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A new class of cylindrically-symmetric magnetized inhomogeneous perfect-fluid
string cosmological models with variable magnetic permeability is investigated. We
assume that F12 is the only non-vanishing component of the electromagnetic field
tensor Fij . The Maxwell’s equations show that F12 is the function of x alone,
whereas the magnetic permeability µ̄ may be the function of both x and t. To
get the deterministic solution, it has been assumed that the metric coefficients are
separable in the form as A = f(x)ℓ(t), B = g(x)k(t), C = g(x)ν(t). Also, the
Einstein field equations have been solved with string source in which magnetic field
is absent. Some physical and geometric aspects of the models in the presence and
absence of magnetic field are discussed.
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1. Introduction

Cosmic strings play an important role in the study of the early universe. These
strings arise during the phase transition after the big-bang explosion as the tem-
perature goes down below some critical temperature as predicted by grand unified
theories [1] – [5]. It is believed that cosmic strings give rise to density perturbations
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which lead to formation of galaxies [6]. These cosmic strings have stress energy and
couple to the gravitational field. Therefore, it is interesting to study the gravita-
tional effect which arises from the strings. The general treatment of strings was
initiated by Letelier [7, 8] and Stachel [9]. The occurrence of magnetic fields on
galactic scale is a well-established fact today, and their importance for a variety of
astrophysical phenomena is generally acknowledged as pointed out by Zel’dovich
[10]. Also Harrison [11] has suggested that magnetic field could have a cosmological
origin. As a natural consequence, we should include magnetic fields in the energy-
momentum tensor of the early universe. The choice of anisotropic cosmological
models in Einstein system of field equations leads to the cosmological models more
general than the Robertson-Walker model [12]. The presence of primordial mag-
netic fields in the early stages of evolution of the universe has been discussed by
several authors (Misner, Thorne and Wheeler [13]; Asseo and Sol [14]; Pudritz and
Silk [15]; Kim, Tribble, and Kronberg [16]; Perley and Taylor [17]; Kronberg, Perry
and Zukowski [18]; Wolfe, Lanzetta and Oren [19]; Kulsrud, Cen, Ostriker and Ryu
[20]; Barrow [21]). Melvin [22], in his cosmological solution for dust and electro-
magnetic field, suggested that during the evolution of the universe, the matter was
in a highly ionized state and was smoothly coupled with the field, subsequently
forming neutral matter as a result of the universe expansion. Hence the presence
of magnetic field in the string dust universe is not unrealistic.

Benerjee et al. [23] investigated an axially-symmetric Bianchi type I string dust
cosmological model in the presence and absence of magnetic field. The string cosmo-
logical models with a magnetic field are also discussed by Chakraborty [24], Tikekar
and Patel [25, 26]. Patel and Maharaj [27] investigated stationary rotating world
model with magnetic field. Ram and Singh [28] obtained some new exact solutions
of string cosmology with and without a source-free magnetic field for Bianchi type I
space-time, considered in the different basic form by Carminati and McIntosh [29].
Singh and Singh [30] investigated string cosmological models with magnetic field in
the context of space-time with G3 symmetry. Singh [31] studied string cosmology
with electromagnetic fields in Bianchi type-II, -VIII and -IX space-times. Lidsey,
Wands and Copeland [32] reviewed aspects of super-string cosmology with the em-
phasis on the cosmological implications of duality symmetries in the theory. Bali et
al. [33, 34, 35] investigated Bianchi type-I magnetized string cosmological models.

Cylindrically-symmetric space-time plays an important role in the study of the
universe on a scale in which anisotropy and inhomogeneity are not ignored. Inhomo-
geneous cylindrically-symmetric cosmological models have significant contribution
in the understanding of some essential features of the universe such as the for-
mation of galaxies during the early stages of their evolution. Bali and Tyagi [36],
Pradhan et al. [37] – [40], Kilinc [41] investigated cylindrically-symmetric inhomo-
geneous cosmological models in the presence of electromagnetic field. Barrow and
Kunze [42, 43] found a wide class of exact cylindrically-symmetric flat and open
inhomogeneous string universes. In their solutions, all physical quantities depend
on at most one space coordinate and the time. The case of cylindrical symmetry is
natural because of the mathematical simplicity of the field equations whenever there
exists a direction in which the pressure is equal to energy density. In recent time,
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cylindrically-symmetric inhomogeneous string cosmological models in the presence
of magnetic field have been studied by several authors [44] – [49] in various contexts.

