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We study the determination of neutrino mass hierarchy through neutrino experi-
ments foreseen in the next ten years. The T2K neutrino oscillation experiment will
start in 2009. In the experiment, the high intensity νµ beam from JHF is directed
to Super-Kamiokande (SK) detector 295 km away. The NOνA (off axes neutrino
oscillation) experiment is being planned, with the νµ beam from Fermi-Lab di-
rected to a site 610 km away, which is 0, 7 and 14 milliradian off-axes. Both above
experiments will measure νµ → νe oscillation probability. The Double-CHOOZ
experiment under construction will detect νes emitted by nuclear reactors both
through a near detector (150 m) and a far detector (1.05 km) to measure νe → νe
survival probability. In this paper, we outline a procedure to determine the sign of
∆31 from the simulated data of the above experiments.

PACS numbers: 14.60.Lm, 13.15.+g UDC 539.123
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1. Introduction

Recent advance in neutrino physics observation, mainly in astrophysical observa-
tion, suggest the existence of a tiny neutrino mass. The experiment and observation
have shown evidences for neutrino oscillation. The solar neutrino deficit has been
observed long ago [1 – 4]. The atmospheric neutrino anomaly has indicated [5 – 9]
that neutrinos are massive and that there is mixing in the lepton sector. This has
currently been almost confirmed by KamLAND [10]. Since the lepton mixing does
exist, there occurs CP violation effect in the lepton sector. Several physicists have
considered whether we can see CP violation effects in the lepton sector through
long-baseline oscillation experiments. The neutrino oscillation probabilities, gen-
erally, depend on six parameters, two independent mass-squared differences, ∆21
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and ∆31, three mixing angles, θ12, θ23 and θ13 and one CP violating phase δ. Two
mixing angles are large (θ12, θ23) and one is small (θ13), and two mass–square
differences, ∆ij = m2

j −m2
j , where mij are the neutrino masses,

∆21 = ∆solar (1)

∆31 = ∆atmo (2)

The sign of ∆31and of θ23, when θ23 /=0, can not be determine from the exist-
ing data. For the mass-square difference, there are two possibilities, ∆31 > 0 or
∆31 < 0, that correspond to two different neutrino mass orders, normal mass hier-
archy, m1 < m2 < m3 (∆31 > 0), and inverted hierarchy, m1 > m2 > m3(∆31 < 0).
The angles θ12 and θ23 represent the neutrino mixing angles corresponding to solar
and atmospheric neutrino oscillation. Much progress has been made in considera-
tions how to determine the values of the three mixing angles. From the measurement
of the neutrino survival probability νµ → νe and νe → νe in the atmospheric flux,
one mixing angle is near π

4
and one is small [11], and from the νe → νe survival

probability in the solar flux, the mixing angle is either large (LMA) or small (SMA)
from the solar solution [12]. Nothing is known about CP violating phase. In this
paper, we consider the determination of the sign of ∆31 by three different baseline
experiments (T2K, NOνA and Double CHOOZ). The purpose of this paper is to
determine the sign of ∆31 by χ2 analysis. Section 2 describes the mixing angles and
mass differences. Section 3 describes the mass hierarchy effect in νµ → νe oscilla-
tion probability. In Sec. 4. the determination of the sign of ∆31 by χ2 analysis is
considered. Section 5 summarizes the results and presents conclusions.

2. Mixing angles and neutrino mass-squared differences

The first evidence of the neutrino oscillations is the observation of zenith-angle
dependence of the atmospheric neutrino defect [13], the νµ → νµ transition with
the mass difference and the mixing

∆31 = (1− 2)× 10−3 eV2, sin2 2θ23 = 1.0 . (3)

The second evidence is the solar neutrino deficit [14], which is consistent with
νµ → ντ/νe transition. The SNO experiments [15] are consistent with the standard
solar model [16] and strongly suggest the LMA solution,

∆21 = 7× 10−5 eV2, sin2 2θ12 = 0.8 . (4)

Solar neutrino experiments (Super-K, GALLEX, SAGE, SNO and GNO) show
that neutrino oscillations provide the most elegant explanation of all data [17],

∆solar = 7+5
−1.3 × 10−5 eV2, (5)
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tan2 θsolar = 0.4+0.14
−0.1 . (6)

Atmospheric neutrino experiments (Kamiokande, Super-K) also show that neu-
trino oscillation. The most excellent fit to all data is [17].

