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We analyse two known principal approaches to the quantization of physical models.
They are the Faddeev-Popov (FP) “heuristic” approach, based on fixing a gauge in
the FP path integrals formalism, and the “fundamental” approach of Dirac based on
the constraint-shell reduction of Hamiltonians with deleting of unphysical variables.
The relativistically invariant FP “heuristic” approach deals with a small class of
problems associated with S-matrices squared considering on-shell quantum fields.
On the other hand, the “fundamental” quantization approach of Dirac involves
the manifest relativistic covariance of quantum fields that survive the constraint-
shell reduction of Hamiltonians. One can apply this approach to a broader class
of problems than by studying S-matrices. Investigations of various bound states in
QED and QCD are examples of such applications. In the present study, with the
example of the Dirac “fundamental” quantization of the Minkowskian non-Abelian
Higgs model (studied in its historical retrospective), we show obvious advantages
of this quantization approach. The arguments in favour of the Dirac fundamental
quantization of a physical model will be presented as a way of Einstein and Galilei
relativity in modern physics.
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1. Introduction

The modern gauge physics developed in such a way that the quantization ap-
proach by Feynman [1], referred to as heuristic, became the main approach to the
end of the 60-ies. Calculating radiation corrections to scattering processes, Feynman
has elucidated that scattering amplitudes of elementary particles in the perturba-
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tion theory do not depend on a reference frame and choice of the gauge1. Utilizing
this fact, it is possible to alter the QED Lagrangian turning it into a gauge model
without constraints. The reference-frame independence (we shall refer to it as the
S-invariance in the present study, recently also named the relativistic invariance),
while gauge fixing came to a formal procedure of choice of gauge covariant field
variables.

Indeed, an imperceptible substitution of the sense of notions in the method of
gauge (G)-covariant and S-invariant heuristic quantization [1] has occurred. An
alternative approach to the quantization of gauge (non-Abelian) theories is known
[1]. In this approach of Dirac [3], finding the S-covariant and G-invariant solutions
to constraint equations was proposed. The name fundamental quantization to this
quantization method was devised by Schwinger [4].

Briefly, the strategy of the fundamental quantization approach [3] is the follow-
ing.

1. One would utilize the constraint equations and G-invariance in order to re-
move unphysical variables (degrees of freedom) and construct G-invariant nonlocal
functionals of gauge fields, the so-called Dirac variables [3]. In particular, it was
demonstrated in Ref. [3] by utilizing Dirac variables that solving the QED equations
in the class of mentioned nonlocal functionals of gauge fields involves the Coulomb
(radiative) gauge for electromagnetic fields.

2. One would also prove the S-covariance on the level of Poincaré generators
for G-invariant observables. One of the first proofs is due to Zumino [5]. The
dependence of theG-invariant observables on the chosen reference frame parameters
is called the implicit relativistic covariance.

3. Finally, one would construct the S-covariant S-matrix in terms of G-invariant
observables.

This program regarding QED was stated in the review [6]. One can discover that
series of well-known facts and conclusions of QED was interpreted therein not as
it is customary in modern literature. For instance, the Coulomb field is the precise
consequence of solving of one of the classical equations, (the Gauss law), but on no
account of the large-mass approximation. Herewith the action functional of QED
taking in the Coulomb gauge is the “one-to-one” consequence of solving the Gauss
law in terms of G-invariant Dirac variables [3] and not (only) the result of choice of
a gauge. As an example, a proton and electron in a relativistic atom form this atom
due to the Coulomb field transformed into the appropriate Lorentz reference frame
and not as a result of an interaction described by additional Feynman diagrams.

After this brief analysis of the fundamental quantization approach [3, 6] it be-
comes obvious that complete substitution of this approach by the “heuristic” [1] one
is not realistic. It would be necessary to prove the relativistic covariance on the level
of Poincaré generators for G-invariant observables, if the result of computations for
scattering amplitudes is S-invariant, i.e. does not depend on a reference frame. Also
the question is what G-invariant observables are necessary if one can utilize various

1Indeed, as we shall discuss below, repeating the arguments [2], only scattering amplitudes
squared are relativistically invariant.
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variables, including those for solving problems constructing the unitary perturba-
tion theory and proving the renormalizibility of the Standard model. Formulating
and solving these actual problems implemented in the framework of the heuristic
quantization led to the situation when this quantization approach became, in fact,
the only method associated with solving of problems in the modern field theory.
One forgets, however, that the application the sphere of the heuristic quantization
is restricted strictly to the problems of scattering of elementary particles (quantum
fields) where this quantization method has arisen [1]. For the needs of study of
the bound-state physics, hadronisation and confinement in describing the quantum
universe, the fundamental quantization [3, 6] is more adequate, as Schwinger [4]
has predicted.

The present study is an attempt to compare in detail both quantization meth-
ods: the fundamental and heuristic ones, with regard to the important sphere of
modern theoretical physics, the non-Abelian gauge theory (although some aspects
of QED, the typical Abelian gauge theory, will be also the subject of our discussion).

The present article is organized as follows. In Sec. 2 we discuss in detail the
fundamental and heuristic approaches to quantization of gauge theories. Herewith
the Faddeev-Popov (FP) “heuristic” quantization method [7], involving the FP
path integrals formalism, as the modern realization of the Feynman approach [1]
in the sphere of gauge physics, will be investigated. The principal result of Sec.
2 will be the demonstration that the Feynman rules (FR)F of the FP path in-
tegrals formalism [7] for a gauge model (when a gauge F is fixed) coincide with
the Feynman rules (FR)∗ of the fundamental quantization formalism [3] only for
on-shell quantum fields described correctly by S-matrices. The latter statement
may be treated as the gauge equivalence (or independence) theorem [8, 9]. On the
other hand, because of the manifest relativistic covariance of the Green functions
in gauge models quantized by Dirac [3], in which the constraint-shell reduction of
appropriate Hamiltonians is performed, various spurious Feynman diagrams (SD)
[10, 11] appear in those models. As a result, on the level of the heuristic FP quanti-
zation [7], the appearance of spurious Feynman diagrams in constraint-shell gauge
theories implies, for the on-shell of quantum fields, the modification of the gauge
equivalence theorem [8, 9] in such a way that the Feynman rules for SD would be
added to the Feynman rules (FR)F for relativistic covariant Green functions. How-
ever, when asymptotical states contain composite fields (say, hadronic bound states
off-shell) or collective (vacuum) excitations, the gauge equivalence theorem [8, 9]
between the FP path integrals formalism [7] and Dirac fundamental quantization
method [3] becomes very problematic, and one can be sure only in the above adding
of the Feynman rules for SD when such states are in question. Violating the gauge
equivalence theorem [8, 9] in this case does not mean the gauge non-invariance and
relativistic non-covariance. It reflects only the non-equivalence of the different defi-
nitions of sources in Feynman and FP path integrals because of nontrivial boundary
conditions and residual interactions forming asymptotical composites or collective
states.

In Sec. 3, with the example of the Dirac fundamental quantization [3] of the
Minkowskian non-Abelian Higgs model (studied in its historical retrospective), we
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demonstrate obvious advantages of this quantization approach in comparison with
the Feynman-FP “heuristic” quantization method [1, 7], when the topologically
nontrivial dynamics is taken into account.

In Sec. 4 we discuss the future perspectives of development of the Minkowskian
non-Abelian Higgs model quantized by Dirac. It will be argued in favour of the
“discrete” vacuum geometry as that justifying various effects associated with the
Dirac fundamental quantization [3] of that model.

2. Comparison of the heuristic and fundamental

quantization schemes

The essence of the heuristic FP approach [7] to quantization of gauge theories,
logically continuing the Feynman method [1], is fixing a gauge (say, F (A) = 0)
by the so-called Faddeev trick : a gauge is fixed in an unique way within a range
of the appropriate gauge group (to within the Gribov ambiguity in specifying the
transverse gauges [12, 13, 14, 15] in non-Abelian gauge theories).

It will be now appropriately to recall some features of the FP heuristic quan-
tization of non-Abelian gauge theories, the important part of modern gauge
physics (QCD, the electroweak and standard models). The Gribov ambiguity in
non-Abelian gauge theories, considering in the transverse (Landau) gauge [15]
∂µAµ = 0, comes to FP path integrals regular (nonzero) out of the Gribov horizon
∂Ω [13, 14, 15]. This horizon may be defined [13, 14, 15] as the boundary of the
Gribov region (in the coordinate space) where the FP operator [15]

∆FP ≡ ∂µ(∂µ ·+[Aµ, ·]) (1)

is nonnegative2.

Thus in non-Abelian gauge theories, in which the transverse Landau gauge
∂µAµ = 0 is fixed, the appropriate FP path integrals become singular over the light
cone p2 ≡ −∂µ∂µ coinciding with the Gribov horizon ∂Ω [13, 14, 15].

Finally, the (non-Abelian) FP path integrals for gauge models involving gauge
fields A and fermionic ones, ψ and ψ̄, are given by [10]

ZFP [sF , s̄F , JF ] =

∫ ∏

µ

DAFµDψ
FDψ̄F∆F

FP δ(F (A
F ))eiW [AF ,ψF ψ̄F ]+SF

, (2)

2In general [15], there is a countable number of Gribov regions, C0, C1, . . ., in an (Euclidian)
non-Abelian gauge theory where the Landau gauge ∂µAµ = 0 is not taken. Herewith subscript
indices 0, 1, . . . denote the numbers of zeros of the FP operator ∆FP in the appropriate Gribov
region.

But with taking the transverse Landau gauge, only the one Gribov region, C0, survives. The
FP operator ∆FP is positive inside this region, but attains its (infinitely degenerated) zero on its
boundary, the Gribov horizon ∂Ω. Herewith it becomes evident that the Gribov horizon ∂Ω (in
the coordinate representation) coincides with the light cone p2 ≡ −∂µ∂µ = 0.

The said may serve as a (perhaps rough, but obvious) description for the Gribov ambiguity
[12, 13, 14, 15] in non-Abelian gauge theories.
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with ∆F
FP ≡ det MF being the FP operator for the gauge F (A) = 0 (in general,

different from the transverse Landau gauge ∂µAµ = 0) and

SF =

∫
d4x

(
s̄FψF + ψ̄F sF +AFµ J

µ
)

(3)

being the sources term3.

Alternatively, the FP operator MF may be specified [16, 17] in terms of the
linear response of the gauge F (A) = 0 to a gauge transformation

F (eΩ(A+ ∂)e−Ω) =MFΩ+O(Ω2).

The approach [7] to the heuristic quantization of gauge (non-Abelian) theories
had, of course, series of its unquestionable services and successes: for instance, in
constructing GUT, the universal model of gauge fields. In particular, with the aid
of the heuristic approach [7], the renormalizability of GUT was proved.

But an essential shortcoming of the heuristic quantization method [7] was
“throwing off” of the notion “reference frame” from gauge physics. This notion
is simply not necessary in that the method dealing with scattering amplitudes of
quantum fields on-shell4. Thus FP path integrals induced by the “heuristic” quan-
tization approach [7] do not depend on anyone’s choice of reference frames.

It may be verified that in calculations of elements of S-matrices inherent in
the on-shell gauge models, the following obvious identity [19] for the appropriate
Feynman rules (FR) takes place

(FR)F = (FR)∗ (for S −matrices) (4)

3It will be also well-timed to cite here the explicit expression for the FP determinant MF in a
(non-Abelian) gauge theory. It is [16]

det MF ∼

∫
[dc][dc†] exp

{
i

∫
d4xd4y

∑

a,b

c†a(x) M
ab
F (x, y)cb(y)

}
,

with c and c
† being, respectively, FP ghost and anti-ghost fields.

The FP determinant det MF implies, for instance, the FP ghost action functional SFPG [16],

SFPG =
1

g

∫
d4x

∑

a,b

c†a(x)∂
µ[δab∂µ − gǫabcA

c
µ]cb(x),

contributing obligatory to the total (non-Abelian) action as the Lorentz covariant gauge ∂µAµ is
set.

4We recommend our readers §2 to Chapter 3 in the monograph [18] where the FP integral for
the “exact” YM theory, involving the manifest unbroken SU(2) symmetry and only gauge fields,
was derived utilising the properties of the appropriate S-matrix. Indeed, the heuristic quantization
approach [7] involves the manifest relativistic invariance of local scattering amplitudes squared,
|Sfi|

2, with f and i being, respectively, the final and initial states of colliding particles. However
the scattering amplitudes S are, indeed, manifestly relativistically covariant (see e.g. §20.4 in [2]),
and this implies their manifest unitarity. On the other hand, probabilities of scattering processes,
that would be, doubtless, relativistically invariant values, always involve scattering amplitudes
squared.
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when the gauge F is fixed.

