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We study neutron multiple-slit diffraction with a quantum mechanical approach.
For the double-slit diffraction, we obtain the following results: (1) when the ratio
(d+ a)/a = n (n = 1, 2, 3, · · ·), orders n, 2n, 3n, · · · are missing in the diffraction
pattern. (2) When the ratio of (d + a)/a /=n (n = 1, 2, 3, · · ·), there isn’t any
missing order in the diffraction pattern. For diffraction on N (N ≥ 3) slits, we
obtain the following results: (1) There are N − 2 secondary maxima and N − 1
minima between the two principle maxima. (2) As the slit number N increases, the
diffraction intensity increases and the peak widths become narrower. (3) As the slit
width increases, the diffraction intensity increases and the pattern width becomes
narrower. (4) When the two-slit distance d increases, the number of principle max-
ima increases and the pattern becomes narrower. (5) We find a new quantum effect
that the slit thickness c has a large effect to the multiple-slit diffraction pattern. We
think all predictions in this work can be tested by neutron multiple-slit diffraction
experiments.

PACS numbers: 03.75.Dg, 61.12.Bt UDC 52-656, 539.125
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1. Introduction

The wave nature of subatomic particle electron was postulated by de Broglie
in 1923 and this idea can explain many diffraction experiments. The matter-wave
diffraction has become a large field of interest over the last years, and it has been
extended to atom and more massive, complex objects, like large molecules I2, C60
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and C70, which were studied in many experiments [1 – 5]. In such experiments,
the incoming atoms or molecules can usually be described by plane waves. As is
well known, the classical optics with its standard wave-theoretical methods and ap-
proximations, in particular those of Huygens and Kirchhoff, has been successfully
applied to diffraction in optics, and has yielded good agreement with many exper-
iments. This simple wave-optical approach also gives a description of matter wave
diffraction [6 – 7]. However, matter-wave interference and diffraction are quantum
phenomena, and their full description needs quantum mechanical approach.

Recently, we have studied the neutron single slit diffraction with quantum me-
chanical approach and obtained some important new results [8]. In this work, we
study the multiple-slit diffraction of neutron with the quantum mechanical ap-
proach. In view of quantum mechanics, the neutron has the nature of a wave, and
the wave is described by wave function ψ(r, t), which can be calculated with the
Schrödinger wave equation. The wave function ψ(r, t) has statistical meaning, i.e.,
|ψ(r, t)|2 can be taken as particle’s probability density at a definite position. For
a multiple-slit diffraction, if we can calculate the neutron wave function ψ(r, t)
distribution on a display screen, then we can obtain the diffraction intensity for
a multiple-slit, since the diffraction intensity is directly proportional to |ψ(r, t)|2.
In the multiple-slit diffraction, the neutron wave function can be represented into
three regions. The first is the region of incoming wave where the neutron wave
function is a plane wave. The second is the slit region, where the neutron wave
function can be calculated using the Schrödinger wave equation. The third is the
diffraction region, where the neutron wave function can be obtained by Kirchhoff’s
law. In the following, we calculate the wave functions in these three regions.

2. Quantum approach to neutron diffraction

We consider a multiple-slit arrangement with slit widths a, length b and the slit-
to-slit distance d, as shown in Fig. 1. The x-axis is along the slit length b and the
y-axis is along the slit width a. We calculate the neutron wave function in the first
single slit (left) using the Schrödinger equation. Then the neutron wave function

Fig. 1. N -slit geometry with a the width, b the length and d the distance between
two adjacent slits.
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of the second single-slit (right) can be obtained easily. At time t, we suppose that
the incoming plane wave travels along the z-axis, and can be represented by

ψ0(z, t) = A exp

(

i

h̄

(

pz − Et
)

)

, (1)

where A is a constant.

