(1 + γ)ρ =
8πL(3ξ0 − 2η0)(8πη0t+ a)

3(Lt+M)
+

(L2 − b2)(8πη0t+ a)2

2(Lt+M)2
− 129π2ξ0η0 . (25)

Eliminating ρ(t) between (22) and (25), we obtain

(1 + γ)Λ = −8πL(3ξ0 + 4η0 + 6η0γ)(8πη0t+ a)

3(Lt+M)
+

(L2 − b2)(8πη0t+ a)2(1− γ)

4(Lt+M)2
− 129π2η0(ξ0 + η0 + η0γ) . (26)

From Eq. (25), we note that for t > (a −M)/(L − 8πη0), ρ(t) is a decreasing
function of time and ρ > 0 for all times. Figure 1 shows this behaviour of energy
density.

Fig. 1 (left). The plot of energy density ρ(t) vs. time.

Fig. 2. The plot of cosmological term Λ(t) vs. time.
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The behaviour of the universe in this model will be determined by the cosmolog-
ical term Λ, this term has the same effect as a uniform mass density ρeff = −Λ/4πG
which is constant in space and time. A positive value of Λ corresponds to a nega-
tive effective mass density (repulsion). Hence, we expect that in the universe with
a positive value of Λ the expansion will tend to accelerate, whereas in the uni-
verse with negative value of Λ the expansion will slow down, stop and reverse. In
a universe with both matter and vacuum energy, there is a competition between
the tendency of Λ to cause acceleration and the tendency of matter to cause de-
celeration with the ultimate fate of the universe depending on the precise amounts
of each component. This continues to be true in the presence of spatial curvature,
and with a nonzero cosmological constant it is no longer true that the negatively
curved (“open”) universes expand indefinitely while positively curved (“closed”)
universes will necessarily recollapse - each of the four combinations of negative or
positive curvature and eternal expansion or eventual recollapse become possible for
appropriate values of the parameters. There may even be a delicate balance, in
which the competition between matter and vacuum energy is needed drawn and
the universe is static (non expanding). The search for such a solution was Einstein’s
original motivation for introducing the cosmological constant.

From Eq. (26), we see that for t > (a − M)/(L − 8πη0), the cosmological
term Λ is a decreasing function of time and it approaches a small positive value
as time increases. From Fig. 2 we note this behaviour of Λ. Recent cosmological
observations (Garnavich et al. [21], Perlmutter et al. [18], Riess et al. [19], Schmidt
et al. [24]) suggest the existence of a positive cosmological constant Λ with the
magnitude Λ(Gh̄/c3) ≈ 10−123. These observations on magnitude and red-shift
of type Ia supernova suggest that our universe may be an accelerating one with
induced cosmological density through the cosmological Λ-term. Thus, our model is
consistent with the results of recent observations.

3.1.2. Model II: Solution for n = 1

When n = 1, Eq. (24) reduces to ξ = ξ0ρ. Hence in this case Eq. (21), with the use
of (22) and (23), leads to

8π

[

1 + γ + ξo

{

8πη0(2Lt+ 3M)− aL

(Lt+M)

}

]

ρ =

(L2 − b2)(8πη0t+ a)2

2(Lt+M)2
− 16πη0L(8πη0t+ a)

3(Lt+M)
. (27)

Eliminating ρ(t) between (22) and (27), we obtain

[

1 + γ + ξo

{

8πη0(2Lt+ 3M)− aL

(Lt+M)

}

]

Λ =
(L2 − b2)(8πη0t+ a)2

2(Lt+M)2
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−16πη0L(8πη0t+ a)

3(Lt+M)
−
[

1 + γ + ξo

{

8πη0(2Lt+ 3M)− aL

(Lt+M)

}

]

×

[

192π2η20 +
(L2 − b2)(8πη0t+ a)2

4(Lt+M)2
− 16πη0L(8πη0t+ a)

(Lt+M)

]

. (28)

From Eq. (27), we observe that for t > (a−M)/(L− 8πη0), ρ(t) is a decreasing
function of time and ρ > 0 for all times. Figure 3 shows this behaviour of energy
density. From Eq. (28), we note that t > (a−M)/(L−8πη0), the cosmological term
Λ is a decreasing function of time and it approaches a small positive value with
increase in time. From Fig. 4 we note the same character of Λ. This is consistent
with recent observations (Garnavich et al. [21], Perlmutter et al. [18], Riess et al.
[19], Schmidt et al. [24]).