The expression (FR)∗, on the right-hand side of (4), is referred to the Feynman
rules in the considered gauge model upon performing the constraint-shell reduction
of that model, involving ruling out of the unphysical (manifestly gauge covariant)
field variables. This statement may be treated as the gauge equivalence (or inde-
pendence) theorem [8, 9, 19].

But the diapason of problems solved in modern theoretical (in particular, gauge)
physics is not restricted to the scattering processes of on-shell quantum fields.
Among such problems, one can point out the problem of (asymptotically) bound
and collective vacuum states. These are patterns of composite quantum fields that
are off-shell of elementary particles. It turns out that the presence of such states in
a quantum-field theory (QFT) may violate the gauge equivalence theorem [8, 9, 19],
at least it becomes quite problematic in this case. On the other hand, the constraint-
shell (Hamiltonian) reduction of a gauge theory implies ruling out of the unphysical
fields variables, i.e. describing this gauge theory in terms of only the gauge invariant
physical (observable) fields. In the so-called particular gauge theories (for instance,
in the terminology [20]), examples of which are four-dimensional QED, the YM
theory and QCD (i.e. Abelian as well as non-Abelian gauge models), involving the
singular Hessian matrix

Mab =
∂2L

∂q̇a∂q̇b
(5)

(with L being the Lagrangian of the considered gauge theory, qi being the ap-
propriate degrees of freedom and q̇i being their time derivatives), the removal of
unphysical degrees of freedom is associated, in the first place, with ruling out of
the temporal components A0 of gauge fields. In turn, it is associated with the
zero canonical momenta ∂L/∂q̇0 conjugate to the fields A0 in the particular gauge
theories

∂L/∂Ȧ0 ≡ 0.

Thus temporal components A0 of gauge fields are, indeed, non-dynamical degrees of
freedom in particular theories, the quantization of which contradicts the Heisenberg
uncertainty principle.

Dirac [3], and after him other authors of the first classical studies in quantization
of gauge fields, for instance [21, 22], eliminated temporal components of gauge fields
by gauge transformations. The typical expression for such gauge transformations
is [23]

vT (x, t)(A0 + ∂0)(v
T )−1(x, t) = 0. (6)

This equation may be treated as that specifying the gauge matrices vT (x, t). This,
in turn, allows to write down the gauge transformations for spatial components of
gauge fields [17] (say, in a non-Abelian gauge theory)

ÂDi (x, t) := vT (x, t)(Âi + ∂i)(v
T )−1(x, t); Âi = g

τa

2i
Aai. (7)
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It is easy to check that the functionals ÂDi (x, t) specified in such a way are
gauge invariant and transverse fields

∂iÂ
D
i (x, t) = 0; u(x, t)ÂDi (x, t)u(x, t)

−1 = ÂDi (x, t) (8)

for gauge matrices u(x, t).

Following Dirac [3], we shall refer to the functionals ÂDi (x, t) as to the Dirac

variables. The Dirac variables ÂDi may be derived by resolving the Gauss law
constraint

∂W/∂A0 = 0 (9)

(with W being the action functional of the considered gauge theory).

Solving Eq. (9) [10], one expresses temporal components A0 of gauge fields A
through their spatial components; by that the nondynamical components A0 are in-
deed ruled out from the appropriate Hamiltonians. Thus the reduction of particular
gauge theories occurs over the surfaces of the appropriate Gauss-law constraints.
Only upon expressing temporal components A0 of gauge fields A through their spa-
tial components one can perform gauge transformations (7) in order to turn spatial

components Âi of gauge fields into gauge-invariant and transverse Dirac variables
ÂDi [17]. Thus, formally, temporal components A0 of these fields become zero. By
that the Gauss law constraint (9) acquires the form [10]

∂0
(
∂iA

D
i (x, t)

)
≡ 0.

For further detailed study of the “technology” getting Dirac variables, in particular
gauge theories, we recommend the articles [10, 11, 24] (four-dimensional constraint-
shell QED involving electronic currents) and [17, 25] (the Minkowskian non-Abelian
Gauss law constraint-shell model involving vacuum BPS monopole solutions; we
shall discuss it briefly also in the next section).

Dirac variables prove to be manifestly relativistically covariant. Relativistic
properties of the Dirac variables in gauge theories were investigated in the papers
[21] (with the reference to the unpublished note by von Neumann), and then this
work was continued by I. V. Polubarinov in his review [6].

These investigations displayed that there exist such relativistic transformations
of Dirac variables that maintain transverse gauges of fields. More precisely, Dirac
variables Â(0)D observed in a rest reference frame η0µ = (1, 0, 0, 0) in the Minkowski

space-time (thus ∂iÂ
(0)D
i = 0), in a moving reference frame

η′ = η0 + δ0Lη0 (10)

are also transverse, but now regarding the new reference frame η′ [10, 23]

∂µÂ
D′
µ = 0.

FIZIKA B 18 (2009) 3, 99–140 105



lantsman: Dirac fundamental quantization of gauge theories is the natural . . .

In particular, A0(η
0) = A0(η

′) = 0, i.e. the Dirac removal (6) [3, 23] of temporal
components of gauge fields, is transferred from the rest to the moving reference
frame. In this consideration [6, 10, 21], δ0L are ordinary total Lorentz transfor-
mations of coordinates, involving appropriate transformations of fields (bosonic
and fermionic). When one transforms fields entering the gauge theory into Dirac
variables5 in a rest reference frame η0 and then goes over to a moving reference
frame η′, Dirac variables ÂD, ψD, φD suffer relativistic transformations consisting
of two terms [10, 11].

The first term is the response of Dirac variables on ordinary total Lorentz trans-
formations of coordinates (Lorentz busts)

x′k = xk + ǫkt, t′ = t+ ǫkxk, |ǫk| ≪ 1.

The second term corresponds to the “gauge” Lorentz transformations Λ(x) of Dirac

variables ÂD, ψD, φD [10, 11]

Λ(x) ∼ ǫkȦ
D
k (x)∆

−1,

with
1

∆
f(x) = − 1

4π

∫
d3y

f(y)

|x− y|

for any continuous function f(x). Thus any relativistic transformation for Dirac
variables may be represented as the sum of two enumerated terms. For instance
[10],

ADk [Ai + δ0LA]−ADk [A] = δ0LA
D
k + ∂kΛ, (11)

ψD[A + δ0LA,ψ + δ0Lψ]− ψD[A,ψ] = δ0Lψ
D + ieΛ(x′)ψD. (12)

Relativistic transformations of Dirac variables of the (11), (12) type imply im-
mediately definite relativistic transformations of Green functions inherent in
the constraint-shell (Gauss-shell) gauge theories. For example [11], in the four-
dimensional constraint-shell QED the electronic Green function

G(p) = G0(p) +G0(p)Σ(p)G0(p) +O(α4), G0(p) = [pµγ
µ −m]−1,

with Σ(p) being the electronic self-energy, proves to be relativistic covariant un-
der the “gauge” Lorentz transformations Λ(x). This, in turn, is mathematically
equivalent to the complete Lorentz invariance of the electronic self-energy Σ(p) [11]

δtotL Σ(p) = (δ0L + δΛ)Σ(p) = 0.

5It may be demonstrated [10, 11, 19, 24] that the transformations (7), turning gauge fields A

into Dirac variables ÂD, imply the ψD = vT (x, t)ψ transformations for fermionic fields ψ and
φD = vT (x, t)φ transformations for spin 0 fields: to latter ones belong, for instance, Higgs vacuum
BPS monopole solutions investigated in the recent papers [17, 25].
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The relativistic covariance of Green functions inherent in constraint-shell gauge
theories implies the appearance of various spurious Feynman diagrams (SD) in those
theories [10, 11]. SD are generated [19] by gauge factors vT (x, t). On the level of
the heuristic FP quantization [7], the appearance of spurious Feynman diagrams in
constraint-shell gauge theories implies, on-shell of quantum fields, the modification
of the gauge equivalence theorem [8, 9, 19]

(FR)F + (SD) ≡ (FR)∗ (for Green functions)

as a consequence of the independence of FP path integrals (19) on the choice of
a reference frame. When, however, asymptotical states contain composite fields
(say, hadronic bound states off-shell) or collective (vacuum) excitations, the gauge
equivalence theorem (4) [8, 9, 19] becomes problematic, and one may be sure only
in the identity

(FR)F + (SD) ≡ (FR)∗ (for S−matrices with composite fields). (13)

Violating the gauge equivalence theorem [8, 9, 19] in this case does not mean
the gauge non-invariance and relativistic non-covariance. It reflects only the non-
equivalence of the different definitions of sources in Feynman and FP path integrals
because of nontrivial boundary conditions and residual interactions forming asymp-
totical composite or collective states.

More exactly, with the transverse gauge F (A) = 0 fixed (for instance, in the
Landau gauge ∂µAµ = 0 in non-Abelian gauge models), the source term SF , (3),
in the given FP path integral (2) is on-shell of quantum fields. In this case, in the
fermionic sector of the considered gauge theory, written down in terms of the FP
path integral [7] (foreseeing herewith no constraint-shell reduction), takes place the
current conservation law ∂0j

F
0 = ∂ij

F
i , coinciding mathematically with the one in

the Gauss-shell reduced equivalent unconstrained system (EUS), ∂0j
D
0 = ∂ij

D
i for

Dirac variables taking on-shell.

But the current conservation law ∂0j
D
0 = ∂ij

D
i , derived from the classical equa-

tions for the fermionic fields, is destroyed for bound states off-shell, i.e. for “dressed”
fermions (and moreover, these bound states are “outside the competence” of the
heuristic FP method [7]). In this context, the notion “gauge” also concerns the
gauge of sources in FP path integrals (2), but not only the choice of definite
Feynman rules (that follows from (13)). Since gaugeless (G-invariant) quantization
schemes take into account explicitly the whole physical information from (Gauss
law) constraints, it is advantageous to use such G-invariant and relativistic (S)
covariant approach to describe composite or collective states.

The above sketched quantization scheme by Dirac [3] (often referred to as fun-
damental quantization by Dirac [10, 17, 25]) is the pattern of such G-invariant
and S-covariant quantization schemes. As we have made sure above, the Dirac
fundamental quantization scheme [3, 6, 10, 11, 21, 24] involves the quantization
procedure only for variables remaining on the constraint-shell reduction of appro-
priate Hamiltonians and spontaneous violation of initial gauge symmetries (when
these take place).
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Now it will be relevant to cite the explicit form of Feynman path integrals
[1, 10, 17, 25], attached to the concrete reference frame (say, the rest reference frame
l(0)) and written down in terms of the constraint-shell reduced action functionals
(EUS) W ∗, i.e. in terms of Dirac variables [10]

Z∗
l(0) [s, s̄

∗, J∗] =

∫ ∏

j

DADj Dψ
DDψ̄DeiW

∗[AD,ψD,ψ̄D ]+iS∗

, (14)

including the external sources term

S∗ =

∫
d4x

(
s̄∗ψD + ψ̄Ds∗ + J∗

i A
Di

)
. (15)

The important property of Feynman path integrals is their manifest relativistic
covariance [5, 19] with respect to the Heisenberg-Pauli relativistic transformations
(10) of the chosen (rest) reference frame η0 [6, 10, 21] maintaining the transverse
gauge of fields. This may be written down as

ZLη0 [s
∗, s̄∗, J∗] = Zη0 [L s∗, L s̄∗, L J∗]. (16)

To pass then from the Feynman path integral of the form (14) to the FP one, (2),
given in the fixed gauge F (A) = 0, one would [10]:

∗) replace the variables;

∗∗) replace the sources.
The change of variables is fulfilled by the Dirac factors vT ; for example,

ADk [A
F ] = vT [AF ](AFk + ∂k)(v

T [AF ])−1; (17)

ψD[AF ] = vT [AF ]ψ. (18)

This change is associated with the countable number of additional degrees of free-
dom and FP determinant det MF of the transition to new variables of integration.
These degrees may be removed (to within the Gribov ambiguity in non-Abelian
gauge theories [12, 13, 14, 15]) by the additional constraint F (A) = 0. Thus the
constraint-shell functional Z∗

l(0)
(14) takes the equivalent form of the FP path inte-

gral [10, 25]

Z∗[s∗, s̄∗, J∗] =

∫ ∏

µ

DAFµDψ
FDψ̄FMF δ(F (A

F ))eiW [AF ,ψF ,ψ̄F ]+S∗

, (19)

where now all gauge factors vT [AF ] are concentrated in the source term [10, 24]6

S∗ =

∫
d4x

(
v[AF ]s̄∗ψF + ψ̄F (v[AF ])−1s∗ + J∗

i A
∗
i [A

F ])
)
. (20)

6Indeed [24],

s̄∗ = s̄F vT [AF ]; s∗ = (vT )−1[AF ] sF ; ψ̄D = ψ̄F · (vT )−1[AF ].
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Finally, the removal of the gauge (Dirac) factors vT [AF ] by the replacement of
gauge fields AD =⇒ A, accompanied by the change of sources (the step ∗∗)),

S∗ ⇒ SF =

∫
d4x

(
s̄FψF + ψ̄F sF +AFµ J

µ
)
, (21)

restores the initial FP path integral (2) in the considered gauge theory. Such a
replacement is made with the only purpose to remove the dependence of the path
integrals on a reference frame and initial data. But losing the dependence of a
gauge model on any reference frame is often fraught with serious problems for such
a gauge model. So, for instance, Schwinger in his paper [4] warned that gauges
independent of a reference frame may be physically inadequate to the fundamental
operator quantization [3]; i.e. they may distort the spectrum of the original system7.

