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A new computational method for solving the nucleon-deuteron breakup scatter-
ing problem has been applied to study the elastic neutron- and proton-deuteron
scattering on the basis of the configuration-space Faddeev-Noyes-Noble-Merkuriev
equations. This method is based on the spline-decomposition in the angular vari-
able and on a generalization of the Numerov method for the hyperradius. The
Merkuriev-Gignoux-Laverne approach has been generalized for arbitrary nucleon-
nucleon potentials and with an arbitrary number of partial waves. The nucleon-
deuteron observables at the incident nucleon energy 3 MeV have been calculated us-
ing the charge-independent AV14 nucleon-nucleon potential including the Coulomb
force for the proton-deuteron scattering. Results have been compared with those
of other authors and with experimental proton-deuteron scattering data.
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1. Introduction

There is an impressive amount of nucleon-deuteron scattering data: proton-
deuteron and neutron-deuteron elastic and breakup data: total, partial and differen-
tial cross sections and spin observables involving nucleon and deuteron beams. The
data are compared with the rigorous three-body theory: Faddeev-equations-based
theory using as input realistic high-precision nucleon-nucleon potentials, and includ-
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ing model three-nucleon forces [1]. In some calculations Coulomb force has been
included [2]. Nucleon-nucleon (NN) potentials used in rigorous three-nucleon (3N)
calculations describe the NN database with χ2/degree of freedom approximately
equal to one. These are AV18 [3], CD-Bonn [4] and several Nijmegen potentials [5]
and to a lesser degree AV14 [6]. Among three nucleon forces (3NF) are Tucson-
Melbourne and its various modifications [7], and Urbana potentials [8]. Based on
the chiral effective field theory (EFT), NN and 3N potentials have been developed
[9] and they have been used in a rigorous 3N calculations [10]. A local version of
the effective field theory at next-to-next to leading order labeled N2LO is given in
Ref. [11].

In spite of this enormous progress in the three-nucleon studies, there are sev-
eral important cases where the rigorous three-nucleon calculations have failed to
explain the data [12] and these discrepancies are established with very high pre-
cision. Among the most important discrepancies are the Ay puzzle in nucleon-
deuteron (Nd) elastic scattering [13], the star configuration in the Nd breakup re-
action [14], quasi-free scattering (QFS) cross section [1] and the nd backward angle
scattering at energies between 50 and 100 MeV [15]. Some three-nucleon data show
clear evidence for the 3NF, but some are in better agreement with the calculation
if the 3NF are not included. High-precision realistic potentials (Nijmegen, Bonn,
Paris, Urbana) are not phase equivalent and they predict different triton binding
energies, they have different short-range potentials and some differ conceptually. It
is hoped that EFT will give an answer, but it is still unclear.

There are more 3N data involving charged particles and therefore, calculations
rigorously including electromagnetic interactions are of paramount importance. The
pd scattering has been studied by using hyperspherical harmonic method and Kohn
variational principle [16] and by using the screening and renormalization procedure
[17]. At 3 MeV, calculations have been done using high precision realistic potentials
and 3NF [18], while at energies above the threshold for the deuteron breakup, only
calculations using screening and renormalization have been done. The screening
method cannot be applied to energies below 1 MeV and this is a serious limitation.

In this article we present the development of an alternative method for studying
the proton-deuteron (pd) system based on the direct numerical solution of the
Faddeev-Noyes-Noble-Merkuriev (FNNM) equations in configuration space. This
approach was initiated by Merkuriev et al. (MGL) [19] who derived general formulae
for nd breakup scattering. This method has been originally applied to study nd and
pd elastic and breakup scattering but limited only to nuclear S-waves interaction
and to simple NN potentials [20]. In the present work we generalize the MGL
approach to any high precision realistic potential for both nd and pd for elastic
processes.

This paper is organized as follows: in Section 2 we describe a calculation in
configuration space starting with the general formalism in Subsection 2.1, followed
by Numerov method in Subsection 2.2. Our novel method for solution is given in
Subsection 2.3. Our results are presented in Section 3. Comparisons of our results
with the previous calculations and with the data are discussed in Section 4. Finally,
our summary and conclusion are given in Section 5.
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2. Three-nucleon Faddeev calculation in configuration

space - our new computational method

2.1. Formalism

The starting point for studying interactions between nucleons in three-body sys-
tems is the solution of the Schrödinger equation HΨ = EΨ for nuclear Hamiltonian
such as

H = − h̄2

2m

3∑

i=1

∇2
i + Vc +

∑

j<k

Vjk

(
+

∑

j<k<l

Vjkl

)
, (1)

where Vc and Vjk are the Coulomb and nuclear potentials, respectively. In this
study we neglected three-nucleon forces Vjkl.