Maxwell considered the magnetic permeability (µ̄) to be a constant for a given
material. Maxwell considered the spatial gradient of the magnetic field intensity in
the steady state to be exclusively determined by a variation in the velocity of the
molecular vortices within the magnetic lines of force. To this day, it is assumed that
the magnetic permeability is a constant for a given material. Many authors have
investigated string cosmological models with constant/unknown magnetic perme-
ability. But from ‘The Double Helix Theory of the Magnetic Field’ [50], we must
look to a variable magnetic permeability in order to account for variations in mag-
netic flux density in the steady state, and if we look at the solenoidal magnetic field
pattern around a bar magnet, this is not very difficult to visualize. The magnetic
field lines are clearly more concentrated at the poles of the magnet than elsewhere.
It should be quite obvious that the density of the vortex sea, as denoted by the
quantity µ̄, is a variable quantity and that this density visibly varies according to
how tightly the magnetic lines of force are packed together [51].

Recently Bali [52] obtained Bianchi type-V magnetized string dust universe with
variable magnetic permeability. Kilinc and Yavuz [53] investigated some string cos-
mological models with magnetic field in cylindrically-symmetric space-time. Moti-
vated by the situation discussed above, in this paper, we revisit these solutions [53]
by assuming metric coefficient to be separable in a new form.

This paper is organized as follows. The metric and the field equations are pre-
sented in Section 2. In Section 3 we deal with the solution of the field equations by
revisiting solutions obtained by Kilinc and Yavuz [53]. Section 4 describes solutions
in the absence of magnetic field. Finally, in Section 5 concluding remarks are given.

2. The metric and field equations

We consider the metric in the form

ds2 = A2(dx2 − dt2) +B2dy2 + C2dz2, (1)

where A, B and C are functions of x and t. The energy momentum tensor for the
string with electromagnetic field has the form

T j
i = (ρ+ p)uiu

j + pgji − λxix
j + Ej

i , (2)

where ui and xi satisfy conditions

uiui = −xixi = −1, (3)

and

uixi = 0. (4)
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Here ρ is the rest energy density of the system of strings, p is the isotropic pressure,
λ the tension density of the strings, xi is a unit space-like vector representing the
direction of strings so that x1 = 0 = x2 = x4 and x3 /=0, and ui is the four-velocity-
vector satisfying the following conditions

giju
iuj = −1. (5)

In Eq. (2), Ej
i is the electromagnetic field given by Lichnerowicz [54]

Ej
i = µ̄

[

hlh
l

(

uiu
j +

1

2
gji

)

− hih
j

]

, (6)

where µ̄ is the magnetic permeability and hi the magnetic flux vector defined by

hi =
1

µ̄
∗Fjiu

j , (7)

where the dual electromagnetic field tensor ∗Fij is defined by Synge [55]

∗Fij =

√
−g

2
ǫijklF

kl. (8)

Here Fij is the electromagnetic field tensor and ǫijkl is the Levi-Civita tensor den-
sity.

