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Bianchi type-I magnetized cosmological models with time-dependent gauge func-
tion β for stiff fluid distribution within the framework of Lyra geometry are in-
vestigated. To get the deterministic model of the universe, we have assumed that
eigenvalue (σ1

1) of shear tensor (σ
j
i ) is proportional to the expansion (θ). This leads

to A = (BC)n where A, B and C are metric potentials. The physical and geomet-
rical aspects of the models and singularities in the models are discussed.
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1. Introduction

The relevance of the stiff equation of state (ρ = p) to the matter content of
the universe in its early stage is discussed by Barrow [1]. Wesson [2] investigated
an exact solution of Einstein’s field equation for stiff fluid distribution. Götz [3]
obtained a plane-symmetric solution of Einstein’s field equation for stiff perfect fluid
distribution. Asseo and Sol [4] speculated the large-scale inter-galactic magnetic
field that is of primordial origin and at present measures 10−8 G and gives rise to
a density of the order of 10−35 g cm−3. The present-day magnitude of magnetic
energy is very small in comparison with the estimated matter density. It might
not have been negligible during the early stage of evolution of the universe. FRW
models are approximately valid as the present day magnetic field is very weak. The
existence of a primordial magnetic field is limited to Bianchi types I, II, III, VI0 and
VII0 as shown by Hughston and Jacobs [5]. The detailed discussion of the primordial
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magnetic field in the case of Bianchi type-I models has been given by Thorne [6].
Jacobs [7, 8] investigated Bianchi type-I cosmological model for barotropic perfect
fluid distribution with magnetic field. Collins [9] gave a qualitative analysis of
Bianchi type-I models with magnetic field. Roy and Prakash [10] investigated a
plane-symmetric cosmological model with an incident magnetic field for perfect
fluid distribution in which free gravitational field is of Petrov type-I degenerate. The
cosmological models in the presence of magnetic field have also been investigated
by Roy and Singh [11] and Bali et al. [12 – 14] in different contexts.

Einstein succeeded in geometrizing gravitation by expressing gravitational po-
tential in terms of metric tensor. The idea of geometrizing gravitation inspired
Weyl [15] to develop a theory to geometrize both gravitation and electromagnetism.
But Weyl theory was criticized due to the non-integrability of length of vector un-
der parallel displacement. Lyra [16] proposed a modification to Riemann geometry
by introducing a gauge function into the structureless manifold which is in a close
resemblance to Weyl’s geometry. In continuation of these investigations, Sen [17],
and Sen and Dunn [18] developed a new scalar-tensor theory of gravitation and
constructed a field equation analog of the Einstein’s field equation based on Lyra’s
geometry. Halford [19] has shown that the constant displacement field φµ in Lyra’s
geometry plays the role of cosmological constant Λ in general relativity. Soleng [20]
investigated cosmological models based on Lyra’s geometry and indicated that φµ

includes either a creation field and is equal to Hoyle-Narlikar creation field cos-
mology [21, 22] or contains a special vacuum field which with gauge vector can
be considered as the cosmological term. The cosmological models based on Lyra’s
geometry in different contexts have been investigated by Singh and Singh [23, 24],
Reddy and Venkateshwarlu [25], Chakraborty and Ghosh [26], Rahaman et al. [27 –
29], Pradhan et al. [30 – 32], Mohanty et al. [33] and Bali and Chandnani [34, 35].

In this paper, we investigate Bianchi type-I cosmological models in the presence
and absence of magnetic field, based on Lyra’s geometry. The magnetic field is
due to an electric current produced along the x-axis. The physical and geometrical
aspects of the models and singularities in these models are also discussed.

2. The metric and field equations

We consider Bianchi type-I metric in the form

ds2 = −dt2 +A2dx2 +B2dy2 + C2dz2, (1)

where A, B, C are functions of t alone.