∆atmo = 2.0+1.0
−0.92 × 10−3 eV2, (7)

sin2 2θatmo = 0.4+0.14
−0.10 . (8)

The CHOOZ reactor experiments [18] give the upper bounds of the third mixing
angle θ13,

sin2 θ13 < 0.20 for |∆31| = 2.0× 10−3 eV2, (9)

sin2 θ13 < 0.16 for |∆31| = 2.5× 10−3 eV2, (10)

sin2 θ13 < 0.14 for |∆31| = 3.0× 10−3 eV2, (11)

at the 90 % CL. The CP phase δ has not been constrained. Future neutrino exper-
iments plan to measure the neutrino oscillation parameters precisely.

3. Mass hierarchy effect in neutrino oscillation probability

Let us briefly recall our present knowledge of neutrino oscillation parameters.
There are three flavors of neutrinos and they mix to form three mass eigensates.
This mixing is given by





νe
νµ
ντ



 = U





ν1
ν2
ν3



 (12)

where mixing matrix U is parametrized [19] as

U = R(θ23) ΠR(θ13) Π
∗R(θ12) . (13)

Π is a diagonal matrix containing the CP violating phase δ and R(θij) has the
form of rotation matrices. The mass eigenstates νi have eigenvalues mi. Neutrino
oscillation probabilities depend on the two mass-squared differences ∆21 = m2

2 −
m2

1, ∆31 = m2
3 − m2

1, the three mixing angles θ12, θ23, θ13 and the CP violating
phase δ. Solar neutrino data and KamLAND experiment determine ∆21 and θ12.
Atmospheric neutrino data and K2K and MINOS experiments determine |∆31| and
θ23. CHOOZ experiment and solar neutrino data constrain θ13 to be small. There is
no information at present on the CP phase δ. The future experiments are expected
to measure θ13 and determine the sign of ∆31 and the magnitude of CP violation,
in addition to improving the precision of known neutrino oscillation parameters.
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Double CHOOZ experiment is a reactor-based experiment dedicated to mea-
surement of θ13. In this experiment systematic errors are minimised by having
identical near and far detectors at distances 150 m and 1050 m from the sources,
respectively. This experiment can measure non-zero value of θ13 if sin2 2θ13 ≥ 0.05
[20]. Daya Bay reactor experiment will have a similar sensitivity [21]. In the T2K
experiment, the high intensity of νµ beam from JPARC accelerator is directed to
SK detector 295 km away. The detector is 2◦ off-axis from the beam, which leads to
the neutrino flux peaking at lower energy. T2K is a very high statistics experiment
that is expected to start taking data in 2009. The neutrino flux is about 100 times
the flux of K2K. The number of νµ charged-current events expected, in the case of
no oscillation, is about 3100 per year. This experiment will improve the precision
of ∆31 and θ23 by measuring the muon neutrino survival probability P (νµ → νe).
It can also measure θ13 through the measurement of Pµe. The NOνA is also an
accelerator-based experiment, which uses νµ beam from Fermilab 810 km away.
The detecting material in this experiment is a scintillator which gives it an excel-
lent electron detection capability. Thus NOνA can make a precise determination
of Pµe,NOνA. It is expected to start taking data in 2011 and will also be placed at
an off-axis location. Because of the longer distance, the in flux NOνA experiment
will be peaked at higher energy compared to that of T2K. The matter term, which
is proportional to the neutrino energy, causes a 25% change in Pµe, whereas the
change in Pµe of T2K is only about 10% [22]. If ∆31 positive, Pµe increases, whereas
if ∆31 is negative it decreases. Below we describe a procedure by which the sign
of ∆31 can be determined using the data from Double CHOOZ, T2K and NOνA
experiments. We will compute the smallest value of θ13 for which the sign of ∆31

can be determined independently of the CP phase δ.

4. Mass hierarchy effect in Pm
µe oscillation probability

4.1. Pm

µe
oscillation probability with ∆21 = 0

The neutrino oscillation probability, νµ → νe in long-baseline experiments is
modified by the propagation of neutrino through the matter of earth’s crust [23]. It
increases the oscillation probability for neutrinos if ∆31is positive and decreases it
∆31 is negative. The reverse is true for anti-neutrinos. Here we consider a method
of determining the sign of ∆31 using νµ beams only.