In the present scenario, the comoving coordinates are taken as

ui =

(

0, 0, 0,
1

A

)

. (9)

We choose the direction of string parallel to the x-axis so that

xi =

(

1

A
, 0, 0, 0

)

. (10)

We consider the magnetic field as flowing along the z-axis so that F12 is the only
non-vanishing component of Fij . Maxwell’s equations

Fij;k + Fjk;i + Fki;j = 0 , (11)

[

1

µ̄
F ij

]

;j

= J i, (12)

require that F12 is the function of x-alone and the magnetic permeability is the
functions of both x and t. The semicolon represents a covariant differentiation.
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The Einstein’s field equations (with
8πG

c4
= 1)

Rj
i −

1

2
Rgji = −T j

i , (13)

for the line-element (1) lead to the following system of equations:

−
A1

A

(

B1

B
+

C1

C

)

−
A4

A

(

B4

B
+

C4

C

)

−
B1C1

BC
+

B4C4

BC
+

C44

C
+

B44

B

= −pA2 + λA2 −
F 2
12

2µ̄B2
, (14)

A1

A

(

B4

B
+

C4

C

)

+
A4

A

(

B1

B
+

C1

C

)

−
B14

B
−

C14

C
= 0, (15)

A11

A
−

A2
1

A2
−

A44

A
+

A2
4

A2
+

C11

C
−

C44

C
= pA2 +

F 2
12

2µ̄B2
, (16)

A11

A
−

A2
1

A2
−

A44

A
+

A2
4

A2
+

B11

B
−

B44

B
= pA2 −

F 2
12

2µ̄B2
, (17)

A1

A

(

B1

B
+

C1

C

)

+
A4

A

(

B4

B
+

C4

C

)

−
B1C1

BC
+

B4C4

BC
−

C11

C
−

B11

B

= ρA2 +
F 2
12

2µ̄B2
, (18)

where the sub-indices 1 and 4 in A, B, C and elsewhere denote ordinary differen-
tiation with respect to x and t, respectively.

The velocity field ui is irrotational. The scalar expansion θ, shear scalar σ2,
acceleration vector u̇i and proper volume V 3 are, respectively, found to have the
following expressions:

θ = ui
;i =

1

A

(

A4

A
+

B4

B
+

C4

C

)

, (19)

σ2 =
1

2
σijσ

ij =
1

3
θ2 −

1

A2

(

A4B4

AB
+

B4C4

BC
+

C4A4

CA

)

, (20)

u̇i = ui;ju
j =

(

A1

A
, 0, 0, 0

)

, (21)
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V 3 =
√
−g = A2BC, (22)

where g is the determinant of the metric (1). Using the field equations and the
relations (19) and (20) one obtains the Raychaudhuri’s equation as

θ̇ = u̇i
;i −

1

3
θ2 − 2σ2 −

1

2
ρp , (23)

where the dot denotes differentiation with respect to t and

Riju
iuj =

1

2
ρp . (24)

With the help of Eqs. (1) - (4), (9) and (10), the Bianchi identity
(

T ij
;j

)

is reduced

to two equations:

ρ4 −
A4

A
λ+

(

A4

A
+

B4

B
+

C4

C

)

ρ = 0 (25)

and

λ1 −
A1

A
ρ+

(

A1

A
+

B1

B
+

C1

C

)

λ = 0. (26)

Thus, due to all three (strong, weak and dominant) energy conditions, one finds
ρ ≥ 0 and ρp ≥ 0, together with the fact that the sign of λ is unrestricted, i.e., it
may take positive or negative values, or zero as well.

3. Solution of the field equations

We revisit the solutions obtained by Kilinc and Yavuz [41]. Equations (16) and
(17) lead to

F 2
12

µ̄B2
=

B44

B
−

C44

C
+

C11

C
−

B11

B
, (27)

and
2A11

A
−

2A2
1

A2
−

2A44

A
+

2A2
4

A2
+

C11

C
+

B11

B
−

C44

C
−

B44

B
= 0. (28)

The field equations (14) - (18) constitute a system of five equations with six un-
knowns parameters A, B, C, λ, ρ and F12. Therefore, some additional constraints
relating these parameters are required to obtain explicit solutions of the system of
equations. Assuming that the metric coefficients are separable in the following way

A = f(x)ℓ(t), (29)

B = g(x)k(t), (30)
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C = g(x)ν(t), (31)

and
ℓ4
ℓ

= m (constant). (32)