Energy momentum tensor T j
i for perfect fluid distribution in the presence of

magnetic field is given by

T j
i = (ρ+ p)viv

j + pgji + Ej
i . (2)

Einstein’s modified field equation in normal gauge for Lyra’s manifold obtained by
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Sen [17] is given by

Rj
i −

1

2
Rgji +

3

2
φiφ

j − 3

4
φkφ

kgji = −T j
i , (3)

(in geometrized units where 8πG = 1 and c = 1). where vi = (0, 0, 0,−1); vivi =
−1; φi = (0, 0, 0, β(t)); v4 = −1; v4 = 1, p is the isotropic pressure, ρ the matter
density, vi the fluid flow vector and β the gauge function.

Ej
i is the electro-magnetic field tensor given by Lichnerowicz [36] as

Ej
i = µ̄

[

|h|2(vivj +
1

2
gji )− hih

j

]

, (4)

µ̄ being magnetic permeability and hi the magnetic flux vector defined by

hi =

√−g

2µ̄
ǫijklF

klvj , (5)

where F kl is the electro-magnetic field tensor and ǫijkl the Levi-Civita tensor den-
sity. We assume that current is flowing along the x-axis, so magnetic field is in
the yz plane. Thus h1 /=0, h2 = 0 = h3 = h4 and F23 is the only non vanish-
ing component of Fij . This leads to F12 = 0 = F13 by virtue of (5).We also find
F14 = 0 = F24 = F34 due to the assumption of infinite electrical conductivity of
the fluid (Maartens [37]). A cosmological model, which contains a global magnetic
field, is necessarily anisotropic since the magnetic vector specifies a preferred spatial
direction (Bronnikov et al. [38]). The Maxwell’s equations

Fij;k + Fjk;i + Fki;j = 0 ,

and

F ij
;j = 0 ,

are satisfied by F23 = constant= H(say).

Equation (5) leads to

h1 =
AH

µ̄BC
. (6)

From Eq. (4), we have

E1
1 = − H2

2µ̄B2C2
= −E2

2 = −E3
3 = E4

4 . (7)

The modified Einstein’s field Eq. (3) for the metric (1) leads to

B44

B
+

C44

C
+

B4C4

BC
+

3

4
β2 = −

(

p− H2

2µ̄B2C2

)

, (8)
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A44

A
+

C44

C
+

A4C4

AC
+

3

4
β2 = −

(

p+
H2

2µ̄B2C2

)

, (9)

A44

A
+

B44

B
+

A4B4

AB
+

3

4
β2 = −

(

p+
H2

2µ̄B2C2

)

, (10)

A4B4

AB
+

B4C4

BC
+

A4C4

AC
− 3

4
β2 = ρ+

H2

2µ̄B2C2
. (11)

The energy conservation equation T j
i;j = 0 leads to

ρ4+(ρ+p)

(

A4

A
+
B4

B
+
C4

C

)

−
[

∂

∂t

(

H2

2µ̄B2C2

)

+
H2

µ̄B2C2

(

B4

B
+
C4

C

)]

= 0 . (12)

and conservation of L.H.S. of (3) leads to

(

Rj
i −

1

2
Rgji

)

;j

+
3

2

(

φiφ
j
)

;j
− 3

4

(

φkφ
kgji

)

;j
= 0 . (13)

This leads to

3

2
φi

[

∂φj

∂xj
+ φlΓj

lj

]

+
3

2
φj

[

∂φi

∂xj
− φlΓ

l
ij

]

−3

4
gjiφk

[

∂φk

∂xj
+ φlΓk

lj

]

− 3

4
gjiφ

k

[

∂φk

∂xj
− φlΓ

l
kj

]

= 0 . (14)

Equation (14) is automatically satisfied for i = 1, 2, 3.

For i = 4, Eq. (14) leads to

3

2
β

[

∂

∂x4
(g44φ4) + φ4Γ4

44

]

+
3

2
g44φ4

[

∂φ4

∂t
− φ4Γ

4
44

]

−3

4
g44φ4

[

∂φ4

∂x4
+ φ4Γ4

44

]

− 3

4
g44g

44φ4

[

∂φ4

∂t
− φ4Γ4

44

]

= 0 , (15)

which leads to
3

2
ββ4 +

3

2
β2

(

A4

A
+

B4

B
+

C4

C

)

= 0 . (16)

3. Solution of field equations

For the complete determination of the model of the universe, we assume that
eigenvalue (σ1

1) of shear tensor (σ
j
i ) is proportional to the expansion (θ). This leads

to,

A = (BC)n , (17)
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where n is a constant and we have assumed the proportionality constant as unity.