In three-flavor mixing, the νµ → νe oscillation probability is given by

Pµe = sin2 θ23 sin2 2θ13 sin2
(

1.27∆31L

E

)

, (14)

where ∆31 is in eV2, the baseline L is in km and the neutrino energy E is in GeV. In
the above equation, we made the approximation of setting ∆21 = 0, which made it
independent of θ13 and the CP phase δ. In long-baseline experiments, the neutrinos
propagate through earth’s crust which has constant density of about 3g/cm3. The
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oscillation probability modified by the matter effect is given by

Pm
µe = sin2 θ23 sin2 2θm13 sin2

(

1.27∆m
31L

E

)

, (15)

where

sin 2θm13 =
∆31 sin 2θ13

∆m
31

, (16)

∆m
31 =

√

(∆31 cos 2θ13 −A)2 + (∆31 sin 2θ13)2 . (17)

Here A is the matter term and is given by

A = 2
√
2GFNeE = 0.76× 10−4ρ (in g/cm

3
)Eν (inGeV). (18)

From the expression for Pµe in three flavor oscillations, we can compute the
magnitude of the terms dependent on ∆21. It turns out that as the CP violat-
ing phase δ varies from −π to π, Pµe changes by about 25%. Therefore, setting
∆21 = 0 is not a good approximation for analyzing matter effects in long-baseline
experiments.

4.2. Pm

µe
oscillation probability with ∆21 =/ 0

The exact expression for Pµe with matter effects is very complicated. The ex-

pression derived using a perturbation expansion with θ13 and α = ∆21

∆31

as a small

parameters works very well for baselines up to 1000 km [24, 25]. Carrying out the
perturbation expansion to the second order in the small parameters, the following
analytic formula for νµ → νe is obtained with the assumption of constant matter
density

Pm
µe = sin2 2θ23

sin2 2θ13
(A1 − 1)2

sin2((A1 − 1)∆)

±α sin δ cos θ13 sin 2θ13 sin 2θ12 sin 2θ23
A1(1−A1)

sin(∆) sin(A1∆) sin((1−A1)∆)

+
α cos δ cos θ13 sin 2θ13 sin 2θ12 sin 2θ23

A1(1−A1)
sin(∆) cos(A1∆) sin((1−A1)∆)

α2 cos2 θ23 sin
2 2θ12 sin

2(A1∆)

A2
1

, (19)

where α = ∆21/∆31, ∆ = ∆31L/4E, A1 = 2
√
2GFNeE/∆31, GF is the Fermi

coupling constant and ne is the electron density in earth’s crust. We see the above
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expression depends on three unknown quantities θ13, sign of ∆31 and the CP phase
δ.

There are two kinds of degeneracies inherent in the three flavor expressions for
Pm
µe. The first one occurs due to the following reason. Since θ13 is unknown, the Pm

µe

for positive ∆31 and smaller θ13 can be essentially the same as the Pm
µe for negative

∆31 and larger θ13 This is illustrated in Figs. 1 and 2. Precise determination of θ13
by Double CHOOZ can eliminate this degeneracy. There is a further degeneracy
involving the CP phase δ. At present, there is no experimental information on this
phase. Note that Double CHOOZ is completely insensitive to δ. For a given long
baseline experiment, it is possible to find two values of the CP phase, δ+ and δ−,
such that Pm

µe(+∆31, δ
+) = Pm

µe(−∆31, δ
−), with all other oscillation parameters
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Fig. 1. Pµe oscillations probabilities vs. E for ∆21 = 2.5 × 10−3eV2, θ13 = 8◦,
L = 295 km and L = 810 km. The middle line is Pm

µe(δ = 0◦), the upper line is
Pm
µe(δ = +90◦) and the lower line is Pm

µe(δ = −90◦).

0.35 1.35 2.35 3.35 4.35
Eν(GeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
µe

 in
 m

at
te

r

δ= 0 
o

δ= + 90
o

δ= − 90
o

0.2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2
Eν(GeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
νe

 in
 m

at
te

r

δ= 0 
o

δ= + 90
o

δ= − 90
o

Fig. 2. Pµe oscillations probabilities vs. E for −2.5× 10−3eV2, θ13 = 12◦, L = 295
km and L = 810 km. The middle line is Pm

µe(δ = 0◦), the upper line is Pm
µe(δ = +90◦)

and the lower line is Pm
µe(δ = −90◦).
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fixed, including θ13. This is illustrated in Figs. 3 and 4. However, the above de-
generacy can occur for only one baseline length at a time. In Fig. 3, Pm

µe for T2K
is essentially the same for both signs of ∆31, but P

m
µe can distinguish between the

two signs of ∆31. In Fig. 4, the situation between T2K and NOνA is reversed. If
we have data from two long baseline experiments with different baselines, then we
can resolve the above degeneracy independent of the δ and the sign of ∆31.
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Fig. 3. Pµe oscillations probabilities vs. E for ∆21 = 2.5 × 10−3eV2, θ13 = 10◦,
L = 295 km and L = 810 km. The dashed line is Pm

µe(δ = 30◦) with ∆31 positive
and the dot-dashed line is Pm

µe(δ = 75◦) with ∆31 negative.

