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A class of non-static inhomogeneous cosmological models are investigated with cos-
mological term Λ(t) when source of the gravitational field is generated by a mixture
of meson field and perfect fluid. Using gamma law equation of state, Einstein’s field
equations are solved for two particular cases which are physically important. The
cosmological term Λ(t) is found to be a decreasing function of time, which is sup-
ported by results found from recent type Ia supernovae observations. Some physical
and geometrical aspects of the models are also discussed.
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1. Introduction

The cosmological term Λ has been introduced in 1917 by Einstein to modify
his own equations of general relativity. Now this Λ-term remains a focal point of
interest in modern theories. In 1930’s, distinguished cosmologists A. S. Eddington
and Abbé Georges Lemâıtre felt that introduction of Λ-term has attractive features
in cosmology and models based on it should be discussed deeply. Moreover, models
with Λ-term are becoming popular as they help to solve the cosmological constant
problem in a natural way. Further, cosmological observations by High-z Supernova
Team and Supernova Cosmological Project (Garnavich et al. [1], Perlmutter et al.
[2], Riess et al. [3], Schmidt et al. [4] ) strongly favor to a significant positive Λ
with the magnitude Λ(Gh/c3) ≈ 10−123 (Pradhan et al. [5]). These observations
on magnitudes and red-shift of type Ia supernova suggest that our universe may
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be an accelerating one with a large fraction of the cosmological density in the form
of Λ-term. The recent studies on cosmological constant problems by authors like
Tsagas and Maartens [6], Sahni and Starobinsky [7], Peeble [8], Padmanabhan [9],
Vishwakarma [10], Pradhan et al. [11], Sahu and Panigrahi [12] and Sahu and
Mohapatra [13] motivates us for more and deep studies on the cosmological models
involved with Λ-term.

Nowadays, cosmologists have taken keen interest to study the nature of scalar
fields with or without a mass parameter interacting with a perfect fluid distribu-
tion in order to draw a resemblance of the physics of the cosmos with experimental
results. A perfect fluid satisfactorily describes the distribution of matter due to the
large-scale distribution of galaxies in our universe (Bali and Jain [14]). The physical
phenomena observed, such as the large entropy per baryon and the remarkable de-
gree of isotropy of the cosmic microwave background radiation, suggest an analysis
of dissipative effects in cosmology (Pradhan et al. [15]). Plane-symmetric space-
times with perfect fluid as the source have been studied in general relativity owing
to their possible applications in astrophysics, cosmology and special relativistic
hydrodynamics (Sahu and Mohanty [16]). The study of interacting fields, one of
the fields being massless scalar field, is basically an attempt to look into yet an-
other unsolved problem of the unification of gravitational and quantum theories
(Reddy [17]). To our knowledge, no author has studied this theory for the plane-
symmetric space-time with cosmological constant Λ when source of the gravitational
field is generated by a mixture of massless scalar field and perfect fluid.

Therefore, in the present paper, we have considered this problem to study and
construct a class of plane-symmetric inhomogeneous models in general relativity.
Since the field equations are highly non-liner in nature, we derived solutions in two
particular forms which are physically important. The kinematical and dynamical
properties of all solutions found in the models are also studied. The work reported
here may be considered as the extension work of Sahu and Mohapatra [13], Sahu
and Mohanty [16] and generalization of work done by Panigrahi et al. [18].

2. Einstein’s field equations

We consider the metric for a plane-symmetric space-time in the general form

ds2 = D2dt2 −A2dx2 −B2(dy2 + dz2) , (1)

where A, B and D are functions of x and t.