Fig. 3 (left). The plot of energy density ρ(t) vs. time.

Fig. 4. The plot of cosmological term Λ(t) vs. time.

3.1.3. Some geometric properties of first model

We shall now give the expressions for kinematic quantities and components of con-
formal curvature tensor. With regard to the kinematical properties of the velocity
vector vi in the metric (20), a straightforward calculation leads to the expressions
for expansion (θ), the deceleration parameter (q), the proper volume (V 3) and shear
(σij) of the fluid:

θ =
(8πη0t+ a)L

(Lt+M)
− 24πη0, (29)
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q = −1−

256π2η20
(8πη0t+ a)2

− L2

(Lt+M)2

L2

(Lt+M)2
+

(32πη0)
2

(8πη0t+ a)2
− 64πη0L

(8πη0t+ a)(Lt+M)

, (30)

V 3 =
√−g =

[

K2(Lt+M)− b2/(4L)
]

(8πη0 + a)K2(8πη0 + a)
, (31)

σ11 = −L(Lt+M)−1

3(8πη0t+ a)
, (32)

σ22 =
K2(L+ 3b)(Lt+M)

b

L

6(8πη0t+ a)
, (33)

σ33 =
(L− 3b)(Lt+M)−

b

L

6K2(8πη0t+ a)
, (34)

and other components of the shear tensor (σij) being zero. Hence

σ2 =
1

2
σijσ

ij =

(

(L2 + 3b2)

12

)(

8πη0t+ a

Lt+M

)2

. (35)

From Eqs. (29) and (35) we obtain

σ

θ
=

√

(L2 + 3b2)/12 (8πη0t+ a)

(8πη0t+ a)L− 24πη0(Lt+M)
. (36)

The non-vanishing components of the conformal curvature tensor are

C12
12 = C13

13 = −1

2
C23

23 =

(

(L2 − b2)

12

)(

8πη0t+ a

Lt+M

)2

. (37)

For large t, we find

C23
23 = −32

3
π2η20

(

1− b2

L2

)

(38)

and

σ2 =
16

3
π2η20

(

1 +
3b2

L2

)

. (39)

Here we find

C12
12 + C13

13 + C23
23 = 0 . (40)
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The rotation ω is identically zero.

The rate of expansion Hi in the directions of x, y and z are given by

Hx =
Ȧ

A
= − 8πη0

(8πη0t+ a)
, (41)

Hy =
Ḃ

B
=

(

1

2
+

b

2L

)

L

(Lt+M)
− 8πη0

(8πη0t+ a)
, (42)

Hz =
Ċ

C
=

(

1

2
− b

2L

)

L

(Lt+M)
− 8πη0

(8πη0t+ a)
. (43)

Since
t
∫

t0

dt

V (t)
=

t
∫

t0

(8πηt+ a)
4

3

(Lt+M)
1

3

dt , (44)

this is convergent integral, hence the particle horizon exists.

The models represent shearing, non-rotating and Petrov type D universe in
general, in which the flow is geodetic. It is also observed that the viscosity prevents
the free gravitational field as well as the shear from withering away. It is also
obvious from (29) that the effect of viscosity is to retard expansion of the model.
Since limt→∞ σ/θ /=0, the models do not approach isotropy for large values of t.
It is observed from Eq. (30) which implies an accelerating model of the universe.
Recent observations of type Ia supernovae [39, 40] reveal that the present universe
is in accelerating phase and deceleration parameter lies somewhere in the range
−1 < q ≤ 0. It follows that our models of the universe are consistent with the
recent observations. For

256π2η2(Lt+M)2 = L2(8πηt+ a)2 , (45)

the deceleration parameter q approaches the value (−1) as in the case of de-Sitter
universe.

