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We discuss the field equations in Saez-Ballester scalar-tensor theory of gravitation
for a Bianchi type-V model filled with viscous fluid together with heat flow. We
obtain two classes of cosmological solutions by applying a special law of variation of
Hubble’s parameter which yields a constant value of deceleration parameter. One
class of solutions corresponds to a model of universe which evolves from a big-bang
type singularity at t = 0 and expands with power-law expansion. The other class of
solutions represents an universe expanding exponentially having singularity in the
infinite past. The physical and kinematical features of the models are discussed. We
observe that the models of the universe in two types of cosmologies are compatible
with the results of recent observations.
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1. Introduction

The Friedmann-Robertson-Walker (FRW) models are only globally acceptable
perfect fluid space-time which are spatially homogeneous and isotropic. The ad-
equacy of isotropic cosmological models for describing the present state of the
universe is no basis for expecting that they are equally suitable for describing the
early stages of evolution of the universe. At the early stages of the evolution of the
universe, when radiation in the form of photons as well as neutrino decoupled, the
matter behaved like a viscous fluid. Since viscosity counteracts the gravitational

1Corresponding author

FIZIKA B 18 (2009) 4, 207–218 207



ram al.: anisotropic viscous fluid cosmological models with heat flow in . . .

collapse, a different picture of the initial stage of the universe may appear due to
dissipative processes caused by viscosity.

Misner [1,2] studied the effect of viscosity on the evolution in the cosmological
models and has suggested that the strong dissipation due to the neutrino viscosity
may considerably reduce the anisotropy of the black-body radiation. Murphy [3]
obtained an exact cosmological model of zero-curvature of FRW type in the pres-
ence of bulk viscosity alone which exhibits an interesting feature that the big-bang
singularity appears in the infinite past. Roy and Tiwari [4] presented some plane
symmetric solutions to Einsteins’s field equations representing inhomogeneous cos-
mological models with viscous fluid and constant bulk viscosity. Szydlowski and
Heller [5] constructed models of the universe filled with interacting matter and ra-
diation including bulk viscosity dissipation. Mohanty and Pradhan [6] obtained a
class of exact non-static solution in a closed elliptic Robertson-walker space-time
filled with viscous fluid in the presence of attractive scalar fields.

Belinski and Khalatnikov [7], while investigating a Bianchi type I cosmologi-
cal model with the influence of viscosity, have found the important property that
near the initial singularity the gravitational field creates matter. Banerjee et al.
[8] obtained some Bianchi type I solutions in the case of stiff matter by using the
assumption that shear viscosity coefficient are power-law functions of the energy
density. Huang [9] presented exact solution for a Bianchi type I cosmological model
with viscosity without using shear viscosity. Goener and Kowaleski [10] developed a
method for obtaining irrotational anisotropic viscous fluid solutions of Bianchi type
I with barotropic equation of state. Banerjee and Sanyal [11] presented an irrota-
tional Bianchi type V model under the influence of both shear and bulk viscosity
together with heat flow. Coley [12], Coley and Hoogan [13], while generalizing the
work of Coley and Tupper [14], studied diagonal Bianchi type V imperfect fluid
models with both viscosity and heat conduction with and without the cosmological
term. Recently, Singh and Chaubey [15] investigated the evolution of Bianchi type
V model with viscous fluid and cosmological constant.

In this paper, we obtain two classes of exact solutions of the field equations in
the scalar-tensor theory of Saez and Ballester [16] for a Bianchi type V space-time
filled with a viscous fluid with both bulk and shear viscosities together with heat
flow. In order to find solutions of the field equations, we apply a special law of
variation of Hubble’s parameter as proposed by Berman [17]. One class of solutions
represents model of the universe with power-law expansion which evolves from a
big-bang singularity at t = 0. The other class of solutions corresponds to an expo-
nentially expanding universe having singularity in the infinite past. The physical
and kinematical behavior of models are discussed in two types of cosmologies.