The situation with asymptotical bound and collective vacuum states, as dis-
cussed in Sec. 2 and involving violating the gauge equivalence theorem [8, 9, 19],
confirms this warning by Schwinger.

3. Dirac fundamental quantization of Minkowskian

non-Abelian gauge models

In this section we give a short historical retrospective of the development of the
Dirac fundamental quantization method [3] in the Minkowskian non-Abelian gauge
theory. The role of collective vacuum excitations (involving various vacuum rotary
effects) in constructing a consistent non-Abelian (Minkowskian) gauge model was
considered for the first time in the paper [26].

The case of collective vacuum excitations is just one of cases (13) when the
gauge equivalence theorem [8, 9, 19] regarding the “heuristic” FP [7] and Dirac fun-
damental [3] quantization approaches is violated. In the paper [26], it was assumed
that in the (Minkowskian) non-Abelian models possessing the strong coupling (YM,
QCD), collective vacuum degrees of freedom and long-range correlations of local
excitations are possible, similar to those taking place in the liquid helium theory
[27]. Moreover, drawing further a parallel between the (Minkowskian) non-Abelian
models and liquid helium theory [27], it was concluded about the manifest super-
fluid properties of the physical vacuum in Minkowskian gauge models (indeed [28],
such a conclusion is correct only for a narrow class of Minkowskian gauge models
involving vacuum BPS monopole solutions [12, 29, 30] when the initial gauge sym-
metries are violated and Higgs modes appear as the sign of such breakdown; we
shall discuss this below). In [26] it was demonstrated that the manifest superfluid
properties of the Minkowskian non-Abelian physical vacuum in such models are
quite compatible with the Dirac fundamental quantization [3] involving fixing the
Coulomb (transverse) gauge for fields. As a result, non-Abelian gauge fields were
transformed into (topologically degenerated) Dirac variables satisfying the Coulomb

7“We reject all Lorentz gauge formulations as unsuited to the role of providing the fundamental
operator quantization” [4].
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gauge: G-invariant and S-covariant simultaneously [10, 11]. The Gribov ambiguity
[12, 13, 14, 15] in specifying non-Abelian (transverse) gauge fields induces in the
Minkowskian non-Abelian theory the appropriate second-order differential equa-
tion in partial derivatives (the Gribov ambiguity equation [10, 17, 25]) imposed onto
the Higgs field Φ; this equation proves to be responsible for the superfluid proper-
ties of the Minkowskian non-Abelian physical (topologically degenerated) vacuum
quantized in the Dirac fundamental scheme [3].

This method of constructing the Dirac variables turns the appropriate Gauss
law constraint into a homogeneous equation of the form [26]

(D2)abΦb = 0 (22)

(with D being the [covariant] derivative), involving the nontrivial collective vac-
uum dynamics (more exactly, collective rotations of the Minkowskian non-Abelian
vacuum). In the paper [26] it was postulated that the existence of a dynamical
variable (denoted as c(t) in [26]) is responsible for this collective vacuum dynamics.
The nature of this variable was explained. The possibility to express c(t) through
the integer degree of the map (Pontruagin number) by multiplying it by

n(tout)∫

n(tin)

dt

was demonstrated (herewith it may be set [31] tin, out = ±T/2, while interpretion
of c(t) as a noninteger degree of map becomes transparent). The necessity to take
account of group-theoretical properties of the considered Minkowskian non-Abelian
model is the basis for such form of the dynamical cooperative variable c(t) (as well
as of other dynamical variables that this model implicates).

This allowed to write down explicitly the term in the YM Lagrangian describing
the collective vacuum rotations [26]

Lcoop =

[∫
d3x(DiΦ)

2

]
1

2
ċ2(t). (23)

The similar nature of the collective vacuum rotations in Minkowskian non-Abelian
models and quantum vortices and in a liquid helium specimen was noted (see e.g.
§§ 30 – 31 in Ref. [32]). It was shown in Ref. [26] that the collective vacuum rotations
(involving the appropriate rotary term Lcoop (23) in the YM Lagrangian) may be
expressed in terms of the Higgs vacuum modes Φa, setting the transverse vacuum
“electric” field DµE

µ = 0. The connection between the zero modes Za ∼ ċ(t)Φa

of the YM Gauss law constraint and this transverse vacuum “electric” field E was
ascertained.

Additionally, it was demonstrated that the purely real and simultaneously dis-
crete energy-momentum spectrum

P ∼ 2πk + θ; k ∈ Z; (24)
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corresponds to the collective vacuum rotations in the Minkowskian non-Abelian
theory. This purely real and discrete energy-momentum spectrum is the alternative
to the complex topological momentum

PN = 2πk ± 8πi/g2 ≡ 2πk + θ (25)

proper (as it was demonstrated in Refs. [26, 33] and then repeated in Ref. [19]
(see also Ref. [34]) to the Euclidian θ-vacuum. This result [19, 26, 33] means, as
it is easy to see, that topologically degenerated instanton solutions inherent in the
Euclidian YM model [12, 16, 35] are purely gauge, i.e. unphysical and unobservable,
fields. The additional argument in favour of the latter assertion was made recently
in Ref. [17]. It was noted that the θ-vacuum plane wave function [26]

Ψ0[A] = exp(iPNX[A]), (26)

corresponding to the zero energy ǫ = 0 of an instanton [16, 35] (with X[A] being the
winding number functional taking integers), is specified wrongly with the minus sign
before PN in (26). This implies that it is impossible to give the correct probability
description of the instanton θ-vacuum [12, 16, 35]8; that is why the latter one refers
to unobservable, i.e. unphysical, values.

In Ref. [19] (see also [36]), the result (25) was referred to as the so-called no-
go theorem, the presence of unphysical solutions in the Euclidian instanton YM
(non-Abelian) theory [35].

Later on, in Ref. [31], it was explained the common property of cyclical motions
(to which belong also the collective vacuum rotations inside the Minkowskian non-
Abelian vacuum described in Ref. [26]) that all they possess the discrete energy-
momentum spectrum, similar to that described above. This can serve as a definition
of the Minkowskian θ-vacuum, somewhat alternative to that of Ref. [36], given for
the θ-vacuum in the Euclidian non-Abelian theory [35] involving instantons (the
arguments [36] were then repeated in Refs. [19, 26]). The discrete energy-momentum
spectra P of cyclical motions found [31] to be, firstly, a purely quantum effect,
disappearing in the semi-classical limit h̄ → 0 and, secondly, such motions cannot
vanish until θ /=0.

Really, in the h̄ terms, the discrete energy-momentum spectra P of cyclical
motions may be expressed as [31]

P = h̄
2πk + θ

L
,

with L being the length of the whole closed line along which a physical material
point (say, physical field) moves. Thus when θ /=0, the momentum P attains its
nonzero minimum Pmin = h̄θ/L as k = 0.

8since the Hilbert space of (topologically degenerated) instanton states becomes non-separable
in this case.
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This is the display of the so-called Josephson effect [37] for superconductors
included in an electric circuit. The essence of this effect is just in the persistent
cyclical motion of a quantum “train” that cannot stop until θ /=0 [31].

For the Minkowskian non-Abelian physical vacuum, such Josephson effect comes
to the vacuum (transverse) “electric” field E, proving to be a definite function of the
appropriate rotary energy-momentum spectrum P . More exactly, E = f(k, h̄, θ).
This means that E also attains its nonzero minimum value Emin as k = 0 and θ /=0.

The dependence of Emin on the Planck constant h̄ (this was noted for the first
time in Ref. [31]) is connected with the claim for the strong interaction coupling
constant to be, indeed, dimensionless; that gives g2/(h̄c)2 in the lowest-order of
the perturbation theory. In this case [31], the collective rotations term in the non-
Abelian action functional proves to be directly proportional to the Planck constant
h̄ and disappearing in the (semi)classical limit h̄→ 0 (see below).

As we have already discussed in the previous Section, the general princi-
ples for constructing constraint-shell (Gauss-shell) gauge models were stated in
Refs. [11, 24]. These general principles (with some corrections, for instance, replac-
ing ∂ by the [covariant] derivative D) may be spread from the four-dimensional
constraint-shell QCD to the (Minkowskian) non-Abelian gauge models (including
that involving Higgs and fermionic modes and violating initial symmetries groups).
A remarkable feature of the constraint-shell reduction of gauge models proves to
be the appearance of the current-current instantaneous interaction terms in EUS
Hamiltonians. For comparison, in the four-dimensional constraint-shell QCD, the
current-current instantaneous interaction term in the appropriate Gauss-shell re-
duced Lagrangian density LD(x) is read as [11]

1

2
jD0

1

∆
jD0 (27)

and implicates G-invariant currents

jDµ = eψ̄Dγµψ
D.

In the (Minkowskian) non-Abelian constraint-shell QCD, the analogy of (27) the
“potential” term [38, 39] will be

1

2

∫

V0

d3xd3yjbtot,(0)(x)Gbc(x,y)j
c
tot,(0)(y). (28)

in the constraint-shell reduced QCD Hamiltonian.

This “potential” term involves [38, 39] the topologically trivial and G-invariant
total currents

jatot,(0) = gψ̄I(λa/2)γ0ψ
I + ǫabcẼTbi ÃiTc(0), (29)

involving fermionic topologically trivial Dirac variables ψI , ψ̄I .
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In this equation, the transverse “electric” tension DiẼTai = 0, belonging to the
excitation spectrum of (Minkowskian) constraint-shell QCD, can be expressed [26]

through the topologically trivial gauge potentials Ãia(0) (which can be chosen to be

also transverse: DiÃ
i
Ta(0) = 0; for instance, the Dirac variables (8))

Ẽ
(T )a
i = (δij −Di

1

D2
)ab∂0Ãib. (30)

The Green function Gab(x,y) of the Gauss law constraint [10, 17, 25]

Dcd
i (A)Di

db(Φ
(0))σ̃b = jctot(0) (31)

enters the “potential term” (28).

The longitudinal “electric” field σ̃a has the form [10]

σa[AT , ET ] = (
1

Di(A)∂i
)acǫcbdA

Tb
k ETkd (32)

and involves transverse fields AT and ET . This equation reflects the manifest non-
linear nature of non-Abelian gauge models of the YM type.

Speaking about Minkowskian constraint-shell QCD, one should note the support
of the infrared quark confinement in that model. It turned out that the infrared
quark confinement in Minkowskian constraint-shell QCD has actually topological
origins.

In Refs. [11, 24], the interference of topological Gribov multipliers [13] in the
gluonic and fermionic Green functions in all orders of the perturbation theory was
demonstrated. More exactly, the stationary gauge multipliers of the typical form
vT (n)(x), depending explicitly on topologies n ∈ Z, enter topological Dirac variables
in non-Abelian gauge models

vT (n)(x) = vT (n)(x, t)|t=t0 . (33)

In non-Abelian gauge theories, matrices vT (n)(x, t) may be found easily, satisfying
the Cauchy condition (33) and Eq. (6) [23], specifying the (topological) Dirac
variables (7) in these theories quantized by Dirac [3].

As it was shown in Ref. [17, 26],

vT (n)(t,x) = vT (n)(x)T exp{
t∫

t0

[
1

D2
∂0DkÂ

k

]
dt̄ }, (34)

where the symbol T stands for the time ordering of the matrices under the exponent
sign.
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Following Ref. [17], one notes the exponential expression in (34) as UD[A]; this
expression may be rewritten [17] as

UD[A] = exp{ 1

D2
DkÂ

k}. (35)

This mechanism [24] of the infrared (at the spatial infinity |x| → ∞) (destruc-
tive) interference of Gribov stationary multipliers vT (n)(x, t) in the gluonic and
fermionic Green functions in all the orders of the perturbation theory leads to the
following results.

Firstly, one claims [19, 24, 31]

vT (n)(x) → ±1, as |x| → ∞, (36)

This claim imposed onto the Gribov stationary multipliers vT (n)(x, t) at the spatial
infinity is quite natural and legitimate.