From Eq. (15) we get

k4
k

+
ν4
ν

k4
k

+
ν4
ν

−
2ℓ4
ℓ

=

g1
g
f1
f

= n(constant). (33)

Eq. (33) leads to
g1
g

= n
f1
f
, (34)

which after integration gives

g = αfn, (35)

where α ( /=0) is a constant of integration. Eqs. (32) and (33) reduce to

k4
k

= −a−
ν4
ν
, (36)

where a =
2mn

1− n
is constant. From Eq. (32) we get

ℓ = emt. (37)

Using Eqs. (29) - (31) in (28), we get

2

(

f11
f

−
f2
1

f2

)

+ 2
g11
g

=
k44
k

+
ν44
ν

= s (constant). (38)

From the right-hand side of Eq. (38), we have

k44
k

+
ν44
ν

= s. (39)

Equations (36) and (39) lead to

ν24 + aνν4 +

(

a2 − s

2

)

ν2 = 0. (40)

The differential equation (40) has two solutions

ν = e−
1

2
(a±

√
2s−a2)t. (41)

Now we consider the following two cases.
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3.1. Model I

Taking negative sign, Eq. (41) leads to

ν = e
1

2
(−a+

√
2s−a2)t. (42)

From Eqs. (36) and (42), we get

k = e−
1

2
(a+

√
2s−a2)t. (43)

From the left-hand side of Eq. (38), we have

2
f11
f

− 2
f2
1

f2
+ 2

g11
g

= s. (44)

From Eqs. (34) and (44), we have

f11
f

+
2(n2 − n− 1)

(2n+ 1)

f2
1

f2
= s, (45)

which leads to
f =

(

c1e
bx + c2e

−bx
)

2n+1
2n2−1 , (46)

where b =

√

(2n2 − 1)s

(2n+ 1)
and c1, c2 are constants of integration. Hence Eq. (35)

gives

g = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 . (47)

Therefore, we have

A =
(

c1e
bx + c2e

−bx
)

2n+1
2n2−1 emt, (48)

B = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 e−
1

2
(a+

√
2s−a2)t, (49)

C = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 e
1

2
(−a+

√
2s−a2)t. (50)

Hence, the metric (1) reduces to

ds2 =
(

c1e
bx + c2e

−bx
)

2(2n+1)

2n2−1 e2mt(dx2 − dt2)

+α2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 e−(a+
√
2s−a2)tdy2

+α2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 e(−a+
√
2s−a2)tdz2. (51)
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Since the magnetic permeability is a variable quantity, we have assumed it as

µ̄ = e(a+
√
2s−a2)t. (52)

Thus µ̄ → 0 as t → ∞ and µ̄ = 1 when t → 0. Zel’dovich [56] has explained that
ρs/ρc ∼ 2.5 × 10−3, where ρs is the mass density and ρc the critical density then
the string frozen in plasma would change their density like R−2 i.e. like t−1 in the
radiation dominated universe where R is the radius of the universe.

Some physical and geometric properties of the model

The pressure (p), the string tension density (λ), the energy density (ρ) and the
particle density (ρp) for the model (51) are given by

p =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−
1

2
s+

(2n+ 1)(n+ 1)b2

(2n2 − 1)

+
(2n+ 1)(1 + n− n2)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (53)

λ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

ma+
1

2
(s+ a2 + a

√

2s− a2)

−
n(n+ 2)(2n+ 1)2b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (54)

ρ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−ma−
1

2
(s− a2 + a

√

2s− a2)

−
2n(2n+ 1)b2

(2n2 − 1)
−

n2(4n2 − 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (55)

ρp =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−s− a(2m+
√

2s− a2)

−
2n(2n+ 1)b2

(2n2 − 1)
+

2n(3n+ 1)(2n+ 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

. (56)
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The non-vanishing component F12 of electromagnetic field tensor for model (51) is
given by

F 2
12 = α2a

√

2s− a2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 , (57)

which is function of x alone as it is required by Maxwell’s equations (11) and (12).
The scalar of expansion (θ), shear tensor (σ), acceleration vector (u̇i) and the
proper volume (V 3) for the model (51) are given by