The Einstein’s field equations with the cosmological term Λgij are given by

Gij ≡ Rij −
1

2
Rgij + Λgij = −8π(T p

ij + Tm
ij ) , (2)

where

T p
ij = (ρ+ p)uiuj − pgij ; giju

iuj = 1 , (3)
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and

Tm
ij = νiνj −

1

2
gijνkν

k (4)

are respectively the energy-momentum tensors corresponding to a perfect fluid and
massless scalar field. The massless scalar field ν satisfies the Klein-Gordon equation

gijν;ij = 0 . (5)

Here ρ, p, ui, ν and Λ are, respectively, the energy density, isotropic pressure, four
velocity vector of the fluid, massless scalar field and the cosmological constant.
Hereafter, the semicolon (;) denotes covariant differentiation. Now we use the co-
moving coordinates as ui = (0, 0, 0, D) and hence ui = (0, 0, 0, 1/D). Thus, using
co-moving coordinate system, the set of field Eqs. (2) for the metric (1) reduces to
the following forms,

2

BD2

[

B44−
DB1D1

A2
−B4D4

D

]

− 1

B2

[

B2
1

A2
−B2

4

D2

]

−Λ=−8π

[

p+
1

2

(

ν21
A2

+
ν24
D2

)]

(6)

2

B

[

B14 −
B1A4

A
− D1B4

D

]

= −8πν1ν4 , (7)

1

BD2

[

B44 −
DB1D1

A2
− B4D4

D

]

− 1

A2B

[

B11 −
A1B1

A
− AA4B4

D2

]

(8)

+
1

A2D2

(

AA44−
AA4D4

D
−DD11+

DA1D1

A

)

−Λ=−8π

[

p+
1

2

(−ν21
A2

+
ν24
D2

)]

2

A2B

[

B11−
A1B1

A
−AA4B4

D2

]

+
1

B2

[

B2
1

A2
−B2

4

D2

]

+Λ=−8π

[

ρ+
1

2

(

ν21
A2

+
ν24
D2

)]

(9)

The Klein-Gordon Eq. (5) for the metric (1) yields

ν44
D2

+

(

A4

A
+

2B4

B
− D4

D

)

ν4
D2

+

(

A1

A
− 2B1

B
− D1

D

)

ν1
A2

− ν11
A2

= 0 . (10)

Here and further on, the suffixes 1 and 4 of a field variable indicate partial differ-
entiation with respect to x and t, respectively. Now we find an underdetermined
system with five equations in seven unknowns viz. ρ, p, Λ, ν, A, B and D. Thus,
to overcome the under-determinacy, we need two extra conditions. Let us assume
the equation of state

p = γρ, 0 ≤ γ ≤ 1 (11)

as an additional condition, where γ is called the adiabatic parameter. Assigning
different values for γ, we can solve the field equations for different epochs.
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3. Solutions of the field equations

Due to the inhomogeneity of the space-time and high non-linearity of the field
equations, the second additional condition we consider are the explicit solutions of
the field equations, which are physically important. Thus the metric functions A,
B and D are taken in the following form (Davidson [19]):

A = tα(1 + x2)a, B = tβ(1 + x2)b, and D = (1 + x2)d, (12)

where α, β, a, b and d are real constants (α /=0, β /=0).

Further, to avoid mathematical complexities, we consider the scalar field ν to
be the function of t only. Using the values of A, B and D from Eq. (12) in Eq. (10),
we get

ν44 +
kν4
t

= 0 , (13)

where k = α+ 2β.

On integration, Eq. (13) reduces to

ν4 =
k1
tk

, (14)

where k1 is the non-zero constant of integration. Further, integration of Eq. (14)
yields

ν =
k1t

−k+1

−k + 1
+ k2 , (15)

where ki, i = 1, 2 are constants of integration. In view of Eqs. (12) and (15),
Eqs. (6) – (9) yield

3β2 − 2β

t2(1 + x2)2d
− 4b(2d+ b)x2

t2α(1 + x2)2a+2
+

4πk21
t2k(1 + x2)2d

= Λ− 8πp , (16)

β(d− b) + αb = 0 , (17)

α2 + β2 − α− β + αβ

t2(1 + x2)2d
+

(4ad− 4bd+ 2d− 4d2 − 4b2 + 2b+ 4ab)x2 + 2(d+ b)

t2α(1 + x2)2a+2

+
4πk21

t2k(1 + x2)2d
= Λ− 8πp , (18)

and

4b{(3b− 2a− 1)x2 + 1}
t2α(1 + x2)2a+2

− β(2α+ β)

t2(1 + x2)2d
+

4πk21
t2k(1 + x2)2d

= −Λ− 8πρ . (19)
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Comparing Eqs. (16) and (18), we find

b+ d = 0 , (20a)

3β2 − 2β = α2 + β2 − α− β + αβ , (20b)

and

4ad− 4bd+ 2d− 4d2 − 4b2 + 2b+ 4ab = −4b(2d+ b) . (20c)

Now, corresponding to the Eqs. (20 a,b,c), we have two sets of solutions, i.e.