Writing the total wave function as

Ψ = Φ1 +Φ2 +Φ3 = (1 + P+ + P−)Φ1, (2)

the Schrödinger equation for three identical particles can be reduced into a single
Faddeev equation, which in Jacobi’s vectors ~x1, ~y1 has the form

[
− h̄2

m

(
∆~x1

+∆~y1

)
+Vc+V (~x1)−E

]
Φ(~x1, ~y1) = −V (~x1)(P

++P−)Φ(~x1, ~y1), (3)

where the operators P± are the cyclic permutation operators for the three particles
which interchange any pair of nucleons (P+ : 123 → 231, P− : 123 → 312). The
Coulomb potential has the following form

Vc =
∑

α

n

|xα|
∏

i⊂α

1

2
(1 + τ iz), n =

me2

h̄2
, (4)

where e2 = 1.44 MeV fm and h̄2/m = 41.47 MeV fm2. The sum runs over α =1,2,3
for the three possible pairs and the product of the isospin projection operators
runs over the indices i of the particles belonging to the pair α. As independent
coordinates, we take the Jacobi vectors xα, yα. For the pair α=1, they are related
to particle coordinates by the formulae

x1 = r2 − r3, y1 =
r2 + r3

2
− r1, (5)

for α = 2, 3 one has to make cyclic permutations of the indices in Eq. (5). The Jacobi
vectors with different α’s are linearly related by the orthogonal transformation

(
xα
yα

)
=

(
Cαβ Sαβ

−Sαβ Cαβ

)(
xβ
yβ

)
, C2

αβ + S2
αβ = 1, (6)
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where

Cαβ = −
√

mαmβ

(M −mα)(M −mβ)
, Sαβ = (−)β−αsgn(β − α)

√
1− C2

αβ ,

M =
∑3

α=1mα.

(7)

To perform numerical calculations for arbitrary nuclear potential, we use MGL
approach [19]. For pd scattering, the FNNM equations for partial components can
be written in the following form (here we omit the index 1)

[
E+ h̄2

m (∂2x+∂
2
y)−vλlα (x, y)

]
Φλ0,s0,M0

α (x, y)=
∑

β

[
v1,αβ+

∑
τ (v

+
τ c

M0+
τ,αβ +v

−
τ c

M0−
τ,αβ )

]

×Φλ0,s0,M0

β (x,y)+
∑

β vαβ(x)
[
Φλ0,s0,M0

β (x,y)+
1∫

−1

du
∑

γ gβγ(y/x, u)Φ
λ0,s0,M0
γ (x′,y′)

]
.

(8)
Here Greek subindexes denote state quantum numbers: α = {l, σ, j, s, λ, t, T},
where l, σ, j and t are the orbital, spin, total angular momenta and isospin of
a pair of nucleons, λ is the orbital momentum of the third nucleon relative to the

c.m.s. of a pair nucleons, and s is the total ”spin” (s = 1/2+ j). M = ~λ+~s is
the total three-particle angular momentum, and the value of total isospin is T . In
Eqs. (8), v1 and coefficients cM0± depending on quantum state numbers of chan-
nel combined with v± are matrix elements of the Coulomb potential projected
onto the MGL basis. For given α and β, summation over τ in Eqs. (8) is finite.
If α = {lσjsλtT} and β = {l′σ′j′s′λ′t′T ′} then values of τ are restricted by the
following inequality,

max(|l − l′|, λ− λ′|) ≤ τ ≤ min(l + l′, λ+ λ′).

This means that for a chosen set of basic states, Eqs. (8) take into account the
Coulomb interaction exactly (although the latter has been expanded in partial
waves).

The geometrical function gβγ(x, y, u) is the representative of the permutation
operator P+ + P− in MGL basis [19]

gα′α(y/x, u) = gα′α(θ, u) = gα′α(θ, θ
′)

= (−1)λ+λ′+J+J ′

[(2J + 1)(2J ′ + 1)(2s+ 1)(2s′ + 1)]1/2
∑

LS

(2S + 1)(2L+ 1)

{
l σ J

1/2 s S

}{
l′ σ′ J ′

1/2 s′ S

}{
λ l L
S M s

}{
λ′ l′ L
S M s′

}

< χS
1/2σ′ηT1/2,t′ |P+|χS

1/2ση
T
1/2,t > hLλ′l′λl(y/x, u). (9)
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Function h is the representative of the permutation operator P+ + P− in the
λ+ l = L basis

hLλ′l′λl(y/x, u) = hLλ′l′λl(θ, u) = hLλ′l′λl(θ, θ
′)

