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Thermodynamics of plane-symmetric inhomogeneous cosmological models of per-
fect fluid distribution with electromagnetic field is studied. The source of magnetic
field is due to an electric current produced along z-axis. F12 is the non-vanishing
component of the electromagnetic field tensor. The free gravitational field is as-
sumed to be Petrov type-II non-degenerate. We study the thermodynamical prop-
erties of plane-symmetric inhomogeneous universe. Some physical aspects of the
models are discussed and the entropy distribution is given explicity.
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1. Introduction

The standard FRW cosmological model prescribes a homogeneous and isotropic
distribution of matter in the description of the present state of the universe. At
the present state of evolution, the universe is spherically symmetric and the mat-
ter distribution of universe is on the whole isotropic and homogeneous. But in
the early stages of evolution, it could have not had such smooth characteristics.
Right after the big bang singularity, neither the assumption of spherical symmetry
nor that of isotropy can be strictly valid. We consider plane-symmetry and pro-
vide an avenue to study inhomogeneities. Inhomogeneous cosmological models play
an important role in our understanding of some essential features of the universe,
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such as the formation of galaxies during the early stage of evolution and process
of homogenization. The early attempts of construction of such model have been
done by Tolman [1] and Bondi [2] who considered spherically symmetric models.
Inhomogeneous plane-symmetric models were considered by Taub [3, 4] and later
by Tomimura [5], Szekeres [6], Collins and Szafron [7] and Szafron and Collins [8].
Recently, Senovilla [9] obtained a new class of exact solutions of Einstein’s equation
without big bang singularity, representing a cylindrically symmetric inhomogeneous
cosmological model filled with perfect fluid which is smooth and regular everywhere,
satisfying energy and causality conditions. Later, Ruiz and Senovilla [10] examined
a fairly large class of singularity-free models through a comprehensive study of gen-
eral cylindrically-symmetric metric with separable function of space and time as
metric coefficients. Dadhichi et al. [11] established a link between the FRW models
and singularity-free family by deducing the latter through a natural and simple
inhomogenization and anisotropization of the former. Recently, Patel et al. [12]
presented a general class of inhomogeneous cosmological models filled with non-
thermalised perfect fluid by assuming that the background space-time admits two
space like commuting Killing vectors and has separable metric coefficients. Singh,
Mehta and Gupta [13] obtained inhomogeneous cosmological models of perfect fluid
distribution with electromagnetic field. Recently Pradhan, Yadav and Singh [14]
investigated inhomogeneous cosmological models in general relativity. The occur-
rence of magnetic field on the galactic scale is well-established fact today, and its
importance for a variety of astrophysical phenomena is generally acknowledged as
pointed out by Zeldovich et al. [15]. Also, Harrison [16] suggested that magnetic
field could have a cosmological origin. As a natural consequence, we should in-
clude magnetic fields in the energy momentum tensor of the early universe. The
choice of anisotropic cosmological models in Einstein’s system of field equations
leads to the cosmological models more general than Robertson-Walker models [17].
The presence of primordial magnetic field in the early stages of evolution of the
universe has been discussed by several authors [18 – 27]. Strong magnetic field can
be created due to the adiabatic compressions in clusters of galaxies. Large-scale
magnetic field gives rise to anisotropies in the universe. The anisotropic pressure
created by the magnetic fields dominates the evolution of the shear anisotropy and
it decays slower than in the case when the pressure was isotropic [28, 29]. Such
field can be generated at the end of an inflationary epoch [30 – 38]. Anisotropic
magnetic field models give significant contribution in the evolution of galaxies and
stellar objects. Bali and Ali [35] obtained a magnetized cylindrically symmetric
universe with electrically neutral perfect fluid as a source of matter. Bali and Tyagi
[36] investigated a plane-symmetric inhomogeneous cosmological model of perfect
fluid distribution with electromagnetic fluid. In the present paper, we revisit their
solution and obtain a new solution of plane-symmetric inhomogeneous cosmological
models of perfect fluid distribution with electromagnetic field. We discuss the ther-
modynamical properties of the model, and the entropy distribution is also given
explicity. The dissipative mechanism not only modifies the nature of singularity
that usually occurrs for perfect fluid, but also can successfully account for the large
entropy per baryon in the present universe.
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2. The metric and field equations