So in the Euclidian instanton model [35], the similar spatial asymptotic of gauge
matrices is equivalent to disappearing instantons at the “four-dimensional” infinity
|x| → ∞ (as it was noted, for instance, by Dashen et al. [35])

Aµ(x) → 0, |x| → ∞. (37)

As a consequence, the Pontruagin degree of the map [12],

n(g) =
1

24π2

∫

S3

tr {(g−1(x)dg(x))[g−1(x)dg(x) ∧ g−1(x)dg(x)]}dx,

involving gauge matrices g(x), takes integer values.

Indeed, disappearing gauge fields (37) at the “four-dimensional” infinity have
the universal nature for the Euclidian as well as for the Minkowskian space-time.
In particular, the boundary condition (36) [19, 24, 31], imposed onto the Gribov
stationary multipliers vT (n)(x, t) at the spatial infinity in the Minkowskian gauge
model (quantized by Dirac [3]), is quite correct.

Secondly, as was shown in Ref. [24], in the lowest order of the perturbation
theory, averaging (quark) Green functions over all topologically nontrivial field
configurations (including vacuum monopole ones, us discussed below) results in
[11, 24]

G(x,y) =
δ

δs∗(x)

δ

δs̄∗(y)
Zconf(s

∗, s̄∗, J∗)|s∗=s̄∗=0 = G0(x− y)f(x,y), (38)

with G0(x−y) being the (one-particle) quark propagator in the perturbation theory
and

f(x,y) = lim
|x|→∞, |y|→∞

lim
L→∞

(1/L)

n=L/2∑

n=−L/2

v(n)(x)v(n)(−y). (39)
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The origin of the generating functional Zconf(s
∗, s̄∗, J∗), entering (38), is following.

It comes from the standard FP integral (2) [7] in which one fixes the transverse
gauge for (YM) fields A [10, 26]

Di(A)∂0A
i = 0, (40)

turning these fields into (topological) Dirac variables of the (7) type.

In this case [20], the FP operator MF takes the form ∆FP [14, 15], (1)

∆̂ = −∂iDi(A) = −(∂2i + ∂i ad(A
i)) (41)

with

ad(A)X ≡ [A,X]

for an element X of the appropriate Lee algebra. Such form of the FP operator
is mathematically equivalent to (1) [14, 15] when setting A0 = 0 for temporal
components of gauge fields. In particular, it becomes correct for the removal (6)
[3, 23] of these components in the Dirac fundamental quantization scheme.

Upon fixing the gauge (40), the FP integral (2) takes the form [24]

ZR,T (s
∗, s̄∗, J∗) =

∫
DA∗

iDψ
∗dψ̄∗ det ∆̂ δ(

t∫

t0

dt̄Di(A)∂0A
i)

× exp{i
T/2∫

−T/2

dt

∫

|x|≤R

d3x[LI(A∗, ψ∗) + s̄∗ψ∗ + ψ̄∗s∗ + J∗a
i Ai∗a ]}. (42)

It includes the Lagrangian density LI [11] corresponding to the constraint-shell
action of the Minkowskian non-Abelian theory (Minkowskian QCD) taking on the
surface of the Gauss law constraint (9); here R is a large real number, and one can
assume that R→ ∞.

Thus in the case (42) of the constraint-shell Minkowskian non-Abelian theory,
when the transverse gauge (40) is fixed, turning gauge fields into (topological)
Dirac variables A∗, this FP integral depends formally on these Dirac variables and
also on ψ∗, ψ̄∗. Then the generating functional Zconf(s

∗, s̄∗, J∗), entering Eq. (38)
[24] specifying quark Green functions in Minkowskian QCD involving topologically
nontrivial (vacuum) configurations, may be derived from the FP integral (42) by
its averaging over the Gribov topological degeneration [13] of initial data, i.e. over
the set Z of integers

Zconf(s
∗, s̄∗, J∗) = lim

|x|→∞, T→∞
lim
L→∞

1

L

n=L/2∑

n=−L/2

ZIR,T (s
∗
n,φi

, s̄∗n,φi
, J∗
n,φi

), (43)
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with ZIR,T (s
∗
n,φi

, s̄∗n,φi
, J∗
n,φi

) being the FP path integral (42) rewritten in terms of

the Gribov exponential multipliers vT (0)(x)9.

The variation of Zconf(s
∗, s̄∗, J∗) by the sources,

(

3∏

α=1

δ

δs∗n,φα

)(

3∏

β=1

δ

δs̄∗n,φβ

)(

3∏

γ=1

δ

δJ∗
n,φγ

),

involving the appropriate Euler angles φα(xα) (α = 1, 2, 3; xα, yα, zα are the Carte-
sian coordinates) and topological charges n ∈ Z, just results the Green functions of
the (38) [24] type (in particular, to derive Eq. (38) for fermionic Green functions,
it is necessary to omit the variation of Zconf(s

∗, s̄∗, J∗) by gauge currents J∗
n,φα

).

Returning to Eq. (39), note that always f(x,y) = 1 due to the spatial asymp-
totic (36) for the Gribov topological multipliers vT (n)(x). This implies that only
“small” (topologically trivial) Gribov exponential multipliers vT (0)(x) contribute in
f(x,y) = 1 and, therefore, in the (one-particle) quark Green function (38). A sim-
ilar reasoning [24] remains correct also for multi-particle quark and gluonic Green
functions in all orders of the perturbation theory.

Just above described only “small” surviving Gribov exponential multipliers
vT (0)(x) in Green functions in all orders of the perturbation theory was referred to
as the (infrared) topological confinement in the series of papers (for instance, in the
review [10], multiply cited in the present study).

The new stage in the development of the Minkowskian non-Abelian model quan-
tized in the fundamental scheme by Dirac [3] began in the second half of the 90-ies
and continues to date. It is connected with the papers [10, 17, 23, 25, 39]. These
papers were devoted to the Dirac fundamental quantization [3] of the Minkowskian
non-Abelian theory involving the spontaneous breakdown (say, SU(2) → U(1))
of the initial gauge symmetry and appearing Higgs modes (we shall refer to such
theory as to the Minkowskian Higgs non-Abelian model).

Now we consider some points of the recent investigations [10, 17, 23, 25, 39]
(especially those representing new results in comparison with the “old” research of
the Dirac fundamental quantization of the Minkowskian non-Abelian model).

A. Vacuum BPS monopoles.

The idea to utilize vacuum BPS monopole solutions [12, 29, 30] for describing
Minkowskian Higgs models quantized in the fundamental scheme by Dirac [3] was
proposed, probably, already in the paper [19]. In the recent papers [10, 17, 25, 39],
this idea becomes the basic one, while in the work [23] the spatial asymptotic

9It is correct due to the manifest G-invariance of the constraint-shell theory. For the same
reason, the constraint-shell Lagrangian density LI , entering the FP integral (42), may be expressed

solely in terms of topologically trivial Gribov exponential multipliers vT (0)(x) [24].

116 FIZIKA B 18 (2009) 3, 99–140



lantsman: Dirac fundamental quantization of gauge theories is the natural . . .

of vacuum BPS monopole solutions in the shape of Wu-Yang monopoles [40] was
studied10.

Unlike the Wu-Yang monopoles [40] (as analysed above briefly), diverging as
1/r at the origin of coordinates, YM vacuum BPS monopole solutions [12, 29,
30] Aai (t,x) ≡ ΦaBPSi (x) (in denotations [17]) are regular in the whole spatial
volume. Thus a good approximation of Wu-Yang monopoles [40] by YM vacuum
BPS monopoles [12, 29, 30] is on hand.

By the way, note that the Euclidian YM instanton solutions Aai [35] are also
singular at the origin of coordinates (for instance, this was demonstrated in the
monograph [12], in §Φ23).

As to the Higgs vacuum BPS monopole solutions Φa(x) [17], they diverge at
the spatial infinity although they are regular at the origin of coordinates (like YM
BPS monopoles ΦaBPSi (x))11.

The important new step in research of vacuum BPS monopole solutions under-
taken in resent papers [17, 25], in comparison with “classical” issues [12, 29, 30],
is assuming (topologically degenerated) BPS monopole solutions (in the YM and
Higgs sectors of the Minkowskian non-Abelian Higgs model) depending explicitly

on the effective Higgs mass m/
√
λ taken in the Bogomol’nyi-Prasad-Sommerfeld

(BPS) limit [12, 17, 25, 29, 30]

m→ 0; λ→ 0

10Wu-Yang monopoles [40] are solutions to the classical equation of motion

Dab
k (Φi)F

bk
a (Φi) = 0

of the “pure” (Minkowskian) YM theory (without Higgs fields). The solution to this classical
equation is the “magnetic” tension F bk

a taking the form

Bia(Φi) =
xaxi

gr4
.

Thus such “magnetic” tension diverges at the origin of coordinates r → 0, while the spatial YM
components

Φ̂i = −i
τa

2
ǫiak

xk

r2
fWY(r),

with fWY(r) = ±1, correspond to Wu-Yang monopoles [40] with topological charges ±1, respec-
tively.

Indeed, the above classical equation of motion implies the following equation for the function
f(r) [10, 17]:

Dab
k (Φi)F

bk
a (Φi) = 0 =⇒

d2f

dr2
+
f(f2 − 1)

r2
= 0.

f(r) = ±1 just gives Wu-Yang monopoles [40] with topological charges ±1: f(r) = fWY(r), while
the solution f(r) ≡ fPT = 0 corresponds to the naive unstable perturbation theory, involving the
asymptotic freedom formula [41].

11Meanwhile, as shown in Ref. [29], the vacuum “magnetic” field B corresponding to the vacuum
YM BPS monopole solutions ΦaBPS

i (x) diverges as 1/r2 at the origin of coordinates, and in this,
as the author of the present work recognizes, is a definite problem requiring a solution. Really, in
this ultraviolet region of the momentum space, gluons and quarks would be asymptotically free
[16, 41], but the 1/r2 behaviour of the vacuum “magnetic” field B hinder this.
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for the Higgs mass m and Higgs selfinteraction λ, respectively.

More exactly, this dependence of the vacuum BPS monopole solutions on the
effective Higgs mass m/

√
λ becomes dependent on the value ǫ introduced as [17, 25]

1

ǫ
≡ gm√

λ
/ = 0. (44)

Since the YM coupling constant g and Higgs selfinteraction constant λ are dimen-
sionless, ǫ has the dimension of distance. It may be treated as the effective size
of the vacuum BPS monopoles and proves to be inversely proportional to the spa-
tial volume V occupied by the (YM- Higgs) field configuration, as was shown in
Ref. [17, 25]

1

ǫ
=
gm√
λ
∼ g2 < B2 > V

4π
, (45)

with < B2 > being the vacuum expectation value of the “magnetic” field B set by
the Bogomol’nyi equation [12, 17, 25, 29, 30]

B = ±DΦ. (46)

Thus one can speak that the effective size ǫ of vacuum BPS monopoles is a function
of the distance r with the inversely proportional dependence

ǫ(r) ≡ f(r) ∼ O(r−3).

There is an important physical meaning of the effective size ǫ of the vacuum BPS
monopoles and the effective Higgs mass m/

√
λ. As follows from (45), the values are

some functions of the distance r, and this gives the possibility to utilize them as scale
parameters describing renormalization group (RG) properties of the Minkowskian
non-Abelian Higgs model (quantized by Dirac [3]). For instance, the effective Higgs

mass m/
√
λ may be treated as a Wegner mass [42, 43]. The possibility to apply

the Bogomol’nyi equation (46) for the Dirac fundamental quantization [3] of the
Minkowskian Higgs model was pointed out already in the paper [19].

In recent articles [17, 25, 28], the relation of the Bogomol’nyi equation (46) and
vacuum BPS monopole solutions with superfluid properties of the Minkowskian
Higgs model quantized by Dirac was noted (as we have pointed out above, such
superfluid properties of that model were assumed already in the paper [26]12). The
physical non-Abelian vacuum specified by YM and Higgs vacuum BPS monopoles is
described by the Bogomol’nyi equation (46) as a potential superfluid liquid similar
to the superfluid component in a liquid helium II specimen [27]13.

On the other hand, although manifest superfluid properties of the Minkowskian
Higgs model are proper only at utilizing BPS monopole solutions [12, 17, 25, 29, 30]

12This work summarized a series of results [44].
13More precisely, one can trace easily a transparent parallel between the vacuum “magnetic”

field B set by the Bogomol’nyi equation (46) and the velocity vs [45] of the superfluid motion in
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for describing the appropriate (physical) vacuum, the Bogomol’nyi equation (46)
is associated, indeed, with the FP “heuristic” quantization [7] of that model. As
it was demonstrated for instance in Ref. [12] (in §Φ11), the Bogomol’nyi equation
(46) can be derived without solving the YM Gauss law constraint (9), but only
evaluating the Bogomol’nyi bound [12, 17, 25]

Emin = 4πm
a

g
, a ≡ m√

λ
(47)

(where m is the magnetic charge) of the (YM-Higgs) field configuration involving
vacuum BPS monopole solutions taken in the BPS limit.