0.35 1.35 2.35 3.35 4.35
Eν(GeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
µe

 in
 m

at
te

r

−∆31
+∆31

0.2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2
Eν(GeV)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
µe

 in
 m

at
te

r

+∆31
−∆31

Fig. 4. Pµe oscillations probabilities vs. E for ∆21 = 2.5 × 10−3eV2, θ13 = 10◦,
L = 295 km and L = 810 km. The dashed line is Pm

µe(δ = −90◦) with ∆31 positive
and the dot-dashed line is Pm

µe(δ = 90◦) with ∆31 negative.

The following method may be used to test the sign of ∆31. From the exper-
iments, we will get three pieces of data from three different neutrino oscillation
experiments (T2K, NOνA, Double CHOOZ). N(T2K), N(NOνA) and N(Double
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CHOOZ) are the expected numbers of neutrino events from these three different
experiments. We tested whether the hypothesis of positive or negative ∆31 fits the
data better. These numbers will be a function of θ13 and δ which is yet unknown.
We compute Pm

µe numerically by diagonalizing the matter-dependent mass-squared
matrix for each energy bin. In the next section, we discuss the testing of ∆31 sign
by χ2 analysis.

5. Determine the ∆31 sign by χ2 analysis

We take the combined data from the Double CHOOZ [26], T2K [27] and NOνA
[28] experiments to resolve the sign of ∆31 problem. This solution depends crucially
on matter effects which in turn depend on θ13. If θ13 is unmeasurably small, it is
extremely difficult to determine the sign of ∆31. Here we address the question:
what is the smallest value of θ13 for which the sign of ∆31 can be resolved using
the data from the above three experiments, independent of the value of δ.

Since there are no data yet from any of these three experiments, we simulate
data for each experiment. In our calculation we fix the values of the following
neutrino parameters: ∆21 = 8.0×10−5 eV2, θ12 = 34◦ and θ23 = 45◦. First we take
|∆31| = 2.5 × 10−3 eV2. The presently allowed range for θ13 is 0◦ to 15◦ and that
for the CP phase δ is −180◦ to 180◦. We pick the true value for θ13 from its allowed
range and similarly for δ.. We call these values θtrue13 and δtrue. We take ∆31to be
positive and compute the expected number of events in each bin of each experiment
for θtrue13 and δtrue. We smear the computed event distributions in energy using the
energy resolution functions estimated by the respective collaborations. We call the
data obtained after the energy smearing to be our simulated data, which consist
of 92 data points N simu

p , p = 1, 92. Now we take ∆31 to be negative but keep ∆31

the same. We choose test values for θ13 and δ which we call θtest13 and δtest. With
these as inputs, we compute theoretical values for the number of events in each bin
of each experiment. Thus we get 92 theoretical expectations, N test

p , p = 1, 92. We

compute χ2 between the simulated data and the theoretical values

χ2(δtest, θtest13 ) =

92
∑

p=1

(N simu
p −N th

p )2

σ2
p

. (20)

We assume, p = 1 to 28 are data of Double CHOOZ, p = 29 to 46 are data of
T2K and p = 47 to 92 are data of NOνA experiments. σp is the error in N simu

p .
It is the square root of the sum of squares of statistical and systematic errors. In
calculating the statistical error, the background contribution to it is taken into
account. Following the above procedure, we compute a set of χ2(δtest, θtest13 ) for all
allowed values of θtest13 and δtest. Since N simu

p and N test
p are calculated using different

signs of ∆31, we expect χ2 in Eq. (20) to be large. But χ2 is a function of θtest13 and
δtest. Because of the parameter degeneracies discussed in Sec. 4, it is possible to
have small χ2 for θtest13 /= θtrue13 and δtest /= δtrueeven if ∆31 values have opposite signs
in the calculation of N simu