We consider the metric in the form

ds2 = A2(dx2 − dt2) +B2dy2 + C2dz2, (1)

where the metric potentials A, B and C are functions of x and t. The energy
momentum tensor is taken as

T j
i = (ρ+ p)viv

i + pgji + Ej
i , (2)

where Ej
i is the electromagnetic field given by Lichnerowicz [38] as

Ej
i = µ̄

[

hih
j(viv

j +
1

2
gji )− hih

j
]

, (3)

where ρ and p are the energy density and isotropic pressure, respectively, and vi is
the flow vector satisfying the relation

gijv
ivj = −1 . (4)

µ̄ is the magnetic permeability and hi the magnetic flux vector defined by

hi =
1

µ̄
⋆Fijv

j , (5)

where ⋆Fij is the dual magnetic field tensor defined by Synge [39],

⋆Fij =

√
−g

2
ǫijklF

kl. (6)

Fij is the electromagnetic field tensor and is ǫijkl the Levi-Civita tensor density.
The coordinates are considered commoving so that v1 = 0 = v2 = v3 and v4 = 1/A.
We consider that the current is flowing along the z-axis so that h3 /=0, h1 = 0 =
h2 = h4. The only non-vanishing component of Fij is F12. The Maxwell’s equations
read

Fij;k + Fjk;i + Fki;j = 0 (7)

and
[

1

µ̄
F ij

]

;j

= Ji . (8)

We require that F12 be function of x alone. We assume that the magnetic per-
meability is a function of both x and t. Here the semicolon represents a covariant
differentiation.
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The Einstein’s field equations (in gravitational units c = 1, G = 1)

Rj
i −

1

2
Rgji + Λgji = −8πT j

i . (9)

For the line element (1) we find the following relations

8πA2

(

p+
F 2
12

2µ̄A2B2

)

(10)

=−B44

B
−C44

C
+
A4

A

(

B4

B
+
C4

C

)

+
A1

A

(

B1

B
+
C1

C

)

+
B1C1

BC
−B4C4

BC
−ΛA2,

8πA2

(

p+
F 2
12

2µ̄A2B2

)

= −
(

A4

A

)

4

+

(

A1

A

)

1

− C44

C
+

C11

C
− ΛA2, (11)

8πA2

(

p− F 2
12

2µ̄A2B2

)

= −
(

A4

A

)

4

+

(

A1

A

)

1

− B44

B
+

B11

B
− ΛA2, (12)

8πA2

(

ρ+
F 2
12

2µ̄A2B2

)

(13)

= −B11

B
− C11

C
+
A4

A

(

B4

B
+
C4

C

)

+
A1

A

(

B1

B
+
C1

C

)

−B1C1

BC
+
B4C4

BC
−ΛA2,

0 =
B14

B
+

C14

C
− A1

A

(

B4

B
+

C4

C

)

− A4

A

(

B1

B
+

C1

C

)

, (14)

where the sub-indices 1 and 4 in A, B, C and elsewhere indicate ordinary differen-
tiation with respect to x and t, respectively.

3. Solution of the field equation

Eqs. (10) – (12) lead to

(

A4

A

)

4

− B44

B
+

A4

A

(

B4

B
+

C4

C

)

− B4C4

BC

=

(

A1

A

)

1

+
C11

C
− A1

A

(

B1

B
+

C1

C

)

− B1C1

BC
= a , (15)
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where a is constant, and

8πF 2
12

µ̄B2
=

B44

B
− B11

B
+

C11

C
− C44

C
. (16)

Equations (10) – (14) represent a system of five equations in six unknowns, A, B,
C, ρ, p and F12. For a complete determination of these unknowns, one extra condi-
tion is needed. As in the case of general-relativistic cosmologies, the introduction of
inhomogeneities into the cosmological equations produces a considerable increase
in mathematical difficulty: non-linear partial differential equations must now be
solved. In practice, this means that we must proceed either by means of approxi-
mations which render the non-linearities tractable, or we must introduce particular
symmetries into the metric of space-time in order to reduce the number of degrees
of freedom which the in homogeneities can exploit. In the present case, we assume
that the metric is Petrov type-II non-degenerate. This requires that

B11+B44 + 2B14

B
−C11+C44+2C14

C
=

2(A1+A4)(B1+B4)

AB
− 2(A1+A4)(C1+C4)

AC
.