2. Field equations and general expressions

We consider the spatially homogeneous Bianchi type V model in the form

ds2 = dt2 −A2(t)dx2 − e2mx
[

(B2(t)dy2 + C2(t)dz2
]

, (1)
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where A(t), B(t) and C(t) are the cosmic scale factors and m is a constant.

The energy-momentum tensor Tij in a viscous fluid with heat conduction is
given by

Tij = (ρ+ p̄)uiuj−p̄gij+ηδkj
(

ui;k + uk;i − uiu
kuj;k − uju

kui;k

)

+hiuj+hjui , (2)

where ρ is the energy density and p̄ the effective pressure given by

p̄ = p−

(

ξ −
2

3
η

)

uk
;k. (3)

Here ui is the 4-velocity of the fluid, ξ and η are coefficients of bulk and shear
viscosity, and hi is the heat flow vector orthogonal to ui. If we assume that the
heat flow is in the x-direction only, then hi = (h1, 0, 0, 0), h1 being a function of
time.

The field equations in Saez-Ballester scalar-tensor theory of gravitation are

Rij −
1

2
Rgij − ωφr(φ;iφ;j −

1

2
gijφ;kφ

;k) = −Tij . (4)

The scalar field φ satisfies the equation

2φrφ;k
;k + rφr−1φ;kφ

;k = 0, (5)

where r is an arbitrary constant and ω is a dimensionless coupling constant. A
semicolon denotes covariant derivative. We have taken 8πG = c = 1 in Eq. (4).
The energy-momentum tensor Tij satisfies the conservation equation

T ij
;j ui = 0. (6)

For the metric (1), the field equations (2) – (4), in comoving coordinates, yield

B̈

B
+

C̈

C
+

Ḃ

B

Ċ

C
−

m2

A2
= −

(

p̄− 2η
Ȧ

A

)

+
1

2
ωφrφ̇2 , (7)

Ä

A
+

C̈

C
+

Ȧ

A

Ċ

C
−

m2

A2
= −

(

p̄− 2η
Ḃ

B

)

+
1

2
ωφrφ̇2 , (8)

Ä

A
+

B̈

B
+

ȦḂ

AB
−

m2

A2
= −

(

p̄− 2η
Ċ

C

)

+
1

2
ωφrφ̇2 , (9)

Ȧ

A

Ḃ

B
+

Ȧ

A

Ċ

C
+

Ḃ

B

Ċ

C
−

3m2

A2
= ρ−

1

2
ωφrφ̇2 , (10)
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m

(

2
Ȧ

A
−

Ḃ

B
−

Ċ

C

)

= h1 , (11)

where an over dot denotes differentiation with respect to time t. The conservation
equation (6) gives

ρ̇+ (ρ+ p̄)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

− 2η





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


 =
2m

A2
h1. (12)

The scalars of expansion and shear are calculated as

θ = ui
;i =

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

, (13)

2σ2 =





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


−
θ2

3
. (14)

For the metric (1), the average scale factor R is defined by

R = (ABC)
1/3

. (15)

The spatial volume V is given by

V = R3 = ABC. (16)

The generalized mean Hubble’s parameter H is defined by

H =
Ṙ

R
=

1

3

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

, (17)

where H1 = Ȧ/A, H2 = Ḃ/B and H3 = Ċ/C are the directional Hubble’s param-
eters in the directions of x, y and z, respectively. The deceleration parameter q is
given by

q = −
RR̈

Ṙ2
. (18)

Subtracting Eqs. (7) and (8), Eqs. (8) and (9), and Eqs. (7) and (9), and integrating
the resulting equations, we obtain the quadrature solutions for the average scale
factors A, B and C as follows:

A(t) = l1R exp

[

X1

∫

exp (−2
∫

ηdt)

R3
dt

]

, (19)
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B(t) = l2R exp

[

X2

∫

exp (−2
∫

ηdt)

R3
dt

]

, (20)

C(t) = l3R exp

[

X3

∫

exp (−2
∫

ηdt)

R3
dt

]

, (21)

where constants X1, X2, X3 and l1, l2, l3 satisfy the relations

X1 +X2 +X3 = 0 and l1l2l3 = 1. (22)