=
xy

x′y′
(−1)l+L (2λ+ 1)(2l + 1)

2λ+l
[(2λ)!(2l)!(2λ′ + 1)(2l′ + 1)]1/2

∑

k=0

(−1)k(2k + 1)Pk(u)
∑

λ1+λ2=λ, l1+l2=l

yλ1+l1xλ2+l2

y′λx′l
(−1)l2

(
√
3)λ2+l1

[(2λ1)!(2λ2)!(2l1)!(2l2)!]1/2

∑

λ′′l′′

(2λ′′ + 1)(2l′′ + 1)

(
λ1 l1 λ′′

0 0 0

)(
λ2 l2 l′′

0 0 0

)(
k λ′′ λ′

0 0 0

)(
k l′′ l′

0 0 0

)

{
l′ λ′ L
λ′′ l′′ k

}



λ1 λ2 λ
l1 l2 l
λ′′ l′′ L



 . (10)

The index k runs from zero to (λ′ + l′ + λ+ l)/2. The (...) are the 3j symbols,

(
j1 j2 j3
m1 m2 m3

)
= (−1)j3+m3+2j1

1√
2j3 + 1

Cj3m3

j1−m1j2−m2
.

The centrifugal potential is

vλlα =
h̄2

m

[ l(l + 1)

x2
+
λ(λ+ 1)

y2

]
, (11)

and nucleon-nucleon potentials are vαα′(x) =< α|v(x)|α′ >= δλλ′δss′δσσ′δJJ ′vσJll′ ,

where vσJll′ are the potential representatives in the two-body basis YJJz

lσ (x̂) (most
often abbreviated as 2σ+1lJ).

The set of partial differential equation Eqs. (8) must be solved for functions
satisfying the regularity conditions

Φλ0s0M0

α (0, θ) = Φλ0s0M0

α (ρ, 0) = Φλ0s0M0

α (ρ, π/2) = 0 . (12)

The asymptotic conditions for pd elastic scattering have the following form [21]

Φλ0s0M0

1,ᾱ (x, y) ∼
{
δλλ0

δss0δσ1δj1e
i∆c

λF c
λ(qy)+

e−i∆c
λ

(
Gc

λ(qy) + iF c
λ(qy)

)
aM0

λsλ0s0

}
ψl(x),

x finite, y → ∞,

(13)
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where ∆c
λ =argΓ(λ + 1 + iν) is the Coulomb phase and ν is equal n/(

√
3q), ψl

is l−th component of deuteron wave function (l = 0, 2), and F c and Gc are the
regular and irregular Coulomb functions, respectively.

The S-matrix is defined as follows

SM0

λsλ0s0
= δλλ0

δss0δσ1δj1e
i2∆c

λ + 2iaM0

λsλ0s0
. (14)

At energies below threshold, the S-matrix is unitary and may be presented as

S = e2i∆,

where ∆ is the Hermitean matrix of scattering phases. From (13) we then find that
the matrix of partial elastic amplitudes a has the structure

a =

(
e2i∆ − e2i∆

c
)

2i
=
e2i∆

c
(
e2iδ − 1

)

2i
, (15)

where ∆c is a diagonal matrix of Coulomb phases and ∆ is the Hermitean matrix
of scattering phases. The phases δ = ∆−∆c are the contribution to the scattering
phase due to the nuclear interaction.

To simplify the numerical solution of the FNNM equations, we write down
Eqs. (8) in the polar coordinate system (ρ2 = x2 + y2 and tan θ = y/x)

[
E+

h̄2

m

( ∂2

∂ρ2
+

1

ρ2
∂2

∂θ2
+

1

4ρ2

)
−vλlα (ρ, θ)

]
Uλ0s0M0

α (ρ, θ)=
n

ρ

∑

β

QαβU
λ0s0M0

β (ρ, θ)

+
∑

β

vαβ(ρ, θ)
[
Uλ0s0M0

β (ρ, θ) +

1∫

−1

du
∑

γ

gβγ(θ, u, θ
′(θ, u))Uλ0s0M0

γ (ρ, θ′)
]
,

(16)
where

cos2 θ′(u, θ) =
1

4
cos2 θ −

√
3

2
cos θ sin θ · u+

3

4
sin2 θ, (17)

and the first derivative in the radius is eliminated by the substitution U = ρ−1/2Φ.
In Eq. (16), Qαβ is the overall matrix sum of the Coulomb potential.

In the case of neutron-deuteron elastic scattering, one has to set the “charge”
n equal to zero. This leads to equality to zero of the Coulomb phases ∆c

λ, and
the Coulomb functions F c

λ and Gc
λ are reduced to the regularized spherical Bessel

functions ĵλ and −ŷλ, respectively.