The potential in the single slit is

V (x, y, z) =

{

0 0 ≤ x ≤ b, 0 ≤ y ≤ a, 0 ≤ z ≤ c,
∞ otherwise

(2)

where c is the thickness of the single slit. The time-dependent and time-independent
Schrödinger equations are

ih̄
∂

∂t
ψ(r, t) = − h̄2

2M

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ(r, t) , (3)

∂2ψ(r)

∂x2
+
∂2ψ(r)

∂y2
+
∂2ψ(r)

∂z2
+

2ME

h̄2
ψ(r) = 0 , (4)

whereM is the mass and E the energy of the neutron. In Eq. (4), the wave function
ψ(x, y, z) satisfies the boundary conditions

ψ(0, y, z) = ψ(b, y, z) = 0 , (5)

ψ(x, 0, z) = ψ(x, a, z) = 0 . (6)

The partial differential equation (4) can be solved by the method of separation of
variables. By writing

ψ(x, y, z) = X(x)Y (y)Z(z) , (7)

the general solution of Eq. (3) is

ψ1(x, y, z, t) =
∑

m,n

ψm,n(x, y, z, t)

=
∑

m,n

Dm,n sin
nπx

b
sin

mπy

a
exp

(

i

√

2ME

h̄2
− n2π2

b2
− m2π2

a2
z

)

exp

(

− i

h̄
Et

)

.

(8)
Equation (8) is the neutron wave function in the first single slit. Since the wave
functions are continuous at z = 0, we have

ψ0(x, y, z, t)
∣

∣

∣

z=0
= ψ1(x, y, z, t)

∣

∣

∣

z=0
. (9)
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From Eq. (9), we obtain the coefficient Dm,n

Dm,n =
4

ab

a
∫

0

b
∫

0

A sin
nπξ

b
sin

mπη

a
dξdη =







16A

mnπ2
m, n, odd

0 otherwise .
(10)

Substituting Eq. (10) into Eq. (8), we can obtain the neutron wave function in the
first single slit,

ψ1(x, y, z, t)=

∞
∑

m,n=0

16A

anbbma

sinnbx sinmay exp

(

i

√

2ME

h̄2
−n2b−m2

a z

)

exp

(

− i

h̄
Et

)

.

(11)
where ma = (2m+ 1)π/a and nb = (2n+ 1)π/b.

The neutron wave function in the N -th single slit can be obtained by making
the coordinate translations x′ = x, y′ = y − (N − 1)(a + d), z′ = z, and we can
obtain the neutron wave function ψN (x, y, z, t) in the N -th slit

ψN (x, y, z, t) =

∞
∑

m,n=0

16A

anbbma

sinnbx sinma

(

y − (N − 1)(a+ d)
)

× exp

(

i

√

2ME

h̄2
− n2b −m2

a z

)

exp

(

− i

h̄
Et

)

. (12)

3. The wave function of neutron diffraction

With the Kirchhoff’s law, we can calculate the neutron wave function in the
diffraction area. It can be calculated by the formula [9]

ψout(r, t) = − 1

4π

∫

s

exp(ikr)

r
n ·
[

∇′ψin +

(

ik − 1

r

)

r

r
ψin

]

ds , (13)

where ψout(r, t) is diffraction wave function on the display screen, ψin(r, t) is the
wave function at slit surface (z = c) and s is the area of the aperture of the slit.
For the N -slit diffraction, Eq. (13) becomes

ψout(r, t) = − 1

4π

∫

s1

exp(ikr)

r
n ·
[

∇′ψ1 +

(

ik − 1

r

)

r

r
ψ1

]

ds

− 1

4π

∫

s2

exp(ikr)

r
n ·
[

∇′ψ2 +

(

ik − 1

r

)

r

r
ψ2

]

ds− . . .
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− 1

4π

∫

sN

exp(ikr)

r
n ·
[

∇′ψN +

(

ik − 1

r

)

r

r
ψN

]

ds . (14)

In Eq. (14), the first and N -th terms are corresponding to the diffraction wave
functions of the first slit and the N -th slit.

In the following, we calculate the diffraction wave function of the first slit. It is

ψout1(r, t) = − 1

4π

∫

s1

exp(ikr)

r
n ·
[

∇′ψ1 +

(

ik − 1

r

)

r

r
ψ1

]

ds . (15)

The diffraction area is shown in Fig. 2, where k =
√

2ME/h̄2, s1 is the area of the

first single-slit, r is the position of a point on the surface (z = c), P is an arbitrary
point in the diffraction area, and n is a unit vector, which is normal to the surface
of the slit.