By applying the Dirac fundamental quantization scheme [3] to the Minkowskian
non-Abelian Higgs model implicating BPS monopole solutions, the potentiality
and superfluidity proper to the physical vacuum of that model are set [46] by the
Gribov ambiguity equation, coinciding mathematically with (22) (we have already
discussed this at the beginning of the present section). In this case, the relation
between the Bogomol’nyi equation (46) and the Gribov ambiguity equation (having
the form (22)) is accomplished via the Bianchi identity D B = 0.

In the papers [10, 17, 25, 39] the solution to the Gribov ambiguity equation was
found in the form of the so-called Gribov phase

Φ̂0(r) = −iπ τ
axa
r

fBPS01 (r), fBPS01 (r) =

[
1

tanh(r/ǫ)
− ǫ

r

]
. (48)

It is the U(1) → SU(2) isoscalar “made” of vacuum Higgs BPS monopole solutions.

This allowed to write down explicitly the Gribov topological multipliers
vT (n)(x), (33), through the Gribov phase (48)

vT (n)(x) = exp[nΦ̂0(x)]. (49)

Thus the immediate relation between the Dirac fundamental quantization [3] of the
Minkowskian non-Abelian Higgs model involving vacuum BPS monopole solutions
[17, 25] (this quantization comes to topological Dirac variables (7), G-invariant and
taking in the transverse gauge (8), as solutions to the YM Gauss law constraint (9)),
the Gribov ambiguity equation and the Bogomol’nyi equation (46) (responsible for
manifest superfluid properties of that model) was ascertained.

Additionally, the function fBPS01 (r) entering the expression for the Gribov phase
(48) has the spatial asymptotic

fBPS01 (r) → 1 as r → ∞,

a liquid helium II specimen

vs =
h̄

m
∇Φ(t, r),

withm being the mass of a helium atom and Φ(t, r) being the phase of the helium Bose condensate
wave function Ξ(t, r)

Ξ(t, r) =
√
n0(t, r) eiΦ(t,r),

where n0(t, r) is the number of particles in this helium Bose condensate.
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as shown in the paper [39].

Such spatial asymptotic [39] of fBPS01 (r), in a good agreement with the boundary
condition (36), should be imposed onto Gribov topological multipliers vT (n)(x) at
the spatial infinity in order to ensure the infrared topological confinement [24] of
topologically nontrivial multipliers vT (n)(x) with n /=0 in fermionic and gluonic
Green functions in all the orders of the perturbation theory.

B. Specific character of the Josephson effect in the Minkowskian non-Abelian
Higgs model.

In recent papers [10, 17, 23, 25, 39, 41], the following specific features of the
Josephson effect proceeding in the Minkowskian non-Abelian Higgs model quan-
tized by Dirac [3] were noted. As demonstrated in Ref. [23], the main manifestation
of the Josephson effect [31, 37] in the Minkowskian non-Abelian Higgs model quan-
tized by Dirac is the minimum vacuum “electric” field E never vanishing if θ /=0

(Eai )min = θ
αs
4π2ǫ

Bai ; −π ≤ θ ≤ π (50)

(with αs ≡ g2/4π).

Such minimum value of the vacuum “electric” field E corresponds to trivial
topologies k = 0, while generally [23],

F ai0 ≡ Eai = ċ(t) (Di(Φ
(0)
k ) Φ(0))

a = Pc
αs
4π2ǫ

Bai (Φ(0)) = (2πk + θ)
αs
4π2ǫ

Bai (Φ(0)).

(51)
This equation for the vacuum “electric” field E contains (topologically trivial) Higgs

vacuum BPS monopoles Φa(0), whereas the (covariant) derivative Da
i (Φ

(0)
k ) is taken

in the background of (topologically trivial) YM BPS monopoles Φ
a(0)
k .

In the papers [17, 25], vacuum “electric” fields E were referred to as vacuum
“electric” monopoles. Their actual form

F ai0 ≡ Eai = ċ(t)Dac
i (Φ

(0)
k )Φ(0)c(x), Eai ∼ Dac

i Zc (52)

was elucidated already in the work [26].

Herewith Eq. (51) [23] for vacuum “electric” monopoles (52) follows immediately
from the rotary Lagrangian (23) [10, 17, 19, 23, 25, 26, 39] recast into the action
functional [23]

Wcoop =

∫
d4x

1

2
(F c0i)

2 =

∫
dt
ċ2(t)I

2
, (53)

with

I =

∫

V

d3x(Dac
i (Φk)Φ(0)c)

2 =
4π2ǫ

αs
=

4π2

α2
s

1

V < B2 >
(54)
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being the rotary momentum of the Minkowskian (YM-Higgs) vacuum. Since actu-
ally [31, 34]

αs =
g2

4π(h̄c)2
,

it becomes obvious that the rotary momentum I and, therefore, the action func-
tional (53), prove to be directly proportional to the Planch constant squared h̄2.
Thus, in the (semi)classical limit h̄→ 0, collective rotations of the discussed phys-
ical BPS monopole vacuum disapear, as it was already noted.

One obtains directly from (53) that

Pc ≡
∂Wcoop

∂ċ
= ċI = 2πk + θ. (55)

This confirms the general Eq. (24) assumed in [26] for the Minkowskian non-Abelian
Higgs theory quantized by Dirac [3] (now in the concrete case of vacuum BPS
monopole solutions). In other words, vacuum BPS monopole solutions involve the
purely real energy-momentum spectrum of collective rotations associated with the
topological dynamical variable c(t).

The important point of Eq. (54) [23] for the rotary momentum I of the
Minkowskian (YM-Higgs) vacuum is its direct proportionality to the effective BPS
monopole size ǫ, (45). Thus the contribution of the collective (YM-Higgs) vacuum
rotations in the total action of the Minkowskian (Gauss-shell) non-Abelian Higgs
theory quantized by Dirac is suppressed in the infinite spatial volume limit V → ∞.
On the other hand, the presence in (54) of the vacuum expectation value < B2 >
for the “magnetic” field B is the direct trace of the vacuum BPS monopole solutions
associated with the Bogomol’nyi equation (46).

As noted in Ref. [23], the minimum never vanishing (until θ /=0) vacuum “elec-
tric” field Emin (50), and the (constraint-shell) action functional Wcoop (53), de-
scribing the collective rotations of the physical Minkowskian (YM-Higgs) vacuum,
are a specific display of the general Josephson effect [31] in the Minkowskian non-
Abelian Higgs model quantized by Dirac. This effect now comes to the “persistent
field motion” around the “cylinder” of the effective diameter ∼ ǫ, (45). Moreover,
repeating the arguments [31] regarding the Josephson effect, it was shown in [23]
that

Ψc(c+ 1) = eiθΨc(c). (56)

This equation reflects the periodicity condition that should be imposed onto the
wave function Ψc of the physical Minkowskian (YM-Higgs) vacuum at shifts of the
topological dynamical variable c(t) on integers n ∈ Z

c(t) → c(t) + n.

Herewith the quantum-mechanical meaning of Eq. (56) is quite transparent: equal
probabilities to detect different topologies in the Minkowskian (YM-Higgs) vacuum
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quantized by Dirac [3]. Then the purely real energy-momentum spectrum (55), (24)
of the mechanical rotator (53) can be read also from the periodicity constraint (56).
Thus the field theoretical analogy of the Josephson effect [31] was obtained in [23]
for the Minkowskian Gauss-shell non-Abelian Higgs theory quantized by Dirac [3].

Coleman et al. [47] were the first who guessed an effect similar to (50) in
QED(1+1), but from a classical point of view.

The quantum treatment of the Josephson effect in (Minkowskian) QED(1+1)

was discussed in the papers [31, 48, 49],14 and we recommend our readers Refs.
[31, 48, 49] for a detailed study of the topic “Minkowskian QED(1+1)”.

The explicit expressions for the rotary momentum I and the momentum Pc
proper to the physical (YM-Higgs) vacuum quantized by Dirac [3] obtained in the
recent papers [10, 17, 23, 25, 39] allowed to derive, in Refs. [17, 25], the form of the
vacuum (Bose condensation) Hamiltonian Hcond written down over the YM Gauss
law constraint (9) surface

Hcond =
2π

g2ǫ
[P 2
c (

g2

8π2
)2 + 1]. (57)

This Hamiltonian contains the “electric” and “magnetic” contributions.

The “electric” contribution to the constraint-shell Bose condensation Hamilto-
nian (57) [17, 25] is determined by the rotary action functional (53) (associated
with vacuum “electric” monopoles (51) – (52)), while the “magnetic” contribution
in this Hamiltonian is [23]

1

2

∞∫

ǫ

d3x[Bai (Φk)]
2 ≡ 1

2
V < B2 >=

1

2αs

∞∫

ǫ

dr

r2
∼ 1

2

1

αsǫ
= 2π

gm

g2
√
λ
=

2π

g2ǫ
. (58)

14In particular, it was demonstrated in Ref. [48] that the Josephson effect in (Minkowskian)

QED(1+1) comes to circular motions of topologically degenerated gauge fields A
(n)
1 (x, t) around

the circle S1 of the infinite radius. Herewith such closed trajectories of infinite radii are the result
identifying [48] points

A
(n)
1 (x, t) = exp(iΛ(n)(x))(A1(x, t) + i

∂1

e
) exp(−iΛ(n)(x)), n ∈ Z,

in the QED(1+1) configuration space {A1(x, t)} at the spatial infinity. Here Λ(n)(x) are U(1)

gauge matrices possessing the spatial asymptotic [31, 48]

Λ(n)(x) = h̄ 2πn
x

±R

(with R standing for the spatial infinity). The immediate manifestation of the Josephson effect in
QED (1+1) [48, 49], involving identifying points, at the spatial infinity, in the field configuration

{A1(x, t)}, is the existence of the vacuum electric field

G10 = ċ(t)
2π

e
= e(

θ

2π
+ k),

that again never vanishes until θ /=0 (this equation was derived by Coleman et al. [47])
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This “magnetic” contribution is associated with the Bogomol’nyi equation (46).

The remarkable feature of the constraint-shell Bose condensation Hamiltonian
(57) is its manifest Poincaré (in particular, CP) invariance stipulated by the topo-
logically momentum squared, P 2

c , entering this Hamiltonian.

This result for the Bose condensation Hamiltonian (57) in the Minkowskian
non-Abelian Higgs model quantized by Dirac [3] is an alternative to the so-called θ-
term [16] arising in the effective Lagrangian of the Euclidian instanton non-Abelian
theory [35],

Leff = L+
g2θ

16π2
tr (F aµν F̃

µν). (59)

This effective Lagrangian of the Euclidian instanton non-Abelian theory [35] is di-
rectly proportional to the pseudomentum θ, and this determines the Poincaré (CP)
covariance of the Euclidian instanton non-Abelian theory, worsening its renormal-
ization properties.

This Poincaré (CP) covariance of the Euclidian instanton effective Lagrangian
(59) [16] is the essence of the instanton CP-problem, and may be avoided in the
Minkowskian non-Abelian Higgs model quantized by Dirac (as we see this with the
example of the Poincaré invariant Bose condensation Hamiltonian (57) [17, 25] of
that model.

Generally speaking, the manifestly Poincaré invariance of the constraint-shell
vacuum Hamiltonian (57) in the Minkowskian non-Abelian Higgs model quantized
by Dirac [3] is somewhat a paradoxical thing in the light of the S (relativistic)
covariance [10] (11), (12) of topological Dirac variables (7).

Indeed, the manifest Poincaré invariance of the constraint-shell vacuum Hamil-
tonian (57) is due absorbing [16] Gribov topological multipliers vT (n)(x) in the
G-invariant YM tension tensor squared (F aµν)

2.

C. Rising “golden section” potential of the instantaneous interaction.

As demonstrated in Refs. [10, 17, 23, 25, 39], in the YM BPS monopole back-
ground (turning into the Wu-Yang monopole background [40] at the spatial infin-
ity), the Green function Gab(x,y) entering the “potential” term (28) [38, 39] in the
constraint-shell Hamiltonian of the Minkowskian non-Abelian Higgs model (quan-
tized by Dirac [3]) may be decomposed into the complete set of orthogonal vectors
in the colours space

Gab(x,y) = [na(x)nb(y)V0(z) +
∑

α=1,2

eaα(x)e
bα(y)V1(z)]; (z = |x− y|). (60)

This equation involves two instantaneous interaction potentials: V0(z) and V1(z).