(i) b = d = 0 and α = β, (ii) b = d = 0 and α = −2β + 1 .

Case 1 : When b = 0, d = 0, α = β = r(say) (r /=
1

3
) . (21)

Using the values from Eq. (21), Eqs. (15), (16) and (19) yield

ν =
k1

1− 3r
t1−3r + k2 , (22)

2r − 3r2

t2
− 4πk21

t6r
= 8πp− Λ , (23)

3r2

t2
− 4πk21

t6r
= 8πρ+ Λ . (24)

Again, adding Eqs. (23) and (24), we obtain

p+ ρ =
1

8π

[

2r

t2
− 8πk21

t6r

]

. (25)

Sub-case I: If γ = 1, then Eq. (11) reduces to

p = ρ (26)

Using Eq. (26), Eq. (25) yields

p = ρ =
1

8π

[

r

t2
− 4πk21

t6r

]

. (27)
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Using the value of p from Eq. (27) in Eq. (23), we get

Λ =
r(3r − 1)

t2
. (28)

Thus the geometry of our universe, in this case, is described by the metric (1)

ds2 = dt2 − t2r(1 + x2)2adx2 − t2r(dy2 + dz2) , (29)

or

ds2 = dt2 − t2r[dx̄2 + dy2 + dz2] , (30)

where dx̄ = (1 + x2)adx.

The model obtained in Eq. (30) is a stiff-fluid filled universe but not a de-Sitter
universe nor an Einstein space. The model (30) is an important model in relativistic
cosmology for the description of early stages of the universe.

Sub-case II: When γ = 0 and ρ > 0, Eq. (11) yields

p = 0 (dust distribution). (31)

Putting the value of p in Eqs. (23) and (25), we obtain

Λ =
r(3r − 2)

t2
+

4πk21
t6r

, (32)

and

ρ =
r

4πt2
− k21

t6r
. (33)

In this case, the geometry of our universe can also be represented by Eq. (30),
which is a dust-filled universe.

Sub-case III: Let γ = 1/3. In this case Eq. (11) yields

ρ = 3p (disordered radiation). (34)

Now using ρ = 3p in Eq. (25), we get

p =
r

16πt2
− k21

4t6r
(35)

and

ρ = 3p =
3r

16πt2
− 3k21

4t6r
(36)
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Applying Eq. (25) in Eq. (23), we get

Λ =
3r(2r − 1)

2t2
+

2πk21
t6r

(37)

Thus the geometry of the space time (1), corresponding to solutions (35), (36) and
(37), can be written by the same Eq. (30), which represents a radiation dominated
universe.

Sub-case IV: When Λ = 0 and ν = 0, the results reduce to the results obtained
by Pradhan et al. in Ref. [20].

Sub-case V: When ν = 0, the results reduce to those of Sahu and Mahapatra
in Ref. [13].

Case 2 : When b = 0, d = 0, α = −2β + 1 . (38)

After substitution of the value of α from Eq. (38) in Eq. (13), we get

ν44 +
ν4
t

= 0 . (39)

On integration, Eq. (39) yields

ν = k3 ln t+ k4 (40)

where k3 and k4 are constants of integration and k3 /=0. Using Eq. (38) in Eqs. (16)
and (19), we obtain

3β2 − 2β

t2
+

4πk21
t2

= Λ− 8πp , (41)

and
3β2 − 2β

t2
+

4πk21
t2

= −Λ− 8πρ . (42)