2.2. Numerov method

Modification of the Numerov method for the set of the differential equations
(16) does not present any difficulties in principle. As is well known, the Numerov
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method is an efficient algorithm for solving second-order differential equations. The
important feature of the equations for the application of Numerov’s method is that
the first derivative has to be absent. The aim of this method is to improve the
accuracy of the finite-difference approximation for the second derivative. Starting
from the Taylor expansion truncated after the sixth derivative for two points ad-
jacent to xn, that is for xn−1 and xn+1 one sums these two expansions to give a
new computational formula that includes the fourth derivative. This derivative can
be found by straightforward differentiation of the second derivative from the ini-
tial second-order differential equation (see the details in Ref. [22]). For brevity, we
omit the corresponding derivation and present only the final formula of Numerov’s
method for the FNNM equations (omitting the upper indices λ0s0M0)

−
[
E+

12

(∆ρ)2
+(1+

2∆ρ

ρj
)
Tα(θ)

ρ2j

]
Uα(ρj−1, θ)+n

∑

β

Qαβ(θ)

ρj
(1+

∆ρ

ρj
)Uβ(ρj−1, θ)

+
∑

β

(vαβ(ρj , θ)−∆ρv′αβ(ρj , θ))(Uβ(ρj−1, θ) +
∑

γ

θ+∫

θ−

dθ′gβγ(θ, θ
′)Uγ(ρj−1, θ

′))

−2
[
5E− 12

(∆ρ)2
+(5+

3∆ρ

ρj
)
Tα(θ)

ρ2j

]
Uα(ρj , θ)+2n

∑

β

Qαβ(θ)

ρj
(5+

(∆ρ)2

ρ2j
)Uβ(ρj , θ)

+
∑

β

(10vαβ(ρj , θ) + (∆ρ)2v′′αβ(ρj , θ))(Uβ(ρj , θ) +
∑

γ

θ+∫

θ−

dθ′gβγ(θ, θ
′)Uγ(ρj , θ

′))

−
[
E+

12

(∆ρ)2
+(1− 2∆ρ

ρj
)
Tα(θ)

ρ2j

]
Uα(ρj+1, θ)+n

∑

β

Qαβ(θ)

ρj
(1−∆ρ

ρj
)Uβ(ρj+1, θ)

+
∑

β

(vαβ(ρj , θ)+∆ρv′αβ(ρj , θ))(Uβ(ρj+1, θ)+
∑

γ

θ+∫

θ−

dθ′gβγ(θ, θ
′)Uγ(ρj+1, θ

′))=0,

(18)
where

Tα(θ) =
∂2

∂θ2
− l(l + 1)

cos2 θ
− λ(λ+ 1)

sin2 θ
+

1

4
.

In Eq. (18), ρj is the j−th current point for hyperradius ρ ∈ (0, Rmax) in the radial
grid (j = 1, 2, . . . , Nρ), ∆ρj is the radial step-interval.

To ensure the accuracy of order (∆θ)4 for the approximation in the angular
variable, Hermitian splines of the fifth degree have been used (see Ref. [23]). These
splines are local and each spline Sσi(x) is defined for x belonging to two adjacent
subintervals [xi−1, xi] and [xi, xi+1]. Their analytical form is fixed by the following
smoothness conditions

Sσi(xi−1) = 0, Sσi(xi+1) = 0, σ = 0, 1, 2, (19)
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and
S0i(xi) = 1, S′

0i(xi) = 0, S′′
0i(xi) = 0,

S1i(xi) = 0, S′
1i(xi) = 1, S′′

1i(xi) = 0,
S2i(xi) = 0, S′

2i(xi) = 0, S′′
2i(xi) = 1.

(20)

Expansion of the Faddeev component into basis of the Hermitian splines has the
following form

Uα(ρ, θ) =
2∑

σ=0

Nθ+1∑

j=0

Sσj(θ)C
σ
αj(ρ), (21)

where Nθ + 1 is the number of internal subintervals for the angular variable
θ ∈ [0, π/2].

To reduce the resulting equation (18) to an algebraic problem, one should ex-
plicitly calculate the derivatives of NN potentials vαβ(ρ, θ) with respect to ρ and
the second derivates of splines Sσj(θ) with respect to θ. It is convenient to express
the second derivative of component Uα with respect to θ through Uα itself using
Eq. (21). Upon substituting the spline expansion (21) and expression for its sec-
ond derivative into Eqs. (18), we use a collocation procedure with three Gaussian
quadrature points per subinterval. As the number of internal breakpoints for angu-
lar variable θ is equal to Nθ, the basis of quintic splines consists of 3Nθ+6 functions.
Three of them should be excluded using the last two regularity conditions from (12)
and continuity of the first derivative in θ of the Faddeev component at either θ = 0
or θ = π/2, as the collocation procedure yields 3Nθ+3 equations. Finally Eqs. (18)
for the Faddeev components are to be written as the following matrix equation

A1U1 +G1U2 = 0,
BjUj−1 +AjUj +GjUj+1 = 0, j = 2, ...Nρ − 1,
BNρ

UNρ−1 +ANρ
UNρ

= −GNρ
UNρ+1.