The motive behind assuming this condition is explained as follows: Referring
to Thorne [6], the observations of the velocity-redshift relation for extragalactic
sources suggest that the Hubble expansion of the universe is isotropic today to
within 30 percent [39, 40]. More precisely, the red-shift studies place the limit
σ/H ≤ 0.30, where σ is the shear and H is the Hubble constant. Collins et al. [41]
have pointed out that for spatially homogeneous metric, the normal congurence to
the homogeneous hyper-surface satisfies the condition σ/θ is constant where σ is
shear and θ the expansion in the model.

Now, Eqs. (8) and (9) lead to

B44

B
− A44

A
=

C4

C

(

A4

A
− B4

B

)

+
H2

µ̄B2C2
. (18)

From Eqs. (9) and (10), we have

C44

C
− B44

B
=

A4

A

(

B4

B
− C4

C

)

. (19)

Using the condition (17), Eq. (19) leads to

B44C − C44B

B4C − C4B
= −n

(

B4

B
+

C4

C

)

. (20)

Equation (20) leads to

C2

(

B

C

)

4

= L(BC)−n, (21)

where L is constant of integration.

Let us assume

BC = µ , (22)

B

C
= ν . (23)

Using Eqs. (22) and (23) in (21), we have

ν4
ν

= Lµ−(n+1), (24)

which leads to
ν44
ν

= −(n+ 1)Lµ−(n+2)µ4 + L2µ−2(n+1). (25)

Using above equation, Eq. (18) leads to

(1− 2n)
µ44

µ
+ n(1− 2n)

µ2
4

µ2
+

ν44
ν

− ν24
ν2

+ (1 + n)
µ4ν4
µν

=
2H2

µ̄µ2
. (26)
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Using Eqs. (24) and (25) in (26), we get

(1− 2n)
µ44

µ
+ n(1− 2n)

µ2
4

µ2
=

2H2

µ̄µ2
, (27)

which leads to

2(1− 2n)µ44 + 2n(1− 2n)
µ2

µ
=

4K

µ
, (28)

where K = H2/µ̄.

We assume that

µ4 = f(µ) .

Thus

µ44 = ff ′ ,

where f ′ = df/dµ.

Therefore, Eq. (28) leads to

df2

dµ
+

2n

µ
f2 =

4K

(1− 2n)µ
, (29)

which again leads to

f2 =
2K

n(1− 2n)
+ lµ−2n, (30)

where l is a constant of integration.

Equation (30) leads to

dµ
√

2K/{n(1− 2n)}+ lµ−2n
= dt . (31)

Also, Eq. (24) leads to
dν

ν
=

L

µn+1
dt , (32)

which leads to

log ν =

∫

L

µn+1

dt

dµ
dµ . (33)

Using Eq. (31) in (33), we get

ν = N
[

µ−n +
√

µ−2n + γK
]−L/n

√
l

, (34)
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where γ = 2/{ln(1− 2n)} and N is a constant of integration.

Now, using Eqs. (31) and (34), the metric (1) leads to

ds2 = − dT 2

l(T−2n + γK)
+ T 2ndX2 + T

[

T−n +
√

T−2n + γK
]−L/n

√
l

dY 2

+T
[

T−n +
√

T−2n + γK
]L/n

√
l

dZ2, (35)

where T = µ, x = X,
√
Ny = Y , z/

√
N = Z and cosmic time t is given by

t =

∫

dT
√

2K/{n(1− 2n)}+ lT−2n
. (36)

4. Some physical and geometrical properties

Taking the stiff fluid condition, i.e. p = ρ, in Eq. (12) and using (17) and (22),
we have

ρ4 + 2(n+ 1)ρ

(

µ4

µ

)

−
[

∂

∂t

(

K

2µ2

)

+
K

µ2

(

µ4

µ

)]

= 0 , (37)

which leads to

ρ4 + 2ρ
(n+ 1)

√
l

µn+1

√

1 + γ ,Kµ2n = 0 (38)

and

ρ = MT−2(n+1)
√
l = p , (39)

where M is a constant of integration and µ = T .