Fig. 2. Diffraction area of the single slit.

From Fig. 2, we have

r = R− R

R
· r′ ≈ R− r

r
· r′ = R− k2

k
· r′ , (16)

then
exp(ikr)

r
=

exp
(

ik(R− r · r′/r)
)

R− r · r′/r =
exp(ikR) exp(−ik2 · r′)

R− r · r′/r

≈ exp(ikR) exp(−ik2 · r′)
R

|r′| ≪ R , (17)

with k2 = kr/r. Substituting Eq. (16) and (17) into Eq. (15), one obtains

ψout1(r, t) = −exp(ikR)

4πR
exp

(

− i

h̄
Et

)
∫

s1

exp(−ik2 · r′)
∞
∑

m=0

∞
∑

n=0

16A

anb bma
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× exp

(

i

√

2ME

h̄2
− n2b −m2

a c

)

sinnbx
′ sinmay

′

×
[

i

√

2ME

h̄2
− n2b −m2

a + in · k2 −
n ·R
R2

]

dx′dy′ . (18)

Assume that the angle between k2 and x-axis (y-axis) is π
2 − α (π2 − β), and α(β)

is the angle between k2 and the surface yz (xz), then we have

k2x = k sinα , k2y = k sinβ , (19)

n · k2 = k cos θ , (20)

where θ is the angle between k2 and z-axis, and the angles θ, α and β satisfy the
equation

cos2 θ + cos2
(π

2
− α

)

+ cos2
(π

2
− β

)

= 1 (21)

Substituting Eqs. (19) – (21) into Eq. (18) yields

ψout1(r, t)=−exp(ikR)

4πR
exp

(

− i

h̄
Et

) ∞
∑

m=0

∞
∑

n=0

16A

anb bma

exp

(

i

√

2ME

h̄2
−n2b−m2

a c

)

×
[

i

√

2ME

h̄2
− n2b −m2

a +

(

ik − 1

R

)

√

cos2 α− sin2 β

]

×
b
∫

0

exp
(

− ik sinαx′
)

sinnbx
′ dx′

a
∫

0

exp
(

− ik sinβ y′
)

sinmay
′ dy′. (22)

Equation (22) is the diffraction wave function of the first slit. Obviously, the diffrac-
tion wave function of the N -th slit is

ψoutN(r, t)=−exp(ikR)

4πR
exp

(

− i

h̄
Et

) ∞
∑

m=0

∞
∑

n=0

16A

anb bma

exp

(

i

√

2ME

h̄2
−n2b−m2

a c

)

×
[

i

√

2ME

h̄2
− n2b −m2

a +

(

ik − 1

R

)

√

cos2 α− sin2 β

]

×
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b
∫

0

exp
(

−ik sinαx′
)

sinnbx
′ dx′

(N−1)(a+d)+a
∫

(N−1)(a+d)

exp
(

−ik sinβ y′
)

sinma

(

y′−(N−1)(a+d)
)

dy′,

(23)
where d is the two slit distance. The total diffraction wave function for the N slits
is

ψout(x, y, z, t) = ψout1(x, y, z, t) + ψout2(x, y, z, t) + · · ·+ ψoutN (x, y, z, t) . (24)

For the double-slit and three-slit diffraction, the values of N are 2 and 3. From
the diffraction wave function ψout(x, y, z, t), we can obtain the relative diffraction
intensity I on the display screen from

I ∝ |ψout(x, y, z, t)|2 (25)

4. Numerical results

Next, we present our numerical calculation of relative diffraction intensity. The
main input parameters are M = 1.67× 10−27 kg, R = 1 m, A = 109, α = 0.01 rad,
E = 0.1 eV, Planck’s constant h̄ = 1.055×10−34 Js. Equations (23) – (25) are sums
over the integer values m and n. We find the series are convergent when m ≥ 600
and n ≥ 10, so we can make numerical calculation for equations (23) – (25). We
can obtain the relation between the diffraction angle β and the relative diffraction
intensity I.