(22)

In this equation, vector Uk = U(ρk) has dimension Nin and matrices A,B,G,
derived from Eq. (18), have dimension Nin ×Nin where Nin = Nα ×Nc, and Nα is
the number of partial waves and Nc = 3Nθ + 3 is the number of collocation points
in the angular variable θ.

2.3. The novel method of solution

To derive equations for calculation of elastic Nd amplitudes, the method of
partial inversion [22] has been applied. We write down Eq. (22) in a matrix form

(D ∗ U)i = −δiNρ
GNρ

UNρ+1. (23)

Here the matrix D is of dimension NρNin × NρNin, and Nρ is the number of
breakpoints in the hyperradius ρ. The form of this equation results from keeping the
incoming wave in the asymptotic condition (13). As a consequence, the right hand
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part of Eq. (23) has a single nonzero term marked with index Nρ + 1. Sparse (tri-
block-diagonal) structure of matrixD optimizes considerably the inversion problem.

Hyperradius ρNρ+1 = Rmax, where Rmax is the cutoff radius at which the asymp-
totic condition Eq. (13) is implemented. By formal inversion of the matrix D in
Eq. (23), the solution of the problem may be written in the following form

Uj = −D−1
jNρ

GNρ
UNρ+1, j = 1, 2....Nρ. (24)

In Eqs. (24) one should consider the last component of vector U

UNρ
= −D−1

NρNρ
GNρ

UNρ+1. (25)

Provided Rmax is large enough, the vector UNρ
on the left side of Eq. (25) may be

replaced by the corresponding vector obtained by evaluating Eq. (13) at the radius
ρ = ρNρ

. As a result in the case M ≥ 3/2 we obtain three linear equations for the

unknown amplitudes aM0

λsλ0s0

3∑

i=1

aM0

ij · vi = Fj , j = 1, 2, 3. (26)

For M0 = 1/2, the indices run over i, j = 1, 2. In these equations, indices i, j
number the asymptotic values of pairs (λs), and vectors v,F are known quantities.
For the sake of brevity, we do not display here their explicit form. As Rmax → ∞,
the set of Eqs. (26) has a set of constants aM0

ij as a solution. At finite Rmax, its
solution is a vector a with generally different components corresponding to different
angles.

For each value of j, linear equation (26) is overdetermined, since the number of
equations is Nin and the number of unknowns is 3. Therefore it is natural to use
the least-squares method (LSM) as was proposed in Ref. [22]. According to LSM,
one has to minimize the following functional

∥∥∥
3∑

i=1

aM0

ij · vi − Fj
∥∥∥
2

= min . (27)

Differentiating this expression with respect to Re aM0

ij and Im aM0

ij , we obtain

three(two) sets of liner complex equations of dimension 3× 3 (2× 2 for M0=1/2),
respectively.

3∑

i=1

aM0

ij · (v∗
k,v

i) = (v∗
k,F

j), j = 1, 2, 3, k = 1, 2, 3, (28)

where (ξ∗, f) =
∑

i ξ
∗
i · fi is an ordinary scalar product. Now calculation of ampli-

tudes aM0

ij is a trivial task.
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2.4. Observables

To calculate observables for elastic scattering of nucleon from deuteron in the
direction q̂′ (initial direction q̂ is along the z-axis), one has to derive the equation
for the elastic amplitude as a function of scattering angle. Omitting this derivation,
we represent the final expression for this amplitude in MGL basis

âσ′

z,J
′

z,σz,Jz
(q̂′) =

∑

M

∑

λ′s′

∑

λs

iλ−λ′

√
2λ+ 1

4π

CMMz

λ′Mz−σ′

z−J ′

z,s
′σ′

z+J ′

z
CMMz

λ0,sσz+Jz
C

s′σ′

z+J ′

z

1/2σ′

z,1J
′

z
Csσz+Jz

1/2σ,1Jz
Yλ′Mz−σ′

z−J ′

z
(q̂′)aMλ′s′λs,

(29)

with Mz = σz + Jz.