Comparing Eqs. (41) and (42), we get

Λ = 4π(p− ρ) . (43)

Sub-case I: When γ = 1, Eq. (11) reduces to Eq. (26). Applying Eq. (26) in
Eq. (43), we find

Λ = 0 . (44)
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Also, applying Eq. (44) in Eq. (41), we get

p = ρ =
β(2− 3β)

8πt2
− k21

2t2
. (45)

Hence, in this case, the geometry of our universe is described for the metric (1) as

ds2 = dt2 − t2(−2β+1)(1 + x2)2adx2 − t2β(dy2 + dz2) , (46)

The model represented by Eq. (46) is a stiff-fluid filled universe. But if a = 0 and
β = 1/3, then the model (46) reduces to the Einstein-de-Sitter universe.

Sub-case II: When γ = 0 and ρ > 0,

In this case Eq. (11) reduces Eq. (31). Applying Eq. (31) in Eq. (41), we find

Λ =
3β2 − 2β

t2
+

4πk21
t2

. (47)

Further, using of Eq. (47) in Eq. (42), we get

ρ =
β(2− 3β)

4πt2
− k21

t2
. (48)

Therefore, the model of the universe described by the space-time (1) is the same
as the model given in Eq. (46).

As in the sub-case I, for a = 0 and β = 1/3, the model (46) reduces to the
Einstein-de-Sitter and dust-filled universe.

Sub-case III: For γ = 1/3, Eq. (11) reduces to Eq. (34). Using Eq. (34) in
Eq. (43), we get

Λ = −8πp . (49)

Using Eq. (49) in Eq. (41), we find

p =
β(2− 3β)

16πt2
− k21

4t2
. (50)

Putting the value of p in Eqs. (34) and (49), we get

ρ = 3p =
3β(2− 3β)

16πt2
− 3k21

4t2
. (51)

and

Λ = −8π

[

β(2− 3β)

16πt2
− k21

4t2

]

=
β(3β − 2)

2t2
+

2πk21
t2

. (52)
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In this case also, the model of the universe of space-time (1) is represented by
Eq. (46), which is a radiation-dominated universe.

Sub-case IV: When Λ = 0 and D is a non-zero constant, then the results are
the same as already found by Panigrahi et al. [18].

4. Some physical and geometrical properties

Case 1:

The reality conditions given by Ellis [21], (a) ρ+p > 0, (b) ρ+3p > 0, (c) ρ > 0,
are satisfied in all three sub-cases provided r > 0 for the sub-case I and r > 1/3 for
the sub-cases II and III.

As t → 0, ν → ∞ (provided r ≤ 1/3) and ν tends to a constant (provided
r > 1/3). Also, as t → ∞, ν tends to a constant (provided r ≤ 1/3) and ν → −∞
(provided r > 1/3).

Again, as t → 0, Λ → ∞, ρ and p are undefined in the sub-cases I and III, while
only ρ is undefined in the sub-case II. But as t → ∞, Λ → 0, ρ → 0 and p → 0 in
all the three sub-cases.

From these results it is evident that the space-time admits a singularity, which
may be a Big-Bang singularity. Moreover, it is found that Λ, the pressure p and
the density ρ are decreasing functions of time t, and the parameters (physical and
kinematical) remain finite and well behaved for t > 0.

The physical quantities, like the expansion scalar θ and the shear scalar σ2 are
given by the following expressions,

θ = uµ
;µ =

A4

AD
+

2B4

BD
+

D1

A2
=

3r

t
,

and

σ2=
1

2
σijσ

ij=
1

12

[

(

g11,4
g11

− g22,4
g22

)2

+

(

g22,4
g22

− g33,4
g33

)2

+

(

g33,4
g33

− g11,4
g11

)2
]

=0 .

Since θ → ∞ as t → 0 and θ → 0 as t → ∞, we infer that in the models
in the case 1 universe is expanding with time. However, the expansion in the
models decreases as the time increases and expansion in the models stops when
t → ∞. Further, σ = 0 says that the models are sheer-free and approach isotropy
as confirmed by σ/θ = 0.