For the metric (1), Eq. (5) provides

φ̈+ φ̇

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

+
r

2φ
φ̇2 = 0 , (23)

which, on integration yields

φ =

[

h(r + 2)

2

∫

dt

R3

]2/(r+2)

. (24)

From Eqs. (7) – (10), we obtain the expressions for energy density and effective
pressure as given by

ρ = 3H2 − σ2 −
3m2

A2
+

1

2
ωφrφ̇2 , (25)

p̄ = H2 (2q − 1)− σ2 +
m2

A2
+

2

3
ηθ +

1

2
ωφrφ̇2. (26)

Clearly, we can find the solutions of the Eqs. (19) – (21) for the scale factors A, B,
C if the shear viscosity coefficient η and R are known. Regarding η, we make the
physically valid assumption that the shear is proportional to the expansion, η ∝ θ,
i.e.

η = η0θ , (27)

where η0 is a positive constant.

In the next section, we find two explicit forms of the average scale factor R by
applying a special law of variation for Hubble’s parameter. Using the explicit forms
of R, we find the solutions of Eqs. (19) – (21) in two type of cosmologies.
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3. Variation law for Hubble’s parameter

In order to obtain explicit solutions of the Eqs. (19) – (21), we assume that the
mean Hubble’s parameter H is related to the average scale factor R by the relation

H = lR−n , (28)

where l and n are non-negative constants. Such type of relation has already been
used by Berman [17], Berman and Gomide [18] for solving field equations in FRW
cosmologies, Singh and Kumar [19], Kumar and Singh [20], for Bianchi type I
space-times and Singh et al. [21], Shri Ram et al. [22] for Bianchi type V models in
different physical contexts. This relation yields a constant value of the deceleration
parameter. The positive value of q corresponds to standard decelerating universe,
whereas the negative value indicates inflation.

Substituting Eq. (28) in Eq. (17), we obtain

Ṙ = lR−n+1 , (29)

which, on differentiation, gives

R̈ = −l2(n− 1)R−2n+1. (30)

From Eqs. (18), (29) and (30), we find that

q = n− 1. (31)

Thus, the variation law Eq. (28) of Hubble’s parameter gives a constant value of
deceleration parameter. For n > 1, we have a decelerating model and for 0 ≤ n < 1,
we have an accelerating model of the universe.

Integration of Eq. (29) provides

R = (nlt+ k)
1/n

, n /=0 , (32)

R = c exp (lt) , n = 0 , (33)

where k and c are integration constants. Without loss of any generality, we can
take k = 0. Then Eq. (32) becomes

R = (nlt)
1/n

. (34)

We now use Eqs. (33) and (34) to solve Eqs. (19) – (21) for scale factors A, B
and C in two types of cosmology.
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3.1. Cosmological model with power-law expansion (n =/ 0)

Using the power-law solution to the average scale factor R, given in Eq. (34),
we obtain

H = (nt)
−1

, (35)

θ = 3 (nt)
−1

, (36)

η = 3η0(nt)
−1. (37)

Substituting the value of R and η in Eqs. (19) – (21) and integrating, we obtain

A(t) = l1 (nlt)
1/n

exp

[

X1

l(n− 3− 6η0)
(nlt)

(n−3−6η0)/n

]

, (38)

B(t) = l2 (nlt)
1/n

exp

[

X2

l(n− 3− 6η0)
(nlt)

(n−3−6η0)/n

]

, (39)

C(t) = l3 (nlt)
1/n

exp

[

X3

l(n− 3− 6η0)
(nlt)

(n−3−6η0)/n

]

, (40)

provided n /=(3 + 6η0). The directional Hubble’s parameters H1,H2,H3 are ob-
tained as

H1 = (nt)
−1

+X1 (nlt)
−(3+6η0)/n , (41)

H2 = (nt)
−1

+X2 (nlt)
−(3+6η0)/n , (42)

H3 = (nt)
−1

+X3 (nlt)
−(3+6η0)/n . (43)

The shear scalar σ is given by

σ2 =
1

2

(

X2
1 +X2

2 +X2
3

)

(nlt)
−(6+12η0)/n . (44)

Eq. (24), on integration, yields

φ =

[

h(r + 2)

2l(n− 3)

]2/(r+2)

(nlt)
2(n−3)/{(n(r+2)}

, n /=3 . (45)

Using Eqs. (38) – (40) in Eq. (11), we find that

h1 = 3mX1 (nlt)
−(3+6η0)/n . (46)
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With these solutions, the conservation equation (12) is identically satisfied.