In Eq. (29), σ′σ′
z(σ, σz) and J

′J ′
z(JJz) are spin and its projection for incoming

(scattered) nucleon, and the deuteron in the rest (scattered deuteron), respectively.
Thus, the nuclear part of the elastic amplitude is a (2× 2)⊗ (3× 3) matrix in the
spin states of nucleon and deuteron, depending on the spherical angles θ and φ.

The situation is a little bit more complicated with the elastic scattering of proton
from deuteron, since apart from the nuclear part, the elastic amplitude also contains
the pure Coulomb part. Thus in the matrix notation, the resulting amplitude is a
sum of two amplitudes

âtot = â+ âc, (30)

where â is the nuclear part of the same form as for the nd case and âc is the
Coulomb part which is a unit matrix in spin states (this term does not change
spins and depends only on θ)

âcσ′

z,J
′

z,σz,Jz
(q̂′) = ac(θ)δσ′

zσz
δJ ′zJz

. (31)

The amplitude ac is as follows

ac(θ) = − n

8πq
√
3 sin2(θ/2)

exp(−iν ln sin2(θ/2) + 2iηc). (32)

The parameter ν is defined by the ratio ν = 2n/(3q), q is the wave vector of a
proton, the parameter n is given in Eq. (4), and ηc = arg Γ(1 + iν).

The spin observable formulas can be taken from the review [1]. They are ex-
pressed via spin 2 × 2 matrices σi for the nucleon and 3 × 3 matrices Pi and Pik

for the deuteron. The latter are related to the deuteron spin matrices Si

Sx =
1√
2




0 1 0
1 0 1
0 1 0


 , Sy =

1√
2




0 −i 0
i 0 −i
0 i 0


 , Sz =




1 0 0
0 0 0
0 0 −1


 .

(33)
One has Pi = Si, Pik = 3/2(SiSk + SkSi), Pzz = 3SzSz − 2I, and Pxx − Pyy =
3(SxSx − SySy).
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Nucleon analyzing powers Ak are

Ak =
Tr (âσkâ

†)

Tr (ââ†)
. (34)

If the scattering plane is the xy plane and the y axis points in the direction q×q′,
then due to parity conservation Ax = Az = 0 and the only non-zero component is
Ay.

The deuteron vector and tensor analyzing powers are defined as

Ak =
Tr (âPkâ

†)

Tr (ââ†)
, Ajk =

Tr (âPjkâ
†)

Tr (ââ†)
. (35)

Parity conservation puts Ax, Az, Axy and Ayz to zero. So the non-vanishing and
independent analyzing powers are defined by

iT11 =

√
3

2
Ay, T20 =

1√
2
Azz, T21 = − 1√

3
Axz, T22 =

1

2
√
3
(Axx −Ayy). (36)

Also spin transfer coefficients are given in the review. They have the same
structure as the quantities above, with slightly different matrices to be inserted
between â and â†.

3. Results

Our results for the differential cross section and nucleon analyzing power Ay

(Fig. 1), deuteron vector iT11 and tensor analyzing T20 powers (Fig. 2), and T21

and T22 (Fig. 3) for nd elastic scattering at 3 MeV, using the AV14 NN potential,
are shown together with the benchmark calculations of Kievsky et al. [24].
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Fig. 1. Differential cross section and neutron analyzing power Ay for nd elastic
scattering at 3 MeV lab energy as function of the c.m. scattering angle. The solid
lines correspond to our results obtained with AV14 NN potential. The dashed lines
correspond to results of Kievsky et al. obtained with the same NN potential [24].
The experimental data are from Ref. [25].
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Fig. 2. Deuteron vector iT11 and tensor T20 analyzing power for nd elastic scat-
tering at 3 MeV lab energy as function of the c.m. scattering angle. The notations
are the same as in Fig. 1.
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Fig. 3. Deuteron tensor analyzing powers T21 and T22 for nd elastic scattering at
3 MeV lab energy as function of the c.m. scattering angle. The notations are the
same as in Fig. 1.

The theoretical predictions are compared with the experimental nd Ay data at
3 MeV [26]. In both calculations all values of the total three-body angular mo-
mentum up to M = 15/2 have been used. In our calculations, the total angular
momentum of the pair of nucleons j23 has been taken up to 3, while in Ref. [24], this
value was taken up to j23 = 4. It should be noted that in the case of nd scattering,
increasing j23 by unity raises the number of partial waves from 62 up to 98. This
difference presumably explains minor differences between these two calculations
around the maximum values of Ay (Fig. 2) and of iT11 (Fig. 3), where the predic-
tions of Kievsky et al. [24] are consistently higher by about 2 – 3%. Differences in
T20, T21 and T22 are even smaller, about 1%.