p and N test
p . In particular, we require θtrue13 to be large
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enough such that Double CHOOZ will be able to measure its value. If the minimum
of χ2(δtest, θtest13 ) is greater than 4.0, then the two signs of ∆31 are distinguishable
at 95% CL for the given values of θtrue13 and δtrue. If the minimum χ2(δtest, θtest13 ) is
less than 4.0, then the two signs of ∆31 can not be distinguished at 95% CL for the
given values of θtrue13 and δtrue. We repeat the calculation for other values of θtrue13

and δtrue. We look for values of θtrue13 for which the minimum of χ2(δtest, θtest13 ) is
greater than 4.0 for all allowed values of δtrue. The minimum of θtrue13 , for which the
above condition is satisfied, is the smallest value of θ13 for which the sign of ∆31

and hence the neutrino mass hierarchy, can be determined irrespective of the value
of the CP phase δ.

We assume the Double CHOOZ data [26] are divided into 28 bins. The mea-
surements of the near detector give us the unoscillated neutrino event rate in each
bin. The expected measurement in the far detector, for each bin, is given by

dN far

dEν

=
dNnear

dEν

×
(

Lnear

Lfar

)2

P{(νe → νe)}, |∆31|, θtrue13 , Lfar)} . (21)

For the Double CHOOZ experiment, the expected error in the energy measurement
is much smaller than the bin size. Therefore, the energy resolution can be taken to
be a Dirac delta function. Thus the simulated number of events per bin is given by
the above equation.

We see that the T2K data [27] are divided into 18 bins. The expected electron-
neutrino event rate, in each bin, is given by

dNe

dEν

=
dNµ

dEν

Pm
µe(+∆31, θ

true
13 , δtrue, LT2K) . (22)

The T2K collaboration estimates the error in reconstructing the neutrino en-
ergy to be 100 MeV. We take the energy resolution function R(Eν , Emeas) to be a
Gaussian with σ = 100MeV. We obtain the smeared event rate per bin by

dNe

dEmeas

∣

∣

∣

∣

sim

=
∑ dNe

dEν

R(Eν , Emeas)dEν . (23)

Finally, we take the NOνA [28] data are divided into 46 bins, for each of the
off-axis locations 0 mrd, 7 mrd and 14 mrd. We consider one off-axis location at
a time. As in the case of T2K, the expected electron-neutrino event rate, in each
bin, is given by

dNe

dEν

=
dNµ

dEν

Pm
µe(+∆31, θ

true
13 , δtrue, LNOνA). (24)

Again, as in the case of T2K, we obtain the smeared event distribution by means
of a Gaussian resolution function with σ = 100 MeV. We assume that both T2K
and NOνA will run only in neutrino mode for five years. In computing the numbers
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for NOνA, we consider various different possibilities, low energy beam with various
different off-axis angles and also medium energy beam with various different off-axis
angles. The theoretical expectation values are calculated using Eqs. (21), (22) and
(24) with −∆31, θ

test
13 and δtest as neutrino parameters. Note that no smearing is

done in calculating the theoretical expectation values for event numbers.

6. Summary

In this paper we study the neutrino mass hierarchy. Our results are displayed in
Figs. (5), (6) and (7). In each figure, we give a plot of χ2

min in the θtrue13 −δtrue plane.
The star symbol represents χ2

min < 4.0, the square represents 4.0 < χ2
min < 9.0,

the triangle represents 9.0 < χ2
min < 16.0 and the circle represents χ2

min > 16.0. In
each figure, the left panel is generated assuming that NOνA will run in the low-
energy option and right panel is generated assuming high-energy option. Figure (5)
corresponds to 0 mrd off-axis location of NOνA, Fig. (6) corresponds to 7 mrd
off-axis location and Fig. (7) corresponds to 14 mrd off-axis location. From the χ2

analysis, we calculate the minimum value of θ13 for which the sign of ∆31 can be
resolved at 95% CL. For |∆31| = 2.5× 10−3 eV2, the low energy option with 0 mrd
and 7 mrd off-axis location seem to have the best resolving ability. We repeated our
calculation for other allowed values of |∆31|. In Table 1, we compute the minimum
value of θtrue13 for which the sign of ∆31 could be resolved at 95% CL, independent of
the CP phase. We consider the 0 mrd, 7 mrd and 14 mrd off-axis angles of NOνA
experiment for different values of ∆31.
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Fig. 5. Plots of χ2
min in θtrue13 − δtrue plane, 0 mrd off-axis location with low energy

(left) and medium energy (right) options for NOνA are assumed. |∆31| = 2.5 ×
10−3eV2. The symbols are explained in the text.