In the double-slit diffraction, we obtained the following results:

(1) When the ratio (d+ a)/a = n (n = 1, 2, 3, · · ·), the orders n, 2n and 3n are
missing in the diffraction pattern. One can see in Fig. 3, calculated with a = 20λ,
d = 40λ and (d+a)/a = 3, the orders 3, 6, 9, are missing (the middle pattern is the

Fig. 3 (left). Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 4. Relation between β and I for a = 20λ, b = 10000λ, c = λ and d = 55λ.
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zero-th order), where λ = (2πh̄)/
√
2ME = 1.228 × 10−7 m is the neutron wave-

length. In Fig. 5, the orders 3, 6, 9, are missing. In the double-slit diffraction, the
missing order can be said to be due to a combination of interference and diffraction.

(2) When the ratio (d + a)/a /=n (n = 1, 2, 3, · · ·), no order is missing in the
diffraction pattern. In Fig. 4, with a = 20λ, d = 55λ and (d + a)/a = 3.75, (a
non-integer), there isn’t a missing order in the diffraction pattern. In Fig. 6, with
(d+ a)/a = 3.5, there isn’t a missing order in the diffraction pattern, too.

Fig. 5 (left). Relation between β and I for a = 50λ, b = 1000λ, c = λ and d = 100λ.

Fig. 6. Relation between β and I for a = 50λ, b = 1000λ, c = λ and d = 125λ.

(3) The slit length b has an effect on the the diffraction intensity. When b is
larger, the diffraction intensity increases as can be seen in Figs. 3 and 7.

Fig. 7 (left). Relation between β and I for a = 20λ, b = 5000λ, c = λ and d = 40λ.

Fig. 8: Relation between β and I for a = 20λ, b = 1000λ, c = 100λ and d = 40λ.

(4) The slit thickness c has a large effect on the intensity and form of the
diffraction patterns. In Figs. 3 and 8, with (d + a)/a = 3, the slit thickness c
corresponds to 1 λ and 100 λ. The orders 3, 6, 9, · · · are missing. In Fig. 8, we find,
when the slit thickness c increases, the missing-orders phenomenon disappears.

202 FIZIKA B 18 (2009) 4, 195–206



xiang-yao wu et al.: quantum theory of neutron multiple-slit diffraction

Fig. 9 (left). Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 10. Relation between β and I for a = 5λ, b = 1000λ, c = 0.1λ and d = 5λ.

Figure 9 shows the single-slit and double-slit diffraction with a = 20λ, b =
1000λ, c = λ and d = 40λ. The real intensity I should be multiplied by 0.2.

In multiple-slit diffraction (N ≥ 3), we obtained the results:

(1) For N -slit diffraction, there are N −2 secondary maxima and N −1 minima
between the two principle maxima. Figures 10 to 14 show results for the slit number
N = 3. There is 1 secondary maximum and 2 minima between the two principal
maxima. In Figs. 10 and 14, with the ratio (d+ a)/a = 2, the orders 2, 4, 6, · · · are
missing. In Fig. 12, the ratio (d+ a)/a = 4 and the orders 4, 8, 12, are missing. In
Fig. 11, the ratio is (d+ a)/a = 2.5 and there are no missing orders. In Fig. 13, the
ratio is (d + a)/a = 2, but the slit thickness c was increased to c = 10λ and there
are no missing orders at 2, 4, 6, · · ·.

Fig. 11 (left). Relation between β and I for a = 5λ, b = 1000λ, c = 0.1λ and
d = 7.5λ.

Fig. 12. Relation between β and I for a = 5λ, b = 1000λ, c = 0.1λ and d = 15λ.
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Fig. 13 (left). Relation between β and I for a = 5λ, b = 1000λ, c = 10λ and
d = 5λ.

Fig. 14. Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 15 (left). Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 16. Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 17 (left). Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 20λ.

Fig. 18. Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.
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(2) Comparing Fig. 10 with Fig. 14, we can find that the diffraction intensity
increases and the pattern width becomes narrower when the slit width a increases.