For the pd elastic scattering at 3 MeV, results of our calculations for the dif-
ferential cross section and proton analyzing power Ay are shown in Fig. 4 together
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Fig. 4. Differential cross section and proton analyzing power Ay for pd elastic
scattering at 3 MeV lab energy as function of the c.m. scattering angle. The solid
lines correspond to our results obtained with AV14 NN potential. The dashed lines
correspond to Deltuva et al. results [27] obtained with AV18 NN potential. The
experimental data are from Ref. [28].

with those from the benchmark calculations of Deltuva et al. [27]. Our calcula-
tions have been performed using the AV14 NN potential and involving the correct
asymptotic condition to take into account the Coulomb interaction while those of
Ref. [27] used the AV18 NN potential and the screening and normalization pro-
cedure for the Coulomb force. All theoretical calculations are compared with the
experimental data of Ref. [28]. All values of the total three-body angular momen-
tum up to M = 15/2 are used in our calculation, while in Ref. [27] value of M is
much larger. We chose values of j23 up to 4 (up to 152 partial waves taken into
account), whereas in Ref. [27] these values up to 5 have been used for the strong
interaction (207 partial waves were taken into account). Again this truncation re-
sults in a small disagreement between our predictions for polarization observables
and those from Ref. [27]. The results of calculations for the deuteron vector iT11

and tensor T20 analyzing powers as well as the experimental data [28] are shown
in Fig. 5. The results of calculations for the deuteron tensor T21 and T22 analyzing
powers as well as the experimental data [28] are shown in Fig. 6. Predictions of our
calculations and those of Ref. [27] are in reasonable agreement.

In addition to our new results for nd and pd elastic scattering, we would like to
present our new results for pd breakup scattering at Elab = 14.1 MeV obtained with
the Malfliet-Tjon (MT) I-III potential. In our paper Ref. [22], results for inelastici-
ties and phase shifts were obtained in s-wave approximation for both the strong and
the Coulomb interactions. This means that only partial waves with l = 0 were taken
into account for nuclear and electromagnetic forces as it was explicitly pointed out
and clearly explained in our paper. In Table 1 our old and new results together
with those of Ref. [27] are given. Our new results presented in rows 2− 6 were ob-
tained for s-wave (MT)I-III potential and the Coulomb interaction was taken into
account for different choices of sets of basis states (number of FNNM equations)
depending on the maximum value of the two-body angular momentum j23. In the
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Fig. 5. Deuteron vector iT11 and tensor T20 analyzing power for pd elastic scat-
tering at 3 MeV lab energy as function of the c.m. scattering angle. The notations
are the same as in Fig. 4.
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Fig. 6. Deuteron tensor analyzing powers T21 and T22 for pd elastic scattering at
3 MeV lab energy as function of the c.m. scattering angle. The notations are the
same as in Fig. 4.

calculation, we have neglected the contribution of the basis states with the total
isospin T = 3/2 which makes the relative error less than 0.2%. In Table 1, one
can see convergence of our results to those from Ref. [27]. Disagreement between
inelasticity parameters is about 1% and is about 0.1 degree for phase shifts. As is
pointed out in Ref. [27], the authors used the perturbation method. Our calcula-
tions have been performed by direct solution of the FNNM equations reduced to
a set of linear equations with the resulting matrix having tri-block-diagonal struc-
ture. Small disagreements between results for s-wave pd breakup scattering can by
explained by different numbers of partial waves taken into account (up to 126 in
our calculations and up to 398 in calculations of Deltuva et al.). The authors in
Ref. [27] have emphasized that for such large set of basis states direct solution is
impossible and one has to apply the perturbation theory. Therefore, opposite to
the claim of Ref. [27], when one compares results of calculations performed with
almost the same input, our new result and those of Deltuva et al. agree very well.
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TABLE 1. pd doublet (quartet) inelasticity 2η (4η) and phase shift 2δ (4δ) (in
deg.) at ElaB=14.1 MeV. maxj23 is maximal value of total angular momentum of
pair (23) taken into account. Nst is the total number of Coulomb partial waves in
the case T=1/2. For strong interaction only one partial wave (l=0) is taken into
account. The results from Ref. [22] obtained with a single Coulomb partial wave
(l = 0) are given in the first row. Our results are given in rows numbered from 2 to
6. The result obtained in Ref. [27] using perturbation method is given in the last
row.

maxj23 Nst
2η 2δ Nst

4η 4δ

1 1 1 0.4929 108.06 1 0.9202 73.64

2 1 5 0.4827 108.14 14 0.9425 73.099

3 3 26 0.4899 108.47 46 0.9680 72.725

4 4 34 0.4906 108.465 62 0.9685 72.661

5 5 42 0.4904 108.48 78 0.9686 72.689

6 7 58 0.4906 108.48 100 0.9680 72.683

7 25 202 0.4984 108.44 398 0.9795 72.604

4. Discussion

Our results for nd elastic scattering at 3 MeV and those from the KVP and
momentum-space calculations are in very good agreement, and minor differences
can be related to smaller values of j23 taken into account in our calculation. In the
energy region from 1.2 to 10 MeV [29], theoretical predictions are 25 – 30% lower
than the experimental data.