(17)
Let us consider that

A = f(x)ϑ(t), B = g(x)µ(t), C = h(x)µ(t) . (18)

Using Eqs. (18) in (14) and (17), we get

g1
g

+
h1

h
f1
f

=

2µ4

µ
µ4

µ
− ϑ4

ϑ

= b , (19)

where b is a constant, and

g11
g

+
h11

h
g1
g

− h1

h

− 2f1
f

= 2

(

µ4

µ
− ϑ4

ϑ

)

= L , (20)

where L is a constant. Equation (19) leads to

f = n(gh)1/b, b /=0 (21)

and

µ = mϑb/(b−2), (22)

where m and n are constants of integration. From Eqs. (15), (18) and (19), we have

1

b

g11
g

+
1 + b

b

h11

h
− 2

b

(

g21
g2

+
h2
1

h2

)

− 2 + b

b

g1h1

gh
= a (23)
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and
2

b

(

µ44

µ
+

µ2
4

µ2

)

= −a . (24)

Let us assume

g = eU+W , h = eU−W , (25)

Equations (20) and (25) lead to

V1 = M exp

(

Lx+
2(2− b)

b
U

)

, (26)

where M is an integration constant. From Eqs. (23), (25) and (26), we have

2 + b

b
U11 −

4

b
U2
1 − 2bM exp

(

Lx+
2(2− b)

b
U

)

−ML exp

(

Lx+
2(2− b)

b
U

)

+2M3L exp

(

2Lx+
4(2− b)

b
U

)

= a . (27)

Equation (27) leads to

U =
Lbx

2(b− 2)
, b /=2 . (28)

Equations (26) and (28) lead to

W = Mx+ logN , (29)

where N is the constant of integration. Equation (24) leads to

µ = β sin1/2
(√

α t+ t0
)

, (30)

where α = ab, β is constant and t0 is a constant of integration.

Using Eqs. (21), (22), (25), (28), (29) and (30), we obtain

f = n exp

(

Lx

b− 2

)

, (31)

ϑ = γ0 sin
(b−2)/(2b)

(√
α t+ t0

)

, (32)

g = N exp

(

Lbx

2(b− 2)
+Mx

)

, (33)
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h =
1

N
exp

(

Lbx

2(b− 2)
−Mx

)

, (34)

where γ0 = (β/m)(b−2)/b. Therefore, we have

A = E exp

(

Lx

b− 2

)

sin(b−2)/(2b)
(√

α t+ t0
)

, (35)

B = G exp

(

Lbx

2(b− 2)
+Mx

)

sin1/2
(√

α t+ t0
)

, (36)

C = H exp

(

Lbx

2(b− 2)
−Mx

)

sin1/2
(√

α t+ t0
)

, (37)

where E = nγ0, G = Nβ and H = β/N .

After using a suitable transformation of coordinates, the metric (1) reduces to
the form

ds2 = E2 exp

(

2Lx

b− 2

)

sin(b−2)/b
(√

α τ
)(

dX2 − dτ2
)

(38)

+ exp

(

LbX

b− 2
+ 2MX

)

sin
(√

α τ
)

dY 2 + exp

(

LbX

b− 2
− 2MX

)

sin
(√

α τ
)

dZ2,

Here
√
α t+ t0 =

√
α τ , x = X, By = Y and Cz = Z.

The expressions for pressure p and density ρ for model (38) are given by

8πp =
1

g2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(39)

×
[

α

{

3b− 4

4b
cot2

√
α τ + 1

}

+
b(b+ 4)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

− Λ ,

8πρ =
1

g2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(40)

[

(3b− 4)α

4b
cot2

√
α τ +

b(4− 3b)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

+ Λ .