3.2. The second model

The condition

C12
12 = C23

23, (46)

leads to

d

dt

(

Ȧ

A

)

=
C̈

C
− ḂĊ

BC
+

Ȧ

A

(

Ḃ

B
− Ċ

C

)

. (47)
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Equations (10), (11) and (47) lead to

Ḃ

B
= −8πη0A . (48)

From Eqs. (11) and (48) we obtain

B̈

B
− C̈

C
= 2

Ḃ

B

(

Ḃ

B
− Ċ

C

)

, (49)

which on integration leads

C = B(k1 − kt) , (50)

where k and k1 are constants of integration. From Eqs. (47) and (50) we get

d

dt

(

Ȧ

A
− Ḃ

B

)

=

(

Ȧ

A
− Ḃ

B

)

(

k

k1 − kt

)

, (51)

which on integration gives

Ȧ

A
− Ḃ

B
=

k2
k1 − kt

, (52)

where k2 is an integrating constant. From Eqs. (48) and (52) we obtain

A =

[

8πη0(k1 − kt)

k2 − k
+ k3(k1 − kt)

k2

k

]

−1

, (53)

k3 being a constant of integration. From Eqs. (48) and (53) we obtain

B = k4

[

(k2 − k)k3(k1 − kt)
k2

k
−1

8πη0 + (k2 − k)k3(k1 − kt)
k2

n
−1

]

, (54)

where k4 is a constant of integration. Also, from Eqs. (50) and (54) we obtain

C = k4

[

(k2 − k)k3(k1 − kt)
k2

k

8πη0 + (k2 − k)k3(k1 − kt)
k2

n
−1

]

. (55)

By a suitable transformation of coordinates, the metric of this model can be put
into the form

ds2 =

(

8πη0
α− 1

T + βTα

)

−2
[

dX2 − dT 2 + T 2αdY 2 + T 2(α+1)dZ2
]

, (56)
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where α and β are arbitrary constants.

The distribution of pressure (p) and density (ρ) in the model (56) is given by

8πp = 64π2η20

(

2− α

α− 1

)

+ 16πη0αβT
α−1 + α(α− 1)β2T 2(α−1)

−
(

8πη0
α− 1

+ αβTα−1

)2

− 16

3
πη0(α+ 2)

(

8πη0
α− 1

+ βTα−1

)

+8πξ[(α− 1)βTα−1 − 16πη0]− Λ , (57)

8πρ = 64π2η20

[

1− α

(α− 1)2

]

+ 16πη0β

(

1− α2

α− 1

)

Tα−1

−αβ2T 2(α−1) + Λ . (58)

For simplicity sake and for realistic models of physical importance, we again con-
sider the following two cases (n = 0, 1):

3.2.1. Model I: Solution for n = 0

When n = 0, Eq. (24) reduces to ξ = ξ0 = constant. Hence, in this case Eq. (57),
with the use of (58) and (23), leads to

8π(1 + γ)ρ = −128π2η20(α
2 + α+ 1)

3(α− 1)2
− 16πβη0(α+ 1)

(α− 1)
Tα−1

−2αβ2T 2(α−1) − 16

3
πβη0(α+ 2)Tα−1 + 8πξ0[(α− 1)βTα−1 − 16πη0] . (59)

Eliminating ρ(t) between (58) and (59), we obtain

(1 + γ)Λ = −128π2η20(α
2 + α+ 1)

3(α− 1)2
− 16πβη0(α+ 1)

(α− 1)
Tα−1 − 2αβ2T 2(α−1)

+8πξ0[(α−1)βTα−1+αβ2(1+γ)T 2(α−1)−16πη0]−64π2η20(1+γ)

{

1− α

(α− 1)2

}

−16

3
πβη0(α+ 2)Tα−1 − 16πη0β(1 + γ)

(

1− α2

α− 1

)

Tα−1. (60)

From Eq. (59), we see that for α < 0 and β < 0, ρ(t) is a decreasing function of
time and ρ > 0 for all times. Figure 5 shows this behaviour of energy density. From
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Eq. (60), we note that the cosmological term Λ is a decreasing function of time
and it approaches a small positive value at late time for α < 0, β < 0, ρ(t). From
Fig. 6, we note the same character of Λ. This is consistent with recent observations
(Garnavich et al. [21], Perlmutter et al. [18], Riess et al. [19], Schmidt et al. [24]).

Fig. 5 (left). The plot of energy density ρ(t) vs. time.

Fig. 6. The plot of cosmological term Λ(t) vs. time.