For pd elastic scattering excellent agreement within 1% between momentum-
space and coordinate-space calculations based on a variational solution using a
correlated hyperspherical expansion predictions at 3, 10 and 65 MeV incident nu-
cleon energies have been demonstrated in Ref. [27]. Predictions of our calculation
and that of Deltuva et al. [27] differ in the use of the NN potential and in values
of the total three-body angular momenta M and of the total angular momenta of
the pair of nucleons j23 taken into account. Our prediction is about 5% lower for
Ay than that of Ref. [27], and surprisingly about 10% higher for iT11. Predictions
for tensor analyzing powers agree to better than 5%. Comparison with the exper-
imental data of Ref. [28] confirms the Ay and iT11 puzzles. Both our calculations
and those of Ref. [27] are lower than measured values of Ref. [28]. Results using the
AV18 NN potential give better agreement with experimental data for T20 and T21.
However, surprisingly our calculation using the AV14 is in better agreement with
the analyzing power T22, possibly indicating differences between AV14 and AV18
potentials.

To end the discussion, we would like to compare our results for polarization
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observables with those from Ref. [18]. In that paper, the authors have performed a
detailed comparative study of modern three-nucleon models together in conjunction
with the AV18 NN potential to calculate observables for pd elastic scattering at
Elab = 3 MeV. The authors have shown that only the N2LOL TNF model allows to
improve the description of Ay and iT11 noticeably. At the same time, the description
of T21 becomes slightly worse and there is no change in T22. In this regard we would
like to note that our predictions obtained with the AV14 NN potential and without
three-body forces coincide with the experimental T22 data [28] and are in good
agreement with the result for iT11 from Ref. [18] obtained with three-body forces.

5. Conclusion

A very good agreement between predictions of our calculations and those of
benchmark calculations demonstrates the soundness of our novel method providing
thereby a new approach for calculating three-nucleon scattering including nucleon-
nucleon and electromagnetic interactions. Our approach can and will be used to
include three-nucleon forces and to perform additional studies using Kukulin’s po-
tential [30] and LS modified three-nucleon forces of Kievsky [31], particularly to
study the Ay puzzle. It is well known that Nd polarization observables are the
magnifying glass for studying 3PJ forces and calculations that rigorously include
nuclear and electromagnetic interactions are very valuable.

Notwithstanding the significance of 3NF, our primary goal is to extend our
study using AV14 NN potential and including the Coulomb potential to energies
above the two-body threshold and to focus on breakup data and on established
discrepancies. Our next step is to use the AV18 NN potential. As discussed in this
article, we have already established interesting differences in T20, T21 and T22
most likely due to difference between the AV14 and AV18 NN potentials.

Acknowledgements

We are very grateful to Prof. H. Witala for courteously giving the computer
code to calculate nd observables. This work was supported by NSF CREST award
HRD-0833184 and NASA award NNX09AV07A. The work of I. Š. was supported
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FADDEEVLJEV RAČUN ELASTIČNOG RASPRŠENJA
NUKLEON-DEUTERON ZA LAB ENERGIJU 3 MeV

Primijenili smo novu računalnu metodu za rješavanje problema nukleon-deuteron-
skog raspršenja s raskidanjem radi proučavanja elastičnog raspršenja neutrona i
protona na deuteronu primjenom Faddeev-Noyes-Noble-Merkurievih jednadžbi u
običnom prostoru. Metoda se zasniva na “spline” razvoju po kutnoj varijabli i
na poopćenju Numerove metode za hiperradijus. Poopćen je Merkuriev-Gignoux-
Laverne-ov pristup za proizvoljne nukleon-nukleon potencijale i za proizvoljan
broj parcijalnih valova. Za upadnu energiju nukleona od 3 MeV izračunali smo
mjerne veličine nukleon-deuteronskog raspršenja rabeći nabojno neovisan nukleon-
nukleonski potencijal AV14, uključujući Coulombovu silu za raspršenje proton-
deuteron. Ishodi računa se uspored–uju s ishodima drugih autora i s mjernih po-
dacima za proton-deuteron raspršenje.

278 FIZIKA B (Zagreb) 20 (2011) 4, 261–278