From Eqs. (25) and (26), the energy density and the effective pressure are
obtained as

ρ = 3(nt)−2 −
1

2

(

X2
1 +X2

2 +X2
3

)

(nlt)−(6+12η0)/n

−
3m2

l1
2 (nlt)−2/n exp

[

2X1

l(3 + 6η0 − n)
(nlt)(n−3−6η0)/n

]

+
1

2
ωh2(nlt)−6/n (47)

p̄ = (2n+ 6η0 − 3)(nt)−2 −
1

2

(

X2
1 +X2

2 +X2
3

)

(nlt)−(6+12η0)/n

+
m2

l1
2 (nlt)

−2/n exp

[

2X1

l(3 + 6η0 − n)
(nlt)

(n−3−6η0)/n

]

+
1

2
h2ω(nlt)−6/n (48)

provided n /=(3 + 6η0).

If we assume that the energy density ρ and pressure p satisfy the barotropic
equation of state p = γρ, 0 ≤ γ ≤ 1, then, from Eq. (3), we find that

ξ =
(3γ − 2n+ 3)l

3
(nlt)−1 +

(

X1
2 +X2

2 +X3
2
)

(1− γ)

6l
(nlt)(n−6−12η0)/n

−
m2(3γ + 1)

3l1
2l

(nlt)(n−2)/n exp

[

2X1

l(3 + 6η0 − n)
(nlt)(n−3−6η0)/n

]

+
ω(γ − 1)h2

6l
(nlt)(n−6)/n. (49)

The coefficients of bulk and shear viscosities are time-dependent.

For this model, the spatial volume V tends to zero as t → 0. The energy density,
pressure, scalar expansion and shear scalar all assume infinite values at this epoch.
Heat function is also infinite at t = 0. Thus, the model evolves from a big-bang type
singularity at t = 0 and eventually expands with power-law expansion. The scalar
function φ, viscosity coefficients ζ and η are also infinite at t = 0. As the cosmic time
increases, the volume and all scale factors will increase, but the expansion scalar
decreases. The physical and kinematical quantities σ2, H1,H2, H3, H, ρ and p are
decreasing functions, as t increases. As t → ∞, the spatial volume becomes infinite
and other physical and kinematical quantities tend to zero. The heat function dies
out for large time. Also σ2/θ tends to zero as t → ∞ provided n < 6(1 + 2η0).
Thus, the model gives essentially empty universe for large time.
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3.2. Cosmological model with exponential expansion (n = 0)

Using the exponential form of R given in Eq. (33), we obtain

H = l , (50)

θ = 3l . (51)

The shear viscosity coefficient η and volume scalar V are given by

η = 3lη0 , (52)

V = c3 exp (3lt). (53)

Integrating Eqs. (19) – (21), we obtain the solutions for the metric functions as

A(t) = l1c exp

[

lt−
X1

3lc3(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

, (54)

B(t) = l2c exp

[

lt−
X2

3lc3(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

, (55)

C(t) = l3c exp

[

lt−
X3

3lc3(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

. (56)

From Eq. (24), the scalar function φ has the solution

φ(t) =

[

h(r + 2)

6l

]2/(r+2)

exp

(

−
6lt

r + 2

)

. (57)

The directional Hubble’s parameters H1, H2 and H3 have the values

H1 = l +
X1

c3
exp {−3l(1 + 2η0)t} , (58)

H2 = l +
X2

c3
exp {−3l(1 + 2η0)t} , (59)

H3 = l +
X3

c3
exp {−3l(1 + 2η0)t} . (60)