3.2.2. Model II: Solution for n = 1

When n = 1, Eq. (24) reduces to ξ = ξ0ρ. Hence in this case Eq. (57), with the use
of (58) and (23), leads to

8π
[

1 + γ − ξ0
{

(α− 1)βTα−1 − 16πη0
}

]

ρ = −128π2η20(α
2 + α+ 1)

3(α− 1)2

−16πβη0(α+ 1)

(α− 1)
Tα−1 − 2αβ2T 2(α−1) − 16

3
βη0(α+ 2)Tα−1. (61)

Eliminating ρ(t) between (58) and (61), we obtain

[

1 + γ − ξ0
{

(α− 1)βTα−1 − 16πη0
}

]

Λ = −128π2η20(α
2 + α+ 1)

3(α− 1)2

−16πβη0(α+ 1)

(α− 1)
Tα−1 − 2αβ2T 2(α−1) − 16

3
βη0(α+ 2)Tα−1−

[

1 + γ − ξ0
{

(α− 1)βTα−1 − 16πη0
}

]

×
[

64π2η20

{

1− α

(α− 1)2

}
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+16πη0β

(

1− α2

α− 1

)

Tα−1 − αβ2T 2(α−1)

]

. (62)

From Eq. (61), we see that for α < 0 and β < 0, ρ(t) is a decreasing function of
time and ρ > 0 for all times. From Fig. 7 we observe the same nature of ρ. From Eq.
(62), we note that the cosmological term Λ is a decreasing function of time and it
approaches a small positive value at late time for α < 0, β < 0. From Fig. 8 we note
the same behaviour of Λ. This is consistent with recent observations (Garnavich et
al. [21], Perlmutter et al. [18], Riess et al. [19], Schmidt et al. [24]).

Fig. 7. The plot of cosmological term ρ(t) vs. time.

Fig. 8. The plot of cosmological term Λ(t) vs. time.
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3.2.3. Some geometric properties of the second model

The expressions for the expansion θ, Hubble parameter H, the magnitude of shear
σ2, deceleration parameter q and proper volume V 3 for the model (56) are given
by

θ = 3H = β(α− 1)Tα−1 − 16πη0 , (63)

σ2 =
1

3
(α2 + α+ 1)

[

8πη0
α− 1

+ βTα−1

]2

, (64)

q = −1− 1
[

(2α+ 1)

3T
− 2β(α− 1)Tα−1

3 {8πη0 + β(α− 1)Tα}

]2×

[

− (2β + 1)

3T 2
+

2β(α− 1)2(8πη0T
α−2 + βαTα−1)

3 {8πη0Tα−1 + β(α− 1)Tα}2

]

, (65)

V 3 =
√−g =

[

8πη0
(α− 1)

T + βTα

]

−2

T 2α+1. (66)

The non-vanishing components of the conformal curvature tensor are

C12
12 = C23

23 = −1

2
C13

13 = −1

3
α
[ 8πη0
α− 1

+ βTα−1
]

. (67)

Here we also find

C12
12 + C13

13 + C23
23 = 0 . (68)

The rotation ω is identically zero.

The rate of expansion Hi in the directions of x, y and z are given by

Hx =
Ȧ

A
= −

(

8πη0/(α− 1) + αβTα−1
)

(8πη0/(α− 1) T + βTα)
, (69)

Hy =
Ḃ

B
=

α

T
−
(

8πη0/(α− 1) + αβTα−1
)

(8πη0/(α− 1) T + βTα)
, (70)

Hz =
Ċ

C
=

(α+ 1)

T
−
(

8πη0/(α− 1) + αβTα−1
)

(8πη0/(α− 1) T + βTα)
. (71)

The models represent shearing, non-rotating and Petrov type D universe in general,
in which the flow is geodetic. For this model too, it is observed that the effect of
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viscosity prevents the shear and the free gravitational field from withering away for
large value of T . It also retards expansion of the model. Since limT→∞ σ/θ /=0, the
models do not approach isotropy for large values of T . It is observed from Eq. (65)
which implies an accelerating model of the universe. It follows that our models of
the universe are consistent with recent observations [18, 19, 21, 24]. For the critical
time Tc given by

(2β + 1)

3T 2
c

=
2β(α− 1)2(8πη0T

α−2
c + βαTα−1

c )

3
{

8πη0T
α−1
c + β(α− 1)Tα

c

}2 , (72)

the deceleration parameter q approaches the value (−1) as in the case of de-Sitter
universe.