The expansion (θ) is given by

θ =

(

A4

A
+

B4

B
+

C4

C

)

, (40)

which leads to

θ =
(n+ 1)

√
l

Tn+1

√

1 + γKT 2n . (41)

Components of the shear tensor (σj
i ) are given by

σ1
1 =

1

3

(

2A4

A
− B4

B
− C4

C

)

, (42)

σ2
2 =

1

3

(

2B4

B
− A4

A
− C4

C

)

, (43)
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σ3
3 =

1

3

(

2C4

C
− B4

B
− A4

A

)

, (44)

σ4
4 = 0 , (45)

so we obtain

σ1
1 =

(2n− 1)
√
l

3T (n+1)

√

1 + γKT 2n , (46)

σ2
2 =

1

3

[

(1− 2n)
√
l

2T (n+1)

√

1 + γKT 2n +
3L

2T (n+1)

]

, (47)

σ3
3 =

1

3

[

(1− 2n)
√
l

2T (n+1)

√

1 + γKT 2n − 3L

2T (n+1)

]

, (48)

σ4
4 = 0 . (49)

Now, the shear σ is given by

σ2 = 1
2

[

(σ1
1)

2 + (σ2
2)

2 + (σ3
3)

2 + (σ4
4)

2
]

,

which leads to

σ2 =
(2n− 1)2l[1 + γKT 2n] + 3L2

12T 2(n+1)
. (50)

Thus we find

σ1
1

θ
=

(2n− 1)

3(n+ 1)
,

which is a constant. Hence, the anisotropy is maintained throughout.

For the displacement vector (β), from Eq. (11), we have

3

4
β2 =

A4B4

AB
+

B4C4

BC
+

A4C4

AC
−

(

ρ+
H2

2µ̄B2C2

)

, (51)

which leads to

β2 =
(4n+ 1)l − L2

3T 2(n+1)
+

4(n+ 1)(2n+ 1)K

3n(1− 2n)T 2
− 4M

3T 2(n+1)
√
l
. (52)

5. Solution in the absence of magnetic field

To find the solution in the absence of magnetic field, we put K = 0 in Eq. (31)
and get

µndµ =
√
ldt , (53)
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which leads to

µ =
[

(n+ 1)
√
lt+ d

]1/(n+1)

, (54)

where d is a constant of integration.

Now, Eq. (32) leads to

dν

ν
=

L
[

(n+ 1)
√
lt+ d

]dt , (55)

which leads to

ν = Q
[

(n+ 1)
√
lt+ d

]L/{(n+1)
√
l}
, (56)

where Q is a constant of integration.

Thus the metric (1) in the absence of magnetic field is given by

ds2 = − dT 2

(n+ 1)2l
+T 2n/(n+1)dX2+T (

√
l+L)/{(n+1)

√
l}dY 2+T (

√
l−L)/{(n+1)

√
l}dZ2 ,

(57)

where (n+ 1)
√
l t+ d = T , x = X,

√
Qy = Y and z/

√
Q = Z.

In this case, the matter density (ρ) and isotropic pressure (p) are given by

ρ =
M

T 2
√
l
= p . (58)

The expansion (θ) is given by

θ =
(n+ 1)

√
l

T
. (59)

Components of the shear tensor (σj
i ) are given by

σ1
1 =

(2n− 1)
√
l

3T
, (60)

σ2
2 =

1

3

[

(1− 2n)
√
l + 3L

2T

]

, (61)

σ3
3 =

1

3

[

(1− 2n)
√
l − 3L

2T

]

, (62)

σ4
4 = 0 . (63)
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Hence, σ is given by

σ2 =
(2n− 1)2l + 3L2

12T 2
. (64)

Therefore

σ1
1

θ
=

(2n− 1)

3(n+ 1)
,

which is a constant.