The shear scalar σ has the value given by

σ2 =

(

X2
1 +X2

2 +X2
3

)

2c6
exp {−6l(1 + 2η0)t} . (61)
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The heat function h1 is given by

h1 =
3mX1

c3
exp {−3l(1 + 2η0)t} . (62)

The expressions for the energy density and effective pressure are obtained as

ρ = 3l2 −

(

X2
1 +X2

2 +X2
3

)

2c6
exp {−6l(1 + 2η0)t}

−
3m2

l21c
2
exp

[

2X1

3c3l(1 + 2η0)
exp {−3l(1 + 2η0)t} − 2lt

]

+
ωh2

2
exp (−6lt) (63)

p̄ = l2 (6η0 − 3)−

(

X2
1 +X2

2 +X2
3

)

2c6
exp {−6l(1 + 2η0)t}

+
m2

c2l21
exp

[

2X1

3c3l(1 + 2η0)
exp {−3l(1 + 2η0)t} − 2lt

]

+
ωh2

2
exp (−6lt). (64)

By a straightforward calculation it can easily be seen that the conservation Eq. (12)
is identically satisfied.

If the energy density ρ and pressure p satisfy the gamma law of equation of
state p = γρ, 0 ≤ γ ≤ 1, then the bulk viscosity coefficient ξ has the value given by

ξ = (γ + 1)l +

(

X2
1 +X2

2 +X2
3

)

(1− γ)

6lc6
exp {−6l(1 + 2η0)t}

−
m2(3γ + 1)

3ll1
2c2

exp

[

2X1

3c3l(1 + 2η0)
exp {−3l(1 + 2η0)t} − 2lt

]

+
(γ − 1)

6l
ωh2 exp (−6lt). (65)

Thus, in this model of the universe, bulk viscosity coefficient ξ is function of time
and shear viscosity coefficient is constant.

The spatial volume V tends to zero, and energy density and pressure become
infinite as t tends to −∞. This means that the model has a singularity in the infinite
past. All physical and kinematical quantities are well behaved for −∞ < t < ∞.
At t → ∞, the spatial volume becomes infinite, and energy density and pressure
tend to constant values. Also σ2/θ → 0 as t → ∞. Therefore the model becomes
isotropic for large t.
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4. Conclusions

We have presented two classes of exact solutions to the field equations in the
framework of Saez-Ballester scalar-tensor theory for a Bianchi type V model in the
presence of a viscous fluid together with heat flow. We have applied a special law of
variation for Hubble’s parameter to generate models of the universe in two type of
cosmologies. One class of models represents a singular universe which evolves from
a big-bang singularity at t = 0 and expands with expansion rate of power-law type.
The other class of models with negative deceleration parameter corresponds to ex-
ponentially expanding model having singularity in the infinite past. The evolution
of the universe in such a scenario is consistent with the present observation predict-
ing an accelerated expansion. We have also discussed the physical and kinematical
behavior of the models of the universe in two types of cosmologies. These models
could give appropriate description of the universe at its early stages of evolution.
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NEIZOTROPNI KOZMOLOŠKI MODELI S VISKOZNOM TEKUĆINOM I
TOKOM TOPLINE U SAEZ-BALLESTEROVOJ TEORIJI GRAVITACIJE

Razmatramo jednadžbe polja u Saez-Ballesterovoj skalarno-tenzorskoj teoriji gravi-
tacije za Bianchijev model tipa V s viskoznom tekućinom i tokom topline. Postigli
smo dvije vrste kozmoloških rješenja primjenom posebne relacije za promjene Hub-
bleovog parametra koje vode na stalnu vrijednost parametra usporavanja. Jedna
vrsta rješenja odgovara modelu svemira koji se razvija iz singularnosti tipa ve-
likog praska u t = 0 i širi se prema potencijalnom zakonu. Druga vrsta rješenja
predstavlja svemir koji se širi eksponencijalno a singularnost mu je u beskonačnoj
prošlosti. Raspravljaju se fizičke i kinematičke osebine oba modela. Nalazimo da su
ova dva modela svemira u skladu s nedavnim opažanjima.
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