We also find
t
∫

t0

dt

V (t)
=

t
∫

t0

[8πη/(α− 1) T + ℓTα]
2

3

T (2α+1)/3
dt , (73)

which is the convergent integral and hence particle horizon exists.

The metric (49) is conformal to the metric

ds2 = dX2 − dT 2 + T 2αdY 2 + T 2(α+1)dZ2. (74)

The universe (74) represents a viscous fluid cosmological model in which kinematic
viscosity η00 is −α/(8πT ) and the pressure p0 and the density ρ0 are given by

8πp0 = 8πξ

(

2α+ 1

T

)

−
[α(5α+ 1)

3T 2

]

− Λ , (75)

8πρ0 =
α(α+ 1)

T 2
+ Λ . (76)

It is also remarkable that the space-time (74) becomes flat when α is zero. The
corresponding model

ds2 = (β − 8πη0T )
−2(dX2 − dT 2 + dY 2 + T 2dZ2) (77)

represents a conformally flat viscous fluid cosmological model.

4. Discussion and conclusion

We have presented a new class of plane-symmetric cosmological models of the
universe with a viscous fluid as the source of matter which incorporates a vacuum
energy-density term decaying with time. Generally, the models represent shearing,
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non-rotating and Petrov type D universe in which the flow vector is geodetic. In
all these models, we observe that they do not approach isotropy for large values of
time.

Recent observations of distant supernovae imply, in defiance of expectation, that
the universe growth is accelerating, contrary to what has always been assumed that
the expansion is slowing down due to gravity. If in the light of these observations Λ
is a non-zero, we will be faced with the additional task of inventing a theory which
sets the vacuum energy density to be a very small value without setting it precisely
at zero. In this case we may distinguish between a “true” vacuum, which would
be the state of lowest possible energy that is non-zero and a “false” vacuum being
metastably different from the actual state of lowest energy (which might well have
Λ = 0). Such a state could eventually decay into the true vacuum, whereas its life-
time could be much larger than the current age of the universe. A final possibility
is that the vacuum energy density is changing with time - a dynamical cosmolog-
ical “constant”. In the present theoretical study, the cosmological constants in all
these models given in Subsections 3.1 and 3.2, are decreasing functions of time and
approach a small value as time increases (i.e. the present epoch). The values of cos-
mological “constant” for these models are found to be small and positive which is
supported by the results from recent supernovae Ia observations recently obtained
by the High-z Supernova Team and Supernova Cosmological Project (Garnavich
et al. [21] , Perlmutter et al. [18], Riess et al. [19], Schmidt et al. [24]). Our de-
rived models confirm these recent experimental results by showing that the universe
now is definitely in a stage of accelerating expansion. Thus, with our approach, we
obtain a physically relevant decay law for the cosmological constant unlike other in-
vestigators where ad hoc laws were used to arrive at a mathematical expressions for
the decaying vacuum energy. Thus, our models are more general than those studied
earlier. Our solutions generalize the solutions obtained by Roy and Prakash [40].

The effect of bulk viscosity is to produce a change in perfect fluid and therefore
exhibits essential influence on the character of the solution. We also observe here
that Murphy’s [46] conclusion about the absence of a big bang type singularity
in the infinite past in models with bulk viscous fluid in general, is not true. The
results obtained by Myung and Cho [48] also show that, it is not generally valid
since for some cases big bang singularity occurs in finite past. For both models, it
is observed that the effect of viscosity prevents the shear and the free gravitational
field from withering away.
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RAVNINSKI SIMETRIČAN, VISKOZAN I FLUIDAN SVEMIR S
OPADAJUĆOM GUSTOĆOM ENERGIJE Λ

Istražujemo ravninski simetrične, viskozne i fluidne modele svemira s promjenljivom
kozmološkom konstantom. Pretpostavlja se da je koeficijent viskoznosti volumno
viskoznog fluida dan s gustoćom mase na neku potenciju, a uzima se konstantan
koeficijent posmične viskoznosti. Da bi se dobila odred–ena rješenja Einsteinovih
jednadžbi polja, pretpostavlja se da je slobodno gravitacijsko polje tipa D što je
sljedeći red u Petrovoj klasifikaciji. Dobiva se s vremenom opadajuća ali pozi-
tivna kozmološka konstanta Λ što je u skladu s nedavnim opažanjima supernova
Ia. Raspravlja se fizikalni i geometrijski značaj modela.
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