Hence in the absence of magnetic field also the anisotropy is maintained through-
out.

For the displacement vector (β), from Eq. (11), we have

β2 =
(4n+ 1)l − L2

3T 2
− 4M

3T 2
√
l
. (65)

6. Special case

To get the deterministic model in terms of the cosmic time t, we put n = 1 in
Eq. (31) and get

µdµ
√

l − 2Kµ2
= dt , (66)

which after integration leads to

µ2 =
l

2K
− 2K(t+ b)2, (67)

where b is a constant of integration.

For n = 1, Eq. (24) leads to

ν4
ν

=
L

µ2
, (68)

Using (64) in (65), we have

ν4
ν

=
L

l/(2K)− 2K(t+ b)2
, (69)

which after integration leads to

ν = η

[√
l + 2K(t+ b)√
l − 2K(t+ b)

]L/2
√
l

, (70)
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where η is a constant of integration.

Using the above equations, the metric takes the form

ds2 = −dT 2 +

[

l

2K
− 2KT 2

]

dX2 +

[

l

2K
− 2KT 2

]1/2
[√

l + 2KT√
l − 2KT

]L/2
√
l

dY 2

+

[

l

2K
− 2KT 2

]1/2
[√

l + 2KT√
l − 2KT

]−L/2
√
l

dZ2, (71)

where t+ b = T , x = X,
√
η y = Y and z/

√
η = Z.

Now, from Eq. (39), the matter density (ρ) and isotropic pressure (p) are given
by

ρ =
M

[l/(2K)− 2KT 2]
2
√
l
= p , (72)

The expansion (θ) is given by

θ =
4KT

2KT 2 − l/(2K)
. (73)

The components of shear (σj
i ) are given by

σ1
1 =

2KT

3[2KT 2 − l/(2K)]
(74)

σ2
2 =

−1

6

[

3L+ 2KT

[2KT 2 − l/(2K)]

]

(75)

σ3
3 =

1

6

[

3L− 2KT

[2KT 2 − l/(2K)]

]

(76)

σ4
4 = 0 (77)

Therefore,

σ2 =
4K2T 2 + 3L2

12[2KT 2 − l/(2K)]2
(78)

and

σ1
1/θ =

1

6
,

which is a constant. Hence, anisotropy is maintained throughout.
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For n = 1, Eq. (11) leads to

β2 =
(5l − L2)

3 [l/(2K)− 2KT 2]
2 − 8K

[l/(2K)− 2KT 2]
− 4M

3 [l/(2K)− 2KT 2]
2
√
l
. (79)

Also the spatial volume (R3) is given by

R3 = ABC = A2 =

[

l

2K
− 2KT 2

]

. (80)

The deceleration parameter (q) is given by

q = −R44/R

R2
4/R

2
, (81)

which leads to

q =

[

6l + 8K2T 2

16K2T 2

]

. (82)

To discuss this case in the absence of magnetic field, we put K = 0 in Eq. (66) and
get

µ dµ =
√
l dt , (83)

which leads to

µ2 = (at+ d) , (84)

where a = 2
√
l and d is a constant of integration.

Equation (68) leads to

ν4
ν

=
L

(at+ d)
, (85)

which again leads to

ν = W (at+ d)L/a, (86)

where W is a constant of integration.

Now, using these values of µ and ν, the metric takes the form

ds2 = −dT 2

a2
+ TdX2 + T (1/2+L/a)dY 2 + T (1/2−L/a)dZ2 (87)

where (at+ d) = T , x = X,
√
Wy = Y , z/

√
W = Z.
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The matter density (ρ), pressure (p) and expansion (θ) for the model (87) are
given by

ρ =
M

T a
= p , (88)

θ =
a

T
. (89)

Components of shear (σj
i ) are given by

σ1
1 =

a

6T
, (90)

σ2
2 =

(6L− a)

12T
, (91)

σ3
3 = −6L+ a

12T
, (92)

σ4
4 = 0 . (93)

Therefore,

σ2 =
(a2 + 12L2)

48T 2
. (94)

and

σ1
1

θ
=

1

6

which is a constant. Hence, anisotropy is maintained throughout.