The first of the potentials, V0(z), proves to be the Coulomb-type potential

V0(|x− y|) = −1/4π |x− y|−1 + c0, (61)
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where c0 is a constant.

The second potential, V1(z), is the so-called “golden section” potential

V1(|x− y|) = −d1|x− y|−1.618 + c1|x− y|0.618, (62)

involving constants d1 and c1
15.

The “golden section” potential (62) (unlike the Coulomb potential, (61)) implies
the rearrangement of the naive perturbation series and the spontaneous breakdown
of the chiral symmetry. In turn, this involves the constituent gluonic mass in the
Feynman diagrams: this mass changes the asymptotic freedom formula [41] in the
region of low transferred momenta. Thus the coupling constant αQCD(q

2 ∼ 0)
becomes finite. The “golden section” potential (62) can be also considered as an
origin of “hadronization” of quarks and gluons in QCD [10, 38, 50, 51].

D. Solving the U(1)-problem.

The Dirac fundamental quantization [3] of the Minkowskian non-Abelian Higgs
model may be adapted to solving the U(1)-problem, i.e. finding the η′-meson mass
near to modern experimental data16.

As demonstrated in recent papers [10, 17, 23, 25, 39], the way to solve the
U(1)-problem in the Minkowskian non-Abelian Higgs model quantized by Dirac is
associated with the manifest rotary properties of the appropriate physical vacuum
involving YM and Higgs BPS monopole solutions. The principal result obtained
in the works [10, 17, 23, 25, 39] regarding the solving of the U(1)-problem in the
Minkowskian non-Abelian Higgs model quantized by Dirac is the following.

The η′-meson mass mη′ proves to be inversely proportional to
√
I, where the

rotary momentum I of the physical Minkowskian (YM-Higgs) vacuum is given by
Eq. (54) [23]

mη′ ∼ 1/
√
I.

More precisely,

m2
η′ ∼

C2
η

IV
=
N2
f

F 2
π

α2
s < B2 >

2π3
, (63)

involving a constant Cη = (Nf/Fπ)
√

2/π, where Fπ is the pionic decay constant
and Nf the number of flavours in the considered Minkowskian non-Abelian Higgs
model.

15Specifying constants d1, c0 and c1, entering the potentials V1 and V0, respectively, is, indeed,
a very important thing. These constants can depend, for instance, on a flavours mass scale mf

or the temperature T of surroundings about the system of quantum fields that the investigated
Minkowskian non-Abelian Higgs model includes. The author is grateful personally to Prof. D.
Ebert who has drawn his attention to the necessity to select correctly constants entering ex-
pressions for instantaneous interaction potentials (this was during L. L. visit of Alexander von
Humboldt University Berlin in August 2002).

16New experimental data for the η′-meson mass give mη′ ∼ 957, 57 MeV (see, e.g. the reference

book [52]).
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The explicit value (54) of the rotary momentum I of the physical Minkowskian
(YM-Higgs) vacuum was substituted in this equation for the η′-meson mass mη′ .
The result (63) for the η′-meson mass mη′ is given in Refs. [10, 17, 23, 25, 39] for
the Minkowskian non-Abelian Higgs model quantized by Dirac [3] and implemented
vacuum BPS monopole solutions allow to estimate the vacuum expectation value
of the appropriate “magnetic” field B (specified in that case via the Bogomol’nyi
equation (46))

< B2 >=
2π3F 2

πmη
2

N2
fα

2
s

(64)

by using estimated αs(q
2 ∼ 0) ∼ 0.24 [23, 50].

One can assert analysing the results obtained in Refs. [10, 17, 23, 25, 39] con-
cerning the η′-meson mass and estimating the vacuum “magnetic” field B with
< B2 > /=0, that going over to the Dirac fundamental quantization scheme [3]
from the “heuristic” one [7] when considering the Minkowskian non-Abelian Higgs
model is quite justified by the realistic results near to the new experimental data
(see, for instance, [52]).

In particular, the crucial role of the collective solid rotations (53), (54) [23]
inside the physical Minkowskian (YM-Higgs) vacuum (they are a direct display
of the Dirac fundamental quantization [3] of the Minkowskian non-Abelian Higgs
theory) in Eq. (63) for the η′-meson mass and Eq. (64) for < B2 > is highly
transparent and impressing17.

17It is worth to recall here two alternative “answers” to the question about the mass of the
η′-meson that were given based on the Euclidian non-Abelian theory [35] involving instantons.

It is, firstly, the “massless variant” given in the paper [53]. This variant was associated with
maintaining the θ-angle dependence in the effective Lagrangian Leff [16], (59), in the Euclidian
non-Abelian instanton QCD. In this case, the θ-angle is covariant under chiral rotations [16]

θ → θ′ = eiαQ5θ

(involving the axial charge Q5 = ψγ0γ5ψ̄ and an arbitrary parameter α), and small oscillations
around the given θ-angle correspond to a massless and unphysical fermion implying the Kogut-
Suskind pole [53] in the appropriate propagator. The diametrically opposite answer, in comparison
with [53], to the question about the mass of the η′-meson was given in the paper [54], resting on
the analysis of planar diagrams for the strong interaction, in turn worked out in the paper [55],
and the ABJ-anomalies theory [16, 56].

The principal idea of the work [54] was deleting the θ-angle dependence from the effective QCD
Lagrangian in the Euclidian non-Abelian instanton theory [35].

As a result, the nonzero mass of the η′-meson was obtained in the work [54]. This was one of
early approaches to solving the U(1)-problem in which arguments in favour of the mesonic mass
were given.

Unfortunately, general shortcomings of the Euclidian non-Abelian instanton theory [35] (for
instance, the purely imaginary energy-momentum spectrum PN [19, 26, 33, 34], (25), at the zero
eigenvalue ǫ = 0 of the θ-vacuum energy) turn the Euclidian methods [53, 54] to specify the
η′-meson mass into little effective ones. This forced to search for other ways to construct mesonic
bound states than the ones [53, 54] proposed in the Euclidian non-Abelian theory [35].

In Refs. [10, 17, 23, 25, 39], just such “another way” to solve the U(1)-problem, based on the
Minkowskian non-Abelian Higgs model quantized by Dirac [3] and involving the vacuum BPS
monopole solutions was proposed.
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E. Fermionic rotary degrees of freedom in the Wu-Yang monopole background.

A good analysis of the question about the place of fermionic (quark) degrees of
freedom in the Minkowskian non-Abelian Higgs model quantized by Dirac [3] was
made in the recent papers [23, 39].

For instance, as we have seen above, G-invariant fermionic currents [10]

jIaµ = gψ̄I(λa/2)γµψ
I , (65)

belonging (as defined in Ref. [39]) to the excitation spectrum over the physical
Minkowskian (YM-Higgs) vacuum involving the vacuum BPS monopole solutions,
enter total G-invariant currents (29) [39], satisfying the Gauss law constraint (31)
[17, 39].

New interesting properties acquire fermionic (quark) degrees of freedom ψI , ψ̄I

in Minkowskian constraint-shell QCD involving the spontaneous breakdown of the
initial SU(3)col gauge symmetry in the

SU(3)col → SU(2)col → U(1) (66)

way. Actually, such Minkowskian constraint-shell QCD is the particular case of the
Minkowskian non-Abelian Higgs models quantized by Dirac [3].

The only specific of Minkowskian constraint-shell QCD (in comparison with
the constraint-shell Minkowskian (YM-Higgs) theory) is the presence of three
Gell-Mann matrices λa, generators of SU(2)col (just these matrices would en-
ter G-invariant quark currents jIaµ in Minkowskian constraint-shell QCD). In the
constraint-shell Minkowskian (YM-Higgs) theory, involving the initial SU(2) gauge
symmetry, the Pauli matrices τa (a = 1, 2, 3) would replace the Gell-Mann λa ones.

The very interesting situation, implying many important consequences, takes
place to be in Minkowskian constraint-shell QCD involving the spontaneous break-
down (66) of the initial SU(3)col gauge symmetry when the antisymmetric Gell-
Mann matrices

λ2, λ5, λ7 (67)

are chosen to be the generators of the SU(2)col subgroup in (66), as it was done in
Refs. [10, 23, 39].

As demonstrated in Ref. [23], the “magnetic” vacuum field Bia(Φi) correspond-
ing to Wu-Yang monopoles Φi [40] acquires the form

bai =
1

g
ǫiak

nk(Ω)

r
; nk(Ω) =

xlΩlk
r

, nk(Ω)n
k(Ω) = 1; (68)

in terms of the antisymmetric Gell-Mann matrices λ2, λ5, λ7, (67), with Ωlk being
an orthogonal matrix in the colour space.
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For the “antisymmetric” choice (67), we have

bi ≡
g

2i
biaτ

a = g
b1iλ

2 + b2iλ
5 + b3iλ

7

2i
; bai =

ǫaiknk

gr
(τ1 ≡ λ2, τ2 ≡ λ5, τ3 ≡ λ7).

(69)

On the other hand, the important task that Minkowskian constraint-shell QCD
is called to solve is getting spectra of mesonic and baryonic bound states. As we
have noted in Section 2, the presence of such hadronic bound states in a gauge
model violates the gauge equivalence theorem [8, 9, 19]. As in the case of collective
vacuum excitations, this implies the identity (13), involving spurious Feynman
diagrams (SD).

A detailed analysis how to apply the Dirac fundamental quantization method
[3] to constructing hadronic bound states was performed in the papers [57, 58],
and then such analysis was repeated in Ref. [10]. The base of the approach to
constructing hadronic bound states that was proposed in [10, 57, 58] is the so-called
Markov-Yukawa prescription [59], the essence of which is [10, 59] in separating
absolute, Xµ = (x + y)µ/2 and relative, zµ = (x − y)µ, coordinates, involving
treatment of (mesonic) bound states as bilocal fields

M(x, y) = eiMX0ψ(zi)δ(z0). (70)

The important feature of such bilocal fields is observing two particles (say, same
quark q and antiquark q̄) as a bound state at one and the same time.

This principle of the simultaneity has more profound mathematical meaning
[10, 51] as the constraint of irreducible nonlocal representations of the Poincaré
group for arbitrary bilocal field M(x, y) ≡ M(z|X) is

zµ
∂

∂Xµ
M(z|X) = 0, M(z|X) ≡ M(x, y). (71)

This constraint is not connected with the dynamics of interaction and the Eddington
simultaneity18.

Thus the constraint (71) results in the choice of the bound state relative coor-
dinates zµ to be orthogonal to its total momentum Pµ ≡ −i ∂

∂Xµ

(z⊥)µ = zµ − Pµ
(P · z
P2

)
. (72)

Moreover, at the point of the forming of the bound state with a definite total
momentum Pµ, it is possible to choose the time axis ηµ = (1, 0, 0, 0) to be parallel
to its total momentum, ηµ ∼ Pµ.

Therefore, [10]

ηµM(z|X) ∼ PAµM(z|X) =
1

i

∂

∂Xµ
M(X|z). (73)

18“A proton yesterday and electron today do not make an atom” [60].

FIZIKA B 18 (2009) 3, 99–140 127



lantsman: Dirac fundamental quantization of gauge theories is the natural . . .

In the rest reference frame ηµ chosen in the (73) way, the instantaneous interaction
between particles forming the given bilocal bound state M(X|z) takes the form
[10]

WI =

∫
d4xd4y

1

2
jDη (x)VI(z

⊥)jDη (y)δ(η · z). (74)

This equation involves manifestly G-invariant and S-covariant fermionic currents

jDη = eψ̄D/ηψD; /η ≡ ηµγ
µ

(attached to the rest reference frame ηµ chosen in the (73) way and implicating
fermionic Dirac variables ψD, ψ̄D). VI(z

⊥) is the instantaneous interaction potential
between the particles forming the bilocal bound state M(X|z). The manifest S-
covariance of the constraint-shell action functional (74) follows immediately from
the transformation law (12) [10] for fermionic Dirac variables ψD, ψ̄D.

Incidentally, note that upon extracting G-invariant fermionic currents jaIµ (65)
from the total ones [39] (29), it is possible to write down the constraint-shell ac-
tion functional of the (74) type for the Minkowskian Higgs model with vacuum
BPS monopole solutions describing the instantaneous interaction between these
fermionic currents, attached to the rest reference frame ηµ (73) and involving the
Green function Gab(x,y) of the Gauss law constraint (31) [17, 25, 39]. It may,
in turn, be decomposed in the (60) way, implicating the Coulomb type potential
V0(z), (61), and the “golden section” one, V1(z), (62).