The non-vanishing component F12 of electromagnetic field tensor is given by

F12 =

√

µ̄2MLb

8π(2− b)
G exp

{(

Lb

b− 2
+ 2M

)

X

2

}

sin
(√

α τ
)

. (41)
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The scalar expansion θ calculated for the flow vector vi is given by

θ =
(3b− 2)

√
α

2bE
exp

(

LX

2− b

)

sin(b−2)/(2b)
(√

α τ
)

cot
(√

α τ
)

. (42)

The shear scalar σ2, acceleration vector vi and proper volume V are given by

σ2 =
α

3b2E2
exp

(

2LX

2− b

)

sin(b−2)/b
(√

α τ
)

cot2
(√

α τ
)

, (43)

v̇i =

(

L

b− 2
, 0, 0, 0

)

, (44)

V =
√
−g = E2 exp

(

(b+ 2)LX

b− 2

)

sin2(b−1)/b
(√

α τ
)

. (45)

4. Thermodynamical properties

From the thermodynamics [37, 38], we apply the combination of the first and
second law of thermodynamics to the system with volume V . As is well known,

TdS = d(ρV ) + pdV . (46)

Equation (46) may be written as

TdS = d
[

(ρ+ p)V
]

− V dp . (47)

The integrability condition is necessary to define the perfect fluid as a thermody-
namical system [39, 40, and 41]. It is given by

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (48)

which leads to the relation between pressure p and temperature T ,

dp =
ρ+ p

T
dT . (49)

Plugging Eq. (49) in Eq. (47), we have the differential equation

dS =
1

T
d
[

(ρ+ p)V
]

− (ρ+ p)V
dT

T 2
. (50)

We rewrite Eq. (50) as

dS = d

[

(ρ+ p)V

T
+ c

]

, (51)

172 FIZIKA B 18 (2009) 3, 165–180



yadav and bagora: thermodynamics of plane-symmetric inhomogeneous . . .

where c is constant. Hence the entropy is defined as

S =
ρ+ p

T
V . (52)

From Eqs. (46) and (52), we get the following expression for the entropy production
rate in the plane-symmetric inhomogeneous universe,

dS

S
=

cot
(√

α τ
)

[√
α

b
T1

]

− (3b− 4)cosec2
(√

α τ
)]

α

[

3b− 4

2b
cot2

(√
α τ

)

+ 1

]

+
b(4− b)L2

2(b− 2)2
+

2MLb

b− 2
− 2M2

, (53)

where the expression T1 in the nominator is given by

α(3b−4)(3b−2)

4b
cot2

(√
ατ

)

+(b−1)α+
b(10b−b2−3)L2

(b− 2)2
+
MLb(3b−2)

b− 2
−M2(3b−2).

It gives the rate of change of entropy with time. Clearly dS/S > 0 implies that

√
α

b

[

α(3b−4)(3b−2)

4b
cot2

(√
ατ

)

+(b−1)α+
b(10b−b2−3)L2

(b− 2)2

+
MLb(3b−2)

b− 2
−M2(3b−2)

]

> (3b− 4)cosec
(√

α τ
)

.

Hence dS > 0, which implies that total entropy always increases with the change
of proper time, irrespectively of the expanding model. Also dS/S → ∞, as

cot2
(√

α τ
)

=

α−1

(

b(4− b)L2

2(b− 2)2
+

2MLb

b− 2
− 2M2

)

− 1

3b− 4

2b

and universe becomes homogeneous.

Let the entropy density be s, so that

s =
S

T
=

ρ+ p

T
=

(1 + γ)ρ

T
, (54)

where p = γρ and 0 < γ ≤ 1, if we define the entropy density in terms of tempera-
ture. The first law of thermodynamics may be written as

d(ρV ) + γρdV = (1 + γ)T d

(

ρV

T

)

, (55)

FIZIKA B 18 (2009) 3, 165–180 173



yadav and bagora: thermodynamics of plane-symmetric inhomogeneous . . .

which on integration yields

T ∼ ργ/(1+γ). (56)

From Eqs. (54) and (56), we obtain

s ∼ ρ1/(1+γ). (57)

The entropy of the commoving volume then varies according to

S ∼ sV . (58)

These equations are not valid for γ = −1, i.e., for the vacuum fluid. For the
Zel’dovich fluid (γ = 1), we get

T ∼ ρ1/2, (59)

s ∼ ρ1/2 ∼ T . (60)

Thus the entropy density is proportional to the temperature. We have

T = T0

{

1

E2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(61)

×
[

(3b− 4)α

4b
cot2

(√
α τ

)

+
b(4− 3b)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

+ Λ

}1/2

,

s = s0

{

1

E2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(62)

×
[

(3b− 4)α

4b
cot2

(√
α τ

)

+
b(4− 3b)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

+ Λ

}1/2

,

S = S0 exp

(

(b+ 1)LX

2− b

)

sin(3b−2)/2b
(√

α τ
)

× (63)

[

(3b−4)α

4b
cot2

(√
α τ

)

+
b(4−3b)L2

4(b− 2)2
−M2+

MLb

b−2
+ΛE2exp

(

2LX

b−2

)

sin(b−2)/b
(√

α τ
)

]1/2

.