From the table, we see that the minimum value of θtrue13 for which the sign of ∆31

could be resolved at 95% CL independent of the CP phase. This minimum θtrue13 is
the same for 0 mrd and 7 mrd off-axis angles of the low energy option of NOνA.

160 FIZIKA B 18 (2009) 3, 151–164



koranga et al.: determining the sign of ∆31 by future long-baseline . . .

2 4 6 8 10 12 14 16
−200

−150

−100

−50

0

50

100

150

200

θ
13

 (in degrees)

δ C
P
 (

in
 d

eg
re

es
)

θ
12

=34o    θ
23

=45o    ∆
21

=8.1e−005eV2     |∆
31

|=0.0025eV2

2 4 6 8 10 12 14 16
−200

−150

−100

−50

0

50

100

150

200

θ
13

 (in degrees)

δ C
P
 (

in
 d

eg
re

es
)

θ
12

=34o    θ
23

=45o    ∆
21

=8.1e−005eV2     |∆
31

|=0.0025eV2

Fig. 6. Plots of χ2
min in θtrue13 − δtrue plane, 7 mrd off-axis location with low energy

(left) and medium energy (right) options for NOνA are assumed. |∆31| = 2.5 ×
10−3eV2. The symbols are explained in the text.
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Fig. 7. Plots of χ2
min in θtrue13 − δtrue plane, 14 mrd off-axis location with low energy

(left) and medium energy (right) options for NOνA are assumed. |∆31| = 2.5 ×
10−3eV2. The symbols are explained in the text.

The results are a little worse for the medium-energy option of NOνA. Determining
the type of neutrino mass hierarchy, whether normal or inverted, constitutes one
of the fundamental question in neutrino physics. Future long-baseline experiments
aim at addressing this fundamental issue, but suffer typically from degeneracies
with other neutrino parameters, namely θ13 and δ. The presence of such degen-
eracies limit the sensitivity to the type of hierarchy. Many earlier studies focused
on the determination of the sign of ∆31 by using the data of neutrinos and anti-
neutrinos from more then one experiment [29 – 33]. In the present paper, we study
the possibility of solving the neutrino mass hierarchy using only neutrino data of
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TABLE 1. Minimum value of θtrue13 , for which the sign of ∆31 could be resolved at
95% CL, independent of CP phase.

|∆31| Minimum value of θtrue13

1.5× 10−3eV2 15◦

2.0× 10−3eV2 9◦

2.5× 10−3eV2 7◦

3.0× 10−3eV2 4◦

3.5× 10−3eV2 4◦

4.0× 10−3eV2 4◦

long-baseline experiments T2K and NOνA and data from Double CHOOZ. We
determined, for each allowed value of |∆31|, the minimum value of θ13 for which
the sign of ∆31 could be resolved, independent of the value of the CP phase. If
|∆31| = 0.0025 eV2, we can rule out the wrong neutrino mass hierarchy at 95 %
CL, for the whole range δtrue = −180◦ − 180◦, if θtrue13 ≥ 7.0◦. For larger values of
|∆31|, it is less then 0.002 eV2 and the neutrino mass hierarchy can not be resolved
by the data of the above three experiments for any of the allowed values of θ13.
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ODRED– IVANJE PREDZNAKA ∆31 BUDUĆIM UDALJENIM
REAKTORSKIM MJERENJIMA

Proučavamo odred–ivanje redosljeda neutrinskih masa predvid–enim mjerenjima ti-
jekom sljedećih deset godina. Mjerenje neutrinskih oscilacija T2K započinje u 2009.
U tom se mjerenju snažan snop νµ iz JHF usmjerava u Super-Kamiokande (SK) de-
tektor udaljen 295 km. Eksperiment NOνA (neutrinske oscilacije izvan osi snopa)
priprema se sa snopom νµ iz Fermi-Lab-a na udaljenosti 610 km i kutovima 0, 7 i 14
miliradijana izvan osi snopa. Oba ova mjerenja odred–uju oscilatorne vjerojatnosti
νµ → νe. U gradnji je Double-CHOOZ laboratorij u kojem će se mjeriti νe neutrini
emitirani iz nuklearnih reaktora u blizom (150 m) i dalekom (1.05 km) detektoru
radi odred–ivanja vjerojatnosti “preživljavanja” νe → νe. U ovom se radu raspravlja
metoda odred–ivanja predznaka ∆31 simuliranim podacima iz gornjih mjerenja.
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