In the papers [10, 57, 58], the algorithm is given for the derivation of
mesonic bound-state spectra utilizing the Markov-Yukawa prescription [59], as
outlined above. Omitting details of this algorithm and referring our readers to
Ref. [10, 57, 58] (with the literature cited therein) for the detailed acquaintance
with the question, now note that the important step of this algorithm is solving of
the Dirac equation for a fermion (quark) in the BPS (Wu-Yang) monopole back-
ground.

For the spontaneous breakdown of the initial SU(3)col gauge symmetry in the
(66) way, involving antisymmetric Gell-Mann matrices λ2, λ5, λ7 as generators
of the “intermediate” SU(2)col gauge symmetry, this BPS (Wu-Yang) monopole
background takes the form (68) [23]. To write down the Dirac equation for a quark
in the BPS (Wu-Yang) monopole background, note that each fermionic (quark)
field may be decomposed by the complete set of the generators of the Lee group
SU(2)col (i.e. λ2, λ5, λ7 in the considered case) completed by the unit matrix 1 [16].
This involves the following decomposition [23] of a quark field by the antisymmetric
Gell-Mann matrices λ2, λ5, λ7

ψα,β± = s±δ
α,β + vj±τ

α,β
j , (75)

involving some SU(2)col isoscalar, s± and isovector, v±, amplitudes. +,− are spinor
indices, α, β are SU(2)col group space indices and

(λ2, λ5, λ7) ≡ (τ1, τ2, τ3).

128 FIZIKA B 18 (2009) 3, 99–140



lantsman: Dirac fundamental quantization of gauge theories is the natural . . .

The mix of group and spinor indices generated by Eqs. (68), (69) for the BPS (Wu-
Yang) monopole background allows then to derive, utilising the decomposition (75),
of the system of differential equations in partial derivatives [23]

(∓qo +m)s∓∓i(∂a +
na
r
)va± = 0; (76)

(∓qo +m)va∓∓i(∂a − na

r
)s± − iǫjab∂jv

b
± = 0 (77)

(implicating the mass m of a quark and its complete energy q0), mathematically
equivalent to the Dirac equation

iγ0∂0ψ + γj [i∂jψ +
1

2r
τaǫ

ajlnlψ]−mψ = 0 (78)

for a quark in the BPS (Wu-Yang) monopole background.

The decomposition (75) [23] of a quark field implies [61] that vj±τ
α,β
j is a three-

dimensional axial vector in the colour space. Thus the spinor (quark) field ψα,β± is
transformed, with the “antisymmetric” choice λ2, λ5, λ7, by the reducible represen-
tation of the SU(2)col group that is the direct sum of the identical representation
1 and three-dimensional axial vector representation, we denote as 3ax.

A new situation, in comparison with the usual SU(3)col theory in the Euclidian
space E4 [16], arises in this case. That theory was worked out by Greenberg [62] Han
and Nambu [63, 64]; its goal was getting the hadronic wave functions (describing
bound quark states) with the correct spin-statistic connection. To achieve this, the
irreducible colour triplet (i.e. three additional degrees of freedom of quark colours,
forming the polar vector in the SU(3)col group space), was introduced. It was
postulated that only colour singlets are physically observable states. So the task of
the colours confinement was outlined.

The transition to the Minkowski space in Minkowskian constraint-shell QCD
quantized by Dirac [3] and involving the (66) breakdown of the SU(3)col gauge
symmetry, the antisymmetric Gell-Mann matrices λ2, λ5, λ7 and BPS (Wu-Yang)
physical background, allows to introduce the new, reducible, representation of the
SU(2)col group with axial colour vector and colour scalar.

In this situation, the question about the physical meaning of the axial colour

vector vj±τ
α,β
j is posed.

For instance, it may be assumed that the axial colour vector vj±τ
α,β
j has the

form v1 = r × K, where K is the polar colour vector (SU(2)col triplet). These
quark rotary degrees of freedom correspond to rotations of fermions together with
the gluonic BPS monopole vacuum described by the free rotator action (53) [23].
It is induced by vacuum “electric” monopoles (52). These vacuum “electric” fields
are, apparently, the cause of the above fermionic rotary degrees of freedom (similar
to rotary singlet terms in two-atomic molecules; see e.g. §82 in [65])19.

19A good analysis of the Dirac system (76), (77) for isospinor fermionic fields (in the YM
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More exactly, repeating the arguments of Ref. [31], one can “nominate the
candidature” for the “interference term”

∼ ZajIa0 (79)

in the constraint-shell Lagrangian density of Minkowskian QCD quantized by Dirac
[3] between the zero mode solution Za to the Gauss law constraint (9) (involving
vacuum “electric” monopoles (52), generating the rotary action functional Wcoop,
(53), for the physical Minkowskian non-Abelian BPS monopole vacuum) and the
G-invariant quark current jIa0 [10] (65) belonging to the excitation spectrum over
this physical vacuum, as the source of fermionic rotary degrees of freedom v1.

The appearance of fermionic rotary degrees of freedom v1 in Minkowskian
constraint-shell QCD alone, quantized by Dirac [3], confirms indirectly the exis-
tence of the BPS monopole background in that model (coming to the Wu-Yang
one [40] at the spatial infinity). These fermionic rotary degrees of freedom testify
in favour of nontrivial topological collective vacuum dynamics proper to the Dirac
fundamental quantization [3] of Minkowskian constraint-shell QCD (the vacuum
dynamics as described above).

4. Discussion

First of all note that the experimental detection of fermionic rotary degrees of
freedom v1, as well as the “golden section” instantaneous interaction potential V1(z)
(62) between quarks, can be a good confirmation of the Dirac fundamental quanti-
zation [3] of Minkowskian constraint-shell QCD involving physical BPS monopole
vacuum possessing manifest superfluidity and various rotary effects. This should
be equally valid as the results obtained in Refs. [10, 17, 23, 25, 39] concerning the
η′-meson mass mη′ (63).

The “theoretical plan” for further development of the Minkowskian Higgs model
quantized by Dirac [3] may be associated, in the first place, with the following
assumption called for to explain the nontrivial topological collective vacuum dy-
namics inherent in that model. This is the assumption about the “discrete group
geometry” for the initial (say, SU(2)) and residual (say, U(1)) gauge groups in the
Minkowskian Higgs model [67]. That assumption was made already in the work [26],
where it was demonstrated that a gauge group G, involving (smooth) stationary
transformations, say

A′
µ(x, t) = v−1(x)Aµ(x, t)v(x) + v(x)∂µv

−1(x), (80)

may always be factorised in the “discrete” way as

G ≃ G0 ⊗ Z ≡ G̃; Z = G/G0. (81)

theory) in the background field of a (BPS, Wu-Yang) monopole was carried out in the work [66].
In that work was also obtained the Dirac system alike (76), (77) [23], and also, by means of the
decomposition of a fermionic field by the SU(2) generators, the Pauli matrices.
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Note that, in definition π1(G0) = 0, i.e. G0 is [12] the one-connected and topologi-

cally trivial component in the generic G̃ gauge group factorised in the (81) way.

Moreover, G0 is the maximal connected component in G (in the terminology
§§ T17, T20 in [12]): π0(G0) = 0.

That implies [12]

π0[G0 ⊗ Z] = π0(Z) = Z.

This relation indicates transparently the discrete nature of the G̃ group space.

More exactly, the G̃ group space consists of different topological sectors (each
with its proper topological number n ∈ Z), separated by domain walls. Addition-
ally, the factorisation (81) reflects the essence of Gribov topological “copying” [13]
of “small” gauge transformations.

On the other hand, since (81) is only an isomorphism, there is a definite free-
dom in assuming that the gauge group G possesses a “continuous” or “discrete”
geometry. In particular, in the Euclidian non-Abelian model [35] involving instan-
tons, the “continuous” geometry should be assumed for the SU(2) group space. It
is associated with the absence of any nonzero mass scale in this model. The thing
is that domain walls between different topological sectors would become infinitely
wide in this case.

Generally speaking, the width of a domain wall is roughly proportional to the
inverse of the lowest mass of all physical particles being present in the (gauge) model
considered [68]. Thus domain walls are really infinite in the Euclidian instanton
model [35]. In this case, any transitions [16] are impossible between vacua (say,
|n > and |n+ 1 >) with different topological numbers since the latter ones belong
to topological domains separated by infinitely wide walls.

In principle, a different situation is in the Minkowskian Higgs model quantized
by Dirac [3] and involving vacuum gauge and Higgs BPS monopole solutions. In this
model, a natural mass scale may be introduced. For instance, the effective Higgs
mass m/

√
λ may be treated as a mass scale, depending indeed on the distance r

via Eq. (45) (because V ∼ r3). This creates objective prerequisites for utilizing

the “discrete” representations of the G̃ type [26] (81) for the initial, SU(2), and
residual, U(1), gauge symmetry groups in the Minkowskian Higgs model quantized
by Dirac [67]

S̃U(2) ≃ G0 ⊗ Z; Ũ(1) ≃ U0 ⊗ Z, (82)

respectively.

As a result, the degeneration space (vacuum manifold)

RYM ≡ SU(2)/U(1)

in this Minkowskian Higgs model acquires the “discrete” form

RYM = Z⊗G0/U0. (83)
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Obviously, RYM is the discrete space consisting of topological domains separated
by domain walls.

If the Minkowskian Higgs model quantized by Dirac [3] involves vacuum gauge
and Higgs BPS monopole solutions, it is quite naturally to suppose that the typical
width of such domain walls is ǫ(r), with ǫ(r) ∼ (m/

√
λ)−1(r) given by Eq. (45).

From Eq. (45) it can be concluded [67] that ǫ disappears in the infinite spatial
volume limit V → ∞, while it is maximal at the origin of the coordinates (it
can be set ǫ(0) → ∞). This means, due to the reasoning [68], that walls between
topological domains inside RYM become infinitely wide, O(ǫ(0)) → ∞, at the
origin of coordinates. The fact ǫ(∞) → 0 is also meaningful. This implies actual
merging of topological domains inside the vacuum manifold RYM (83) at the spatial
infinity. This merging of topological domains promotes the infrared topological
confinement (destructive interference) of Gribov “large” multipliers vT (n)(x) in
gluonic and quark Green functions in all orders of the perturbation theory (in the
spirit of Ref. [24]). On the other hand, it becomes obvious that the effective Higgs

mass m/
√
Λ (as the value inversely proportional to ǫ) can be treated as a Wegner

variable, disappearing in the ultraviolet fixed point (i.e. at the origin of coordinates)
[42].

It may be demonstrated that the vacuum manifold RYM in the Minkowskian
Higgs model quantized by Dirac [3] in its “discrete” representation (83) possesses
three kinds of topological defects. The first kind of topological defects are domain
walls between different topological sectors of that Minkowskian Higgs model, us
discussed above. The criterion of domain walls existing in a (gauge) model is a
nonzero (for example, infinite) number π0 of connection components in the appro-
priate degeneration space. In particular,

π0(RYM ) = Z

because of (82).

The next kind of topological defects inside the discrete YM vacuum manifold
RYM are point hedgehog topological defects. This type of topological defects comes
to the vacuum “magnetic” field B, generated by the Bogomol’myi equation (46),
singular at the origin of coordinates, as shown in Ref. [29]. Actually, |B| ∼ O(r−2).
From the topological viewpoint, the criterion for point (hedgehog) topological de-
fects to exist in a (gauge) theory is the nontrivial group π2 of two-dimensional ways
for the appropriate degeneration space (vacuum manifold).

Moreover, denoting by G the initial gauge symmetry group in the considered
model and by H the residual one (then R = G/H will be the vacuum manifold in
that model), it may be proved [12] that always

π2R = π1H

(with π1H being the fundamental group of one-dimensional ways in H), and if
π1H /=0, point (hedgehog) topological defects exist in a (gauge) theory [12].
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In particular, the topological relation

π2(RYM ) = π1Ũ(1) = Z (84)

is the criterion for point (hedgehog) topological defects in the Minkowskian Higgs
model quantized by Dirac [3].

Geometrically, point topological defects are concentrated in a coordinate region
topologically equivalent to a two-sphere S2 (in particular, point hedgehog topo-
logical defects are always concentrated in a two-sphere with its centre lying in the
origin of coordinates). Just in such coordinate regions, the thermodynamic equilib-
rium (at a Curie point Tc in which the appropriate second-order phase transition
occurs) corresponding to the minimum of the action functional set over the vacuum
manifold R in a (gauge) model, is violated [12]. This violation involves singularities
in order parameters. An example of such singularities order parameters found in
(gauge) models with point topological defects is the O(r−2) behaviour [29] of the
vacuum “magnetic” field B in the Minkowskian Higgs model involving vacuum BPS
monopole solutions.