The displacement vector (β) is given by

β2 =
(5l − L2)

3T 2
− 4M

3T a
. (95)

The spatial volume (R3) is given by

R3 = T . (96)

The deceleration parameter (q) is given by

q = −R44/R

R2
4/R

2
,

which leads to

q = 2 .
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It is possible to discuss the entropy. To solve the entropy problem of the standard
model, it is necessary to have dS > 0 for at least a part of evolution of the universe.
In Riemannian geometry without a cosmological constant we have

TdS = d(ρR3) + pdR3 = 0 , (97)

where R is the scale factor. The conservation equation T j
i;j = 0 for the metric (1)

in the presence of magnetic field is given by Eq. (12) which leads to

ρ4 + (ρ+ p)

(

A4

A
+

B4

B
+

C4

C

)

+
3

2
ββ4 +

3

2
β2

(

A4

A
+

B4

B
+

C4

C

)

= 0 . (98)

In our case R3 = ABC. Since

TdS = ρ4 + (ρ+ p)

(

A4

A
+

B4

B
+

C4

C

)

> 0 (99)

because entropy increases.

Therefore, Eqs. (98) and (99) lead to

3

2
ββ4 +

3

2
β2

(

A4

A
+

B4

B
+

C4

C

)

< 0 ,

which requires β < 0. Thus, the displacement vector β is related to entropy because
for entropy dS > 0 which leads to β < 0.

7. Discussion and conclusions

The model (35) starts with a big-bang at T = 0 in the presence of magnetic
field when n > 0 and the expansion in the model decreases as time increases.
However, if n < 0 then the expansion in the model increases as time increases.
Since σ1

1/θ = constant, the anisotropy is maintained throughout. For n = 1/2, the
model (35) gives isotropy. The model (35) has point-type singularity at T = 0 when
n > 0 and it has cigar-type singularity when n < 0 [Mac Callum[42]].

In the absence of magnetic field, the model (57) starts expanding with a big-
bang at T = 0 and the expansion in the model decreases as time increases. When
T → ∞ then θ → 0. When l > L2 the model (57) has point-type singularity at
T = 0 and cigar-type singularity at T = 0 when l < L2. The model (71) starts with
a big-bang at T = 0 in the presence of magnetic field and the expansion in the model
decreases as time increases. Since σ1

1/θ = constant, the anisotropy is maintained

throughout. The model (71) has point-type singularity at T =
√
l/(2K). Since the

deceleration factor q > 0, the model (71) gives decelerating universe.

In the special case n = 1, the model (87) starts expanding with a big bang at
T = 0 and the expansion in the model decreases as time increases. The spatial
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volume increases as time increases. Since σ1
1/θ = constant, the anisotropy is main-

tained throughout. Since the deceleration factor q > 0, the model (87) represents
a decelerating universe. For n = 1, we obtain the same model as obtained by Bali
and Chandnani [34] in the absence of magnetic field. The model (87) has point-type
singularity at T = 0 when L/a > 1/2.
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BIANCHIJEVI MODELI TIPA I U LYRINOJ GEOMETRIJI S
MAGNETIZIRANOM KRUTOM TEKUĆINOM

Istražujemo Bianchijeve kozmološke modele s vremenski-ovisnom baždarnom funk-
cijom β za krutu tekućinsku raspodjelu u okviru Lyrine geometrije. Radi postizanja
odred–enja u modelima, pretpostavljamo da je svojstvena vrijednost (σ1

1) tenzora

smicanja (σj
i ) razmjerna širenju (θ). To vodi na A = (BC)n gdje su A, B and C

metrički potencijali. Raspravljamo takod–er fizičke i geometrijske značajke modela
i singularnosti.
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