Also, as the rotation w given by the vorticity tensor wµr, i.e. w
2 = 1

2wµrw
µr = 0

and acceleration u̇µ = 0, hence the models found in the case 1 are non-rotating in
nature and the mesonic fluid flow is geodesic.
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Case 2:

The reality conditions in all the three sub-cases of case 2 are satisfied provided

1

3
− 1

3

√

1 + 12πk21 < β <
1

3
+

1

3

√

1 + 12πk21 .

Here it is found that Λ, ρ and p are decreasing functions of t, whereas Λ = 0 in the
sub-case I.

It is observed that |ν| → ∞, p → ∞ and ρ → ∞ as t → 0. But in the sub-case
II, we see p = 0. Similarly, as t → ∞, ν → ∞, p → 0 and ρ → 0, while in the
sub-case II, we have p = 0.

The above results admit a singularity, which may be a Big-Bang singularity. As
in the case 1, here the scalar expansion θ and sheer scalar σ2 are found, respectively,
as

θ =
1

t
, and σ =

√
2√
3

1− 3β

t
.

Again, we get
σ

θ
=

√
2√
3
(1− 3β), which is a non-zero constant (β /= 1

3 ).

Now, θ → ∞ as t → 0 and θ → 0 as t → ∞. Thus the models in the case 2
are also of expanding in nature, which possess the same properties as the models
in the case 1.

But as t → 0, σ → ∞, and as t → ∞, σ → 0. Thus the shape of the universes
changes in x and y direction only, and the rate of change of the shape of the

universes becomes slow with the increase of time. Also, lim
t→∞

σ

θ
/=0 indicates that

the models in the case 2 are anisotropic in nature.

As in the case 1, here also the vorticity tensor wij and the acceleration u̇µ are
found to be zero each. Hence the models are of non-rotating nature and the fluid
flow is geodesic.

5. Conclusion

In the present paper, we have made an attempt to study a class of inhomoge-
neous mesonic perfect-fluid models with cosmological term Λ(t) in general relativ-
ity. It is observed that at t = 0, the parameters, both physical and kinematical,
involved in the models diverge, while the parameters remain finite and well behaved

for t > 0. It is also observed that
σ

θ
=

√
2√
3

(α− β)

(α− 2β)
is an unique expression for

σ

θ
= 0 and

σ

θ
=

√
2√
3
(1 − 3β) as discussed in the case 1 and the case 2 of Sec. 4.

It is further observed that the models found in the case 1 and the case 2 are ex-
panding in nature and possess Big-Bang singularities. The models in the case 1
are shear-free and non-rotating, while in the case 2 the models are anisotropic and
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non-rotating. In all models, the physical parameters pressure and density are found
to be decreasing functions of time. However, in the sub-case II of the case 2, we get
p = 0. Similarly the cosmological term Λ(t) is found to be a decreasing function of
time t, whereas Λ(t) = 0 in the model of the sub-case I of the case 2.

Moreover, the cosmological constant found in the models (as discussed in Sec. 3)
approaches small positive values at finite large times. These results are supported
by the results from the supernova observations recently obtained by the High-z
Supernova Team and Supernova Cosmological Project (Garnavich et al. [1], Perl-
mutter et al. [2], Riess et al. [3], Schmidt et al. [4]).
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VRSTA NEHOMOGENIH MEZONSKIH MODELA S PERFEKTNOM
TEKUĆINOM I VREMENSKI-OVISNIM ČLANOM Λ

Proučavamo vrstu nestatičkih i nehomogenih kozmoloških modela s kozmološkim
članom Λ(t) kada je izvor gravitacijskog polja mješavina mezonskog polja i perfekt-
ne tekućine. Primjenom zakona za γ za jednadžbu stanja rješavamo za Einsteinove
jednadžbe polja za dva posebna slučaja koji su važni za fiziku. Nalazimo kozmološki
član Λ(t) kao opadajuću funkciju vremena, što je u skladu s opažanjima supernova
Ia. Raspravljaju se neka fizička i geometrijska svojstva modela.
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