Here T0, s0 and S0 are constant. For a radiating fluid (γ = 1/3),

T ∼ ρ1/4, (64)

s ∼ ρ3/4 ∼ T 3. (65)
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Thus the entropy density is proportional to the cube of temperature. Now,

T = T00

{

1

E2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(66)

×
[

(3b− 4)α

4b
cot2

(√
α τ

)

+
b(4− 3b)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

+ Λ

}1/4

,

s = s00

{

1

E2
exp

(

2LX

2− b

)

sin(2−b)/b
(√

α τ
)

(67)

×
[

(3b− 4)α

4b
cot2

(√
α τ

)

+
b(4− 3b)L2

4(b− 2)2
−M2 +

MLb

b− 2

]

+ Λ

}3/4

,

S = S00 exp

(

(b+ 1)LX

2− b

)

sin(3b−2)/2b
(√

α τ
)

× (68)

[

(3b−4)α

4b
cot2

(√
α τ

)

+
b(4−3b)L2

4(b− 2)2
−M2+

MLb

b−2
+ΛE2exp

(

2LX

b−2

)

sin(b−2)/b
(√

α τ
)

]3/4

.

where T00, s00 and S00 are constant.

The rates of expansion along the x-, y- and z-axes are given by

H1 =
A4

A
=

(b− 2)
√
α

2b
cot

(√
α τ

)

, (69)

H2 =
B4

B
=

√
α

2
cot

(√
α τ

)

, H3 =
C4

C
=

√
α

2
cot

(√
α τ

)

. (70)

We see that at the beginning stage, the rates of expansion along the x-, y- and
z-axes are infinitely large. With increase in time, the expansion rate decreases. It
is also observed that the expansion rate along the y- and z-axes remains the same
for all possible values of b but along the x-axis expansion rate depends upon b, i.e.,
for b < 0, the rate of expansion along the x-axis will be greater than along the y-
and z-axes, while for b > 0, the rate of expansion along the x-axis will be smaller
than along the y- and z-axes.

5. Solution in the absence of magnetic field

When M = 0 and L = 0, we see that the magnetic field in the model (38)
vanishes and the geometry of space time takes the form

ds2 = E2 sin(b−2)/b
(√

α τ
)

(dX2 − dτ2) + sin
(√

α τ
)

dY 2 + sin
(√

α τ
)

dZ2. (71)
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The expressions for physical and kinematical parameters are given by

8πp =
1

E2
sin(2−b)/b

(√
α τ

)

α

{

3b− 4

4b
cot2

(√
α τ

)

+ 1

}

− Λ , (72)

8πρ =
1

E2
sin(2−b)/b

(√
α τ

)

{

(3b− 4)α

4b
cot2

(√
α τ

)

}

+ Λ , (73)

θ =
(3b− 2)

√
α

2bE
sin(b−2)/(2b)

(√
α τ

)

cot
(√

α τ
)

, (74)

σ2 =
α

3b2E2
exp

(

2LX

2− b

)

sin(b−2)/b
(√

α τ
)

cot2
(√

α τ
)

, (75)

v̇i = (0, 0, 0, 0) , (76)

V =
√
−g = E2 exp

(

(b+ 2)LX

b− 2

)

sin2(b−1)/b
(√

α τ
)

. (77)

For the Zel’dovich fluid (γ = 1), we get

T = T0

[

1

E2
sin(2−b)/b

(√
α τ

)

{

(3b− 4)α

4b
cot2

(√
α τ

)

}

+ Λ

]1/2

, (78)

s = s0

[

1

E2
sin(2−b)/b

(√
α τ

)

{

(3b− 4)α

4b
cot2

(√
α τ

)

}

+ Λ

]1/2

, (79)

S = S0 sin
(3b−2)/2b

(√
α τ

)

[

(3b−4)α

4b
cot2

(√
α τ

)

+ΛE2 sin(b−2)/b
(√

α τ
)

]1/2

. (80)

Here T0, s0 and S0 are constant.