In conclusion, the vacuum manifold RYM contains a third kind of topological
defects, the thread topological defects. The criterion for the existence of thread
topological defects in a (gauge) theory is the topological relation [12]

π1R = π0H /=0. (85)

In particular,

π1(RYM ) = π0 Ũ(1) = Z. (86)

Thus thread topological defects exist in the Minkowskian Higgs model quantized
by Dirac [3] (implicating vacuum BPS monopole solutions) in which the “discrete”
vacuum geometry (83) is assumed.

Geometrically, thread topological defects cause violation of the thermodynamic
equilibrium along definite lines (for instance, rectilinear ones) in the given vacuum
manifold. It may be demonstrated, repeating the arguments of Ref. [12], that thread
topological defects possess the manifest S1 topology (for instance, for “rectilinear”
thread topological defects it is highly transparent).

Point (hedgehog) topological defects are always present in the Minkowskian
Higgs model involving vacuum monopole solutions, irrespectively to the way in
which the model is quantized: either this is the FP “heuristic” quantization scheme
[7] or the Dirac fundamental one [3].

Besides the BPS monopoles [12, 29, 30] and Wu-Yang ones [40], granted a
great attention in the present study, ’t Hooft-Polyakov monopoles [69, 70] are
also the very important kind of monopole solutions with which modern theoretical
physics deals. Indeed, the analysed Minkowskian Higgs models involving vacuum
monopole solutions and point (hedgehog) topological defects associated with these
vacuum monopole solutions confine themselves within the FP “heuristic” quanti-
zation scheme [7].
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On the other hand, it is sufficient to assume the “continuous”, ∼ S2, vacuum
geometry in the Minkowskian Higgs models [12, 29, 30, 40, 69, 70] with monopoles
in order to quantize them in the “heuristic” [7] way. We have already discussed
this with the example of vacuum BPS monopole solutions [12, 29, 30] in which
the Bogomol’nyi equation (46) and the Bogomol’nyi bound Emin (47) were derived
[12, 28] just assuming the continuous

SU(2)/U(1) ∼ S2

vacuum geometry and herewith without solving the YM Gauss law constraint (9)20.

In the analysed Minkowskian Higgs models [12, 29, 30, 40, 69, 70] with
monopoles, there is no nontrivial (topological) dynamics, since the physical content
of the models is determined by stationary vacuum monopole solutions. Addition-
ally, all “electric” tensions in the enumerated Minkowskian Higgs models are set
identically in zero: F a0i ≡ 0. Thus assuming the “continuous”, ∼ S2, vacuum ge-
ometry in the Minkowskian Higgs models [12, 29, 30, 40, 69, 70] with stationary
vacuum (Higgs and YM) monopole solutions (setting additionally to zero of all
“electric” tensions) ensures the lawfulness of the “heuristic” [7] quantization of the
models21.

Unlike the above discussed case, to justify the Dirac fundamental quantization
[3] of the Minkowskian Higgs model, involving the collective vacuum rotations (53)
[39], the “discrete” vacuum geometry of the (83) type should be supposed. More
precisely, if the thread “rectilinear” topological defects are contained inside the
vacuum manifold RYM (83), this can explain the discrete vacuum rotary effect (53)
occurring in the Minkowskian Higgs model quantized by Dirac. Just such rectilinear
lines inside the vacuum manifold RYM (that are, geometrically, cylinders of effective
diameters ∼ ǫ), localized around the axis z of the chosen (rest) reference frame [68],
are associated with the Josephson effect [31] in the Minkowskian Higgs model.

As we have ascertained above, the Josephson effect comes therein [23] to the
“persistent field motion” around the above described rectilinear lines, with all en-
suing physical consequences, including the real spectrum (55) of the appropriate
topological momentum Pc, the never-vanishing (until θ /=0) vacuum “electric” field
(Eai )min [23], (50), and the manifestly Poincaré invariant constraint-shell Hamilto-
nian Hcond [17, 25] (57) of the Bose condensation.

Investigating the Dirac fundamental quantization [3] of the Minkowskian Higgs
model is not finished at present. So recently, in Ref. [67], it was demonstrated that

20Indeed, as it was explained in Refs. [17, 25, 46], the Bogomol’nyi equation (46) is compat-
ible with the Dirac fundamental quantization [3] of the Minkowskian Higgs model with BPS
monopoles. As discussed above, this connection between the Bogomol’nyi equation (46) and the
Dirac fundamental quantization of the Minkowskian Higgs model is given via the Gribov ambigu-
ity equation (having the form (22), to which the Bogomol’nyi equation (46) comes mathematically
because of the Bianchi identity DB = 0.

21For instance [28], one can fix the Weyl gauge A0 = 0 for temporal YM components in
appropriate FP path integrals. This just results in F 0

0i ∼ 0 if one deals with stationary monopole

solutions in the analysed Minkowskian (Higgs) models
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the first-order phase transition occurs in the constraint-shell Minkowskian Higgs
model quantized by Dirac and involving vacuum BPS monopole solutions.

This first-order phase transition supplements the second-order one always tak-
ing place in the Minkowskian Higgs model and associated with the spontaneous
breakdown of the initial gauge symmetry. The essence of the first-order phase tran-
sition occurring in the Minkowskian Higgs model quantized by Dirac and involving
vacuum BPS monopole solutions is in coexisting collective vacuum rotations (de-
scribed by the action functional (53) [23]) and superfluid potential motions (set in
the Dirac fundamental scheme [3] by the Gribov ambiguity equation, coming to the
Bogomol’nyi one (46)).

As it was demonstrated in Ref. [26], this first-order phase transition in the
Minkowskian Higgs model quantized by Dirac claims that vacuum “magnetic” and
“electric” fields, respectively B and E, are transverse

D B = D E = 0.

This condition, in turn, is mathematically equivalent to the system [26]

E ∼ DΦ; B ∼ DΦ (87)

of the first-order differential equations, involving Higgs vacuum BPS monopole
modes Φ.

More exactly, acting by the (covariant) derivative D on the system (87), one
turns the Bogomolnyi equation B ∼ DΦ (second equation in this system) into
the Gribov ambiguity equation, while the first equation in (87) comes then to the
YM Gauss law constraint (22) at the constraint-shell reduction of the Minkowskian
Higgs model in terms of the gauge invariant and transverse topological Dirac vari-
ables (7).

Thus assuming the “discrete” vacuum geometry of the (83) type appears to play
a crucial role in the above assertion that first-order phase transition occurs in the
Minkowskian Higgs model quantized by Dirac [3], as well as in explaining other
phenomena taking place in that model.

The author whould also like to express his opinion about the further fate of
gauge physics. In author’s opinion, it seems to be connected with three things.

The first one is going over to the Minkowski space (from the Euclidian E4 one).
This would allow to avoid typical shortcomings inherent in Euclidian gauge theories
(including the complex values (25) [19, 26, 33] of the topological momentum PN of
the θ-vacuum in the Euclidian instanton model [35]).

The second thing is the utilization of the vacuum BPS monopole solutions [12,
29, 30] in the development of the Minkowskian Higgs model. As we have seen in
the course of our present discussion, this set manifest superfluid properties in that
model, absent in other Minkowskian (Higgs) models with monopoles: for instance,
in the Wu-Yang model [40] or in the ’t Hooft-Polyakov model [69, 70].

The third thing is the Dirac fundamental quantization [3] of the Minkowskian
Higgs model involving vacuum BPS monopole solutions, which gave perceptible
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results (for example, the η′-meson mass (63), near to the experimental data, or the
rising “golden section” potential (62) of Refs. [10, 17, 23, 25, 39]).

Apart from the above, the described Minkowskian Higgs model quantized by
Dirac (involving vacuum BPS monopole solutions and “discrete vacuum geometry”
(83) [67]) gives the specific approach to the so-called mass problem. That problem
was formulated as follows [71]. Experiment and computer simulations of the “pure”
YM theory without other (quantum) fields suggest the existence of a “mass gap”
in the solution to the quantum versions of the YM equations. But no proof of this
property is known.

In the strict mathematical language, the mass gap problem can be expressed
in the following way. Since the Hamiltonian H of a QFT is the element of the Lie
algebra of the Poincaré group, and the appropriate vacuum vector Ω is Poincaré
invariant, it is an eigenstate with zero energy, HΩ = 0. The positive energy axiom
(in absence of external negative potentials) asserts that in any QFT, the spectrum of
H is supported in the region [0,∞〉. In this terminology, a QFT has a mass gap if H
has no spectrum in the interval [0,∆〉 for a ∆ > 0. The supremum of such ∆ is called
the massm. Then the YM mass gap problem can be formulated mathematically [71]
as proving that for any compact simple gauge group G, the quantum YM theory on
R4 exists and has a mass gap ∆ > 0. An important consequence of the existence
of the mass gap is that for any positive constant C < ∆ and for any local field
operator O such that 〈Ω,OΩ〉 = 0, one has

|〈Ω,O(x)O(y)Ω〉| ≤ exp(−C|x− y|)

if |x− y| is sufficiently large (depending on C and O).

The Minkowskian Higgs model quantized by Dirac, presented here, contains the
Higgs (and fermionic) field modes. Thus this is somewhat another case than the case

[72]. But the effective Higgs massm/
√
λ incorporated naturally in the Minkowskian

Higgs model with vacuum BPS monopoles quantized by Dirac, becomes zero in
the limit of “infinitely thick domain walls” inside the appropriate discrete vacuum
manifold RYM (83). It is just the ultraviolet region of the momentum space. On
the other hand, in the limit of “infinitely thin domain walls” (it is just the infrared

region of the momentum space), m/
√
λ tends to a finite value [67] (the latter one

can be treated as an infrared cut-off).

Thus the approach to the mass gap problem in the Minkowskian Higgs model
quantized by Dirac, involving vacuum BPS monopole solution, BPS monopole so-
lutions and “discrete vacuum geometry” can be reduced to solving renorm-group
equations [16] implicating the Wegner variable m/

√
λ, that is a continuous function

of the distance r. Of course, these renorm-group equations would be in agreement
with the first-order phase transition occuring therein [67].

In general, in the author’s opinion, the Dirac fundamental quantization [3] of
gauge models seems to have a great perspectives in the future.

Really, the FP heuristic quantization method [7], fixing the gauges in FP in-
tegrals, has arisen at the end of 60-ies of the past century, and despite of all its

136 FIZIKA B 18 (2009) 3, 99–140



lantsman: Dirac fundamental quantization of gauge theories is the natural . . .

advantages in solving the problems associated with scattering processes in gauge
theories, supplanted utterly from modern theoretical physics the way of references
frames and initial and boundary conditions, the historically arisen way in modern
theoretical physics, associated with Einstein (special and general) relativity22.

The FP heuristic quantization method [7] retains in gauge theories only the
realm of physical laws bounded by the “absolutes”, the S-invariants. But this
approach is fit, as we have discussed above, only for solving the problems associated
with scattering processes in gauge theories, leaving “overboard” other problems of
modern theoretical physics, including construction of bound states in QED and
QCD.

In the present study, with the example of the Minkowskian Higgs model quan-
tized by Dirac [3], the author has attempted to attract attention of the readers to
the dramatic situation that now arises in modern theoretical physics in connection
with the introduction of the heuristic quantization method [7] and supplanting,
by this method, the Dirac fundamental quantization scheme [3] (associated with
the Hamiltonian approach to the quantization of gauge theories and attached to a
definite reference frame).
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DIRACOVA TEMELJNA KVANTIZACIJA BAŽDARNIH TEORIJA JE
PRIRODAN PRISTUP REFERENTNIM SUSTAVIMA U MODERNOJ FIZICI

Analiziramo dva osnovna pristupa kvantizaciji fizičkih modela. To su “heuristički”
pristup Faddeeva i Popova (FP), zasnovan na utvrd–ivanju baždarenja u formalizmu
staznih integrala, i “temeljni” Diracov pristup zasnovan na redukcijskom hamiltoni-
janu s ograničenjem na ljusku masa uz uklanjanje nefizičkih varijabla. Relativistički
invarijantan FP “heuristički” pristup proučava malu klasu problema povezanih s
kvadratima S-matrica, razmatrajući samo kvantna polja na ljusci energije. Na-
suprot tome, “temeljni” Diracov pristup kvantizaciji sadrži izričito relativističku
kovarijanciju kvantnih polja koja “preživi” redukciju hamiltonijana s ograničenjem
na ljusku masa. Taj se pristup može primijeniti na širu klasu problema nego S-
matrica. Istraživanja vezanih stanja u QED i QCD su primjeri tih primjena. U ovom
radu, s primjerom Diracove “temeljne” kvantizacije relativističkog ne-Abelovog Hig-
gsovog modela (proučavanog u povijesnom okviru) pokazujemo očigledne prednosti
tog pristupa kvantizaciji. Tvrdnje u prilog Diracovoj temeljnoj kvantizaciji fizičkih
modela predstavljamo kao Einsteinovu i Galilejevu relativnost u modernoj fizici.
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