θ =
(m− a)

(c1ebx + c2e−bx)
2n+1
2n2−1 emt

, (58)

σ2 =
(2m2 + 2ma+ 3s− a2)

6 (c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

, (59)

u̇i =

(

(2n+ 1)b

(2n2 − 1)

(c1e
bx − c2e

−bx)2

(c1ebx + c2e−bx)2
, 0, 0, 0

)

, (60)

V 3 = α2(c1e
bx + c2e

−bx)
2(2n2+3n+1)

2n2−1 e(2m−a)t. (61)

From Eqs. (58) and (59), we have

σ2

θ2
=

(2m2 + 2ma+ 3s− a2)

6(m− a)2
= constant. (62)

The model (51) is expanding (for m < 0 only), shearing, accelerating, non-rotating
and singularity-free model. For m > 0, θ = constant when t = 0 and θ → 0 when
t → ∞. For m < 0, θ = constant when t = 0 and θ → ∞ when t → ∞. From Eq.
(60), we observe that for b = 0 or n = − 1

2 , u̇
i vanishes. In this case the pressure

p, the energy density ρ, the string tension density λ and particle density ρp tend
to a constant value as t → 0 and x → 0. At a later stage p, ρ, λ and ρp approach
zero when t → ∞ and x → ∞, as expected. For suitable values of the constants,
our solution satisfies the energy conditions ρ > 0, ρp ≥ 0. The electromagnetic field

tensor F12 does not vanish if s /=
a2

2
. The proper volume increases as time increases.

Since
σ

θ
= constant, the model does not approach isotropy.

3.2. Model II

Taking positive sign, Eq. (41) leads to

ν = e−
1

2
(a+

√
2s−a2)t. (63)

314 FIZIKA B (Zagreb) 19 (2010) 4, 305–322



singh and yadav: cylindrically symmetric magnetized inhomogeneous string . . .

From Eqs. (36) and (63), we get

k = e
1

2
(−a+

√
2s−a2)t. (64)

Therefore, we have

A =
(

c1e
bx + c2e

−bx
)

2n+1
2n2−1 emt, (65)

B = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 e
1

2
(−a+

√
2s−a2)t, (66)

C = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 e−
1

2
(a+

√
2s−a2)t. (67)

Hence, the metric (1) reduces to

ds2 =
(

c1e
bx + c2e

−bx
)

2(2n+1)

2n2−1 e2mt(dx2 − dt2)

+α2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 e(−a+
√
2s−a2)tdy2

+α2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 e−(a+
√
2s−a2)tdz2. (68)

Since the magnetic permeability is a variable quantity, we have assumed it as

µ̄ = e−(−a+
√
2s−a2)t. (69)

Thus we again observe that µ̄ → 0 as t → ∞ and µ̄ = 1 when t → 0.

Some physical and geometric properties of the model

The pressure (p), the string tension density (λ), the energy density (ρ) and the
particle density (ρp) for the model (68) are given by

p =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−
1

2
s+

(2n+ 1)(n+ 1)b2

(2n2 − 1)

+
(2n+ 1)(1 + n− n2)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (70)
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λ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

ma+
1

2
(s+ a2 − a

√

2s− a2)

−
n(n+ 2)(2n+ 1)2b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (71)

ρ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−ma+
1

2
(a2 − s+ a

√

2s− a2)

−
2n(2n+ 1)b2

(2n2 − 1)
−

n2(4n2 − 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (72)

ρp =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−2ma− s+ a
√

2s− a2)

−
2n(2n+ 1)b2

(2n2 − 1)
+

2n(3n+ 1)(2n+ 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

. (73)

The non-vanishing component F12 of electromagnetic field tensor for model (67) is
given by

F 2
12 =

mnα2

(n− 1)

√

2s− a2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 , (74)

which is the function of x alone. So it is consistent with the demand of Maxwell’s
equations (11) and (12) that F12 be function of x alone.