For a radiating fluid (γ = 1/3),

T = T00

[

1

E2
sin(2−b)/b

(√
α τ

)

{

(3b− 4)α

4b
cot2

(√
α τ

)

}

+ Λ

]1/4

, (81)

s = s00

[

1

E2
sin(2−b)/b

(√
α τ

)

{

(3b− 4)α

4b
cot2

(√
α τ

)

}

+ Λ

]3/4

, (82)

S = S00 sin
(3b−2)/2b

(√
α τ

)

[

(3b−4)α

4b
cot2

(√
α τ

)

+ΛE2 sin(b−2)/b
(√

α τ
)

]3/4

, (83)

where T00, s00 and S00 are constant.
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6. Concluding remarks

We have obtained a new plane-symmetric inhomogeneous cosmological model
of electromagnetic perfect fluid as the source of matter. The model (38) starts
expanding with big-bang singularity at τ = 0. Generally, the model represents
expanding, shearing, non-rotating and Petrov type-II non-degenerate universe in
which flow vector is geodetic. It is also observed that model (38) is oscillatory.

In this model σ/θ = 2/
[√

3(3b − 2)
]

= constant, and is no approach to isotropy.
The idea of primordial magnetism is appealing because it can potentially explain
all large-scale fields seen in the universe today, especially those found in remote
proto-galaxies. As a result, the literature contains many studies that examine the
role and implications of magnetic field in cosmology. It is worth mentioning here
that magnetic field affects all physical and kinematical quantities, but it does not
affect the rate of expansion. Also, we see that in the absence of magnetic field
inhomogeneity, the universe dies out. It signifies the role of magnetic field.

We clarify thermodynamics of plane-symmetric universe by introducing the in-
tegrability condition and temperature. All thermal quantities are derived as func-
tions of either temperature or volume. In this case we see that the third law of
thermodynamics is satisfied. Furthermore, we find a new general equation of state,
describing the Zel’dovich model and radiating fluid model as function of temper-
ature and volume. The total entropy never vanishes and goes on increasing as
an evolution process. The basic equation of thermodynamics for plane-symmetric
universe has been deduced and thermodynamics of the model is discussed.

The deceleration parameter of model (38) is given by

q = −1 +
b

2(b− 1) cos2
(√

ατ
) . (84)

The sign of q indicates whether the model inflates or not. A positive sign of q
corresponds to standard decelerating model, whereas the negative sign −1 ≤ q < 0,
indicates the inflation.

Recent observations show that the deceleration parameter of the universe is
in the range −1 ≤ q < 0 and the present universe is undergoing an accelerated
expansion [42, 43]. Also, the current observations of SNe Ia and CMBR favor an
accelerating model (q < 0). From Eq. (84) it can be seen that the deceleration
parameter q < 0 when

τ >
1√
α
cos−1

√

b

2(b− 1)
.

It follows that our model of the universe is consistent with the recent observations
for b = 0 and q = −1 which is the case of the de Sitter universe. Finally, the solution
presented in this paper is new and may be useful for better understanding of the
evolution of universe in plane-symmetric space-time with electromagnetic field in
general relativity.
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TERMODINAMIKA RAVNINSKO-SIMETRIČNOG NEHOMOGENOG
SVEMIRA U OPĆOJ TEORIJI RELATIVNOSTI

Proučavamo termodinamiku ravninsko-simetričnih kozmoloških modela s perfek-
tnom raspodjelom tekućine i elektromagnetskim poljem. Izvor magnetskog polja
je električna struja u smjeru z-osi. Jedina komponenta elektromagnetskog tenzora
polja je F12. Pretpostavlja se nedegenerirano slobodno gravitacijsko polje Petrova
tipa II. Proučavamo termodinamička svojstva ravninsko-simetričnog nehomogenog
svemira. Raspravljaju se neke fizikalne osobine modela, a raspodjela entropije daje
se eksplicitno.
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