(3) From Figs. 14 to 20, we can find that the diffraction intensity increases and
the pattern width becomes narrower when the slit number N increases.

(4) There are N − 2 secondary maxima and N − 1 minima between the two
principle maxima, as can be found from Fig. 14 to Fig. 20.

Fig. 19 (left). Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

Fig. 20. Relation between β and I for a = 20λ, b = 1000λ, c = λ and d = 40λ.

5. Conclusion

We present the results of calculations of neutron multiple-slit diffraction based
on the quantum mechanical approach.

For the double-slit diffraction, we obtain the following results: (1) When the
ratio is (d+ a)/a = n (n = 1, 2, 3, · · ·), the orders n, 2n, 3n, · · · are missing in the
diffraction pattern. (2) When the ratio is (d+ a)/a /=n (n = 1, 2, 3, · · ·), no order
is missing in the diffraction pattern.

For N -slits diffraction (N ≥ 3), we obtain the following results: (1) missing or-
ders similar to the double-slit diffraction also appear. (2) There are N−2 secondary
maxima and N−1 minima between the two principal maxima. (3) As the slit num-
ber N increases, the diffraction intensity increases and the pattern width becomes
narrower. (4) As the slit width a increases, the diffraction intensity increases and
the pattern width becomes narrower. (5) When the two slit distance d increases,
the number of principle maxima increases and the pattern becomes narrower. (6)
We find a new quantum effect that the slit thickness c has a large effect to the
multiple-slit diffraction pattern. We think all the predictions in our work can be
tested by the neutron multiple-slit diffraction experiments.
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[2] W. Schöllkopf and P. J. Toennies, Science 266 (1994) 1345.

[3] M. Arudt, O. Nairz, J. Voss-Andreae, C. Kwller, G. Vander Zouw and A. Zeilinger,
Nature 401 (1999) 680.

[4] O. Nairz, M. Arudt and A. Zeilinger, J. Mod. Opt. 47 (2000) 2811.

[5] S. Kunze, K. Dieckmann and G. Rempe, Phys. Rev. Lett. 78 (1997) 2038.

[6] B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt and A. Zeilinger
Phys. Rev. Lett. 88 (2002) 100404.

[7] S. A. Sanz, F. Borondo and J. M. Bastiaans, Phys. Rev. A 71 (2005) 042103.

[8] X. Y. Wu, J. H. Yang, X. J. Liu, L. Wang, G. Liu, X. H. Fan and Y. Q. Guo, Chin.
Phys. Lett. 24 (2007) 1813.

[9] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Chichester, Ch. 10 (1999)
p. 579.

KVANTNA TEORIJA DIFRAKCIJE NEUTRONA NA MNOGO PUKOTINA

Proučavamo difrakciju neutrona na mnogo pukotina kvantno-mehaničkim pris-
tupom. Za dvije pukotine postigli smo ove ishode računa: (1) Kada je omjer
(d + a)/a = n (n = 1, 2, 3, · · ·), izostaju redovi n, 2n, 3n, · · · u difrakcijskoj
slici. (2) Kada je (d + a)/a /=n (n = 1, 2, 3, · · ·), svi se redovi javljaju u difrakci-
jskoj slici. Za difrakciju na N (N ≥ 3) pukotina dobili smo ove ishode: (1) Izme-
d–u dva osnovna maksimuma javljaju se N − 2 sekundarna maksimuma i N − 1
minimuma. (2) Kako se broj pukotina povećava, povećava se intenzitet difrakcijske
slike i širine vrhova se smanje. (3) Kad se širina pukotina poveća, pojača se inten-
zitet difrakcije a vrhovi se suze. (4) Ako se poveća razmak pukotina d, poveća se
broj glavnih maksimuma i oni se suze. (5) Nalazimo nov kvantni efekt da duljina
pukotina c ima velik utjecaj na difrakcijsku sliku u slučaju mnogo pukotina. Vjeru-
jemo da će se ishodi ovog rada provjeriti mjerenjem neutronske difrakcije na rešetci
s mnogo pukotina.
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