The kinematics parameters θ, σ, u̇i for the model (68) are the same as in the
case I. The model (68) possesses the same behaviour as the previous model (51).

4. Solution in the absence of magnetic field

In the absence of magnetic field, if we use the same assumption as with the
presence of magnetic field, we obtain the following field equations

−
A1

A

(

B1

B
+

C1

C

)

−
A4

A

(

B4

B
+

C4

C

)

−
B1C1

BC
+

B4C4

BC
+

C44

C
+

B44

B

= −pA2 + λA2, (75)
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A1

A

(

B4

B
+

C4

C

)

+
A4

A

(

B1

B
+

C1

C

)

−
B14

B
−

C14

C
= 0, (76)

A11

A
−

A2
1

A2
−

A44

A
+

A2
4

A2
+

C11

C
−

C44

C
= pA2, (77)

A11

A
−

A2
1

A2
−

A44

A
+

A2
4

A2
+

B11

B
−

B44

B
= pA2, (78)

A1

A

(

B1

B
+

C1

C

)

+
A4

A

(

B4

B
+

C4

C

)

−
B1C1

BC
+

B4C4

BC
−

C11

C
−

B11

B
= ρA2. (79)

Following the same techniques as with the presence of magnetic field, in this case
also, we find equations (33) - (40). From Eqs. (77) and (78), we obtain

k44
k

=
ν44
ν

. (80)

Eqs. (39) and (80) leads to
k44
k

=
s

2
. (81)

Therefore, our solutions will be equivalent to (41). But Eq. (80) will be satisfied if
2s = a2. In this case our solutions (41) are reduced only to one equation

ν = e−
1

2
at. (82)

Accordingly, Eq. (36) reduces to

k = e−
1

2
at. (83)

But in the absence of magnetic field, the expressions for f and g are the same as
with the presence of magnetic field, i.e., given by Eqs. (46) and (47), respectively.

Hence, in this case, we have

A =
(

c1e
bx + c2e

−bx
)

2n+1
2n2−1 emt, (84)

B = C = α
(

c1e
bx + c2e

−bx
)

n(2n+1)

2n2−1 e−
1

2
at. (85)

Therefore, the geometry of the universe (1) reduces to

ds2 =
(

c1e
bx + c2e

−bx
)

2(2n+1)

2n2−1 e2mt(dx2 − dt2)+

α2
(

c1e
bx + c2e

−bx
)

2n(2n+1)

2n2−1 e−at(dy2 + dz2). (86)
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Some physical and geometric properties of the model

The pressure (p), the string tension density (λ), the energy density (ρ), the
particle density (ρp) and the kinematic parameters θ, σ, u̇i and V 3 for the model
(86) are given by

p =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−
a2

4
+

(2n+ 1)(n+ 1)b2

(2n2 − 1)

+
(2n+ 1)(1 + n− n2)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (87)

λ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

a2
(

m+
1

2

)

+
(2n+ 1)(n+ 1)b2

(2n2 − 1)

−
(2n+ 1)(2n3 + 6n2 + n− 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (88)

ρ =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−a2
(

m−
1

4

)

−
2n(2n+ 1)b2

(2n2 − 1)

−
n2(4n2 − 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (89)

ρp =
1

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

[

−a2
(

2m+
1

4

)

−
(2n+ 1)(3n+ 1)b2

(2n2 − 1)

−
(2n+ 1)(4n3 + 5n2 + n− 1)b2

(2n2 − 1)2
(c1e

bx − c2e
−bx)2

(c1ebx + c2e−bx)2

]

, (90)

θ =
(m− a)

(c1ebx + c2e−bx)
2n+1
2n2−1 emt

, (91)

σ2 =
1
3 (m− a)2 + a

(

m− a
4

)

(c1ebx + c2e−bx)
2(2n+1)

2n2−1 e2mt

, (92)
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V 3 = α2(c1e
bx + c2e

−bx)
4(2n+1)

2n2−1 e4mt. (93)

From Eqs. (91) and (92), we have

σ2

θ2
=

1

3
+

a(4m− a)

4(m− a)2
= constant. (94)

5. Concluding remarks

In this paper, we have investigated new exact solutions of Einstein’s field equa-
tions for the cylindrically-symmetric space-times with string source in the presence
and absence of magnetic field. In these solutions, we take magnetic field and string
together as the source of gravitational field. It is known that magnetic fields are
anisotropic stress sources. In general, the expressions for physical and kinematic
quantities depend on at most one space coordinate and the time. Our solutions are
new and different from the other author’s solutions.

If we choose suitable values for the constants, we see that our solutions in the
presence and in the absence of magnetic field satisfy energy conditions (strong, weak
and dominant). We also observe that our solutions also satisfy the Raychaudhuri’s
equation. In the presence and absence of magnetic field, the pressure p the energy
density ρ, the string tension density λ and the particle density ρp tend to constant
values as t → 0 and x → 0. At a later stage, p, ρ, λ and ρp approach zero when
t → ∞ and x → ∞, as expected. In all these cases, the proper volumes also increase
as time increases. For m > 0, θ = constant when t = 0 and θ → 0 when t → ∞.
For m < 0, θ = constant when t = 0 and θ → ∞ when t → ∞.

In both cases 3.1 and 3.2, the electromagnetic field tensors given in equations
(57) and (74) are function of x alone and hence they match with the requirment of
Maxwell’s equations (11) and (12). The electromagnetic field tensor does not vanish

if s /=
a2

2
. Either in the presence of magnetic field or in its absence, we observe that

all kinematic quantities θ, σ, u̇i and proper volume V 3 tend to constant values as

t → 0 and x → 0. Our solutions are free from singularity. Since
σ

θ
= constant, the

models (51), (68) and (86) do not approach to isotropy at any time. For b = 0 or
n = − 1

2 , the acceleration in the models in the presence of magnetic field vanishes.

Either in the presence of a magnetic field or in its absence, if we put m = 0,
our solutions become a function of x only. Thus, these solutions reduce to static
solutions. For n = − 1

2 , our solutions become homogeneous either in the presence

or absence of magnetic field. Therefore, inhomogeneity dies out for n = − 1
2 . In

general, our models represent expanding, shearing and non-rotating universe. The
magnetic field imposed the restriction on constants such as a, α and s. It is observed
that in the presence of magnetic field, the rate of expansion of the universe is faster
than the rate of expansion in the absence of magnetic field. The idea of primordial
magnetism is appealing because it can potentially explain all large-scale fields seen
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in the universe today, especially those found in remote protogalaxies (primeval
galaxies). As a result, the literature contains many studies examining the role and
the implications of magnetic fields for cosmology.
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CILINDRIČNO-SIMETRIČNI NEHOMOGENI KOZMOLOŠKI MODELI S
MAGNETSKIM POLJEM, STRUNAMA, PERFEKTNOM RASPODJELOM

FLUIDA I PROMJENLJIVOM PERMEABILNOŠĆU

Istražujemo novu vrstu cilindrično-simetričnih nehomogenih kozmoloških mode-
la s magnetskim poljem, perfektnim fluidom, strunama i promjenljivom permea-
bilnošću. Pretpostavljamo da je F12 jedina neǐsčezavajuća sastavnica tenzora elek-
tromagnetskog polja Fij . Maxwellove jednadžbe daju da je F12 funkcija samo x,
dok magnetska permeabilnost može ovisiti o x i o t. Radi postizanja odred–enosti
rješenja, pretpostavili smo separabilne metričke koeficijente u obliku A = f(x)ℓ(t),
B = g(x)k(t), C = g(x)ν(t). Takod–er smo riješili Einsteinove jednadžbe polja sa
strunskim izvorom bez prisustva magnetskog polja. Raspravljamo neka fizička i
geometrijska svojstva modela u prisustvu i bez magnetskog polja.
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