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The recently developed ’resummed’ χPT is illustrated in the case of pseudoscalar
meson decay constants. We try to get an estimate of the η decay constant, which is
not well known from experiments, while using several ways, including the general-
ized χPT Lagrangian, to gather information beyond the standard next-to-leading
order. We compare the results to published χPT predictions, our own standard
χPT calculations and available phenomenological estimates.
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1. Introduction

As was discussed recently [1 – 5], chiral perturbation theory [6, 7], the low-energy
effective theory of QCD with Nf light quark flavors, could posses different behavior
for Nf = 2 and Nf = 3. As a consequence of vacuum fluctuations of the growing
number of light quark flavors, the most important order parameters of spontaneous
chiral symmetry breaking (SBχS), namely the pseudoscalar decay constant and the
quark condensate in the chiral limit, obey paramagnetic inequalities F0(Nf + 1) <
F0(Nf ) and Σ(Nf + 1) < Σ(Nf ) [3]. In particular, the fluctuations of the sea ss-
pairs need not be suppressed due to the relatively small value of the s-quark mass
ms . ΛQCD and could bring about a possibly significant suppression of F0(3) and
Σ(3) w.r.t. Nf = 2. This should manifest itself through the OZI rule violation in
the scalar sector as can be seen from

F0(2)2 = F0(3)2 + 16msB0L
r
4 − 2µ̄K + O(m2

s) (1)

Σ(2) = Σ(3)(1 +
32msB0

F 2
0

Lr
6 − 2µ̄K −

1

3
µ̄η) + O(m2

s), (2)

where B2
0 = Σ(3)/F0(3)2, µ̄P = µP |mu,d→0. Indeed, L4 and L6 are the 1/Nc sup-

pressed LEC’s (connected to the scalar mesons), traditionally considered negligible.
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Predictions for L4 and L6, derived from sum rules involving scalars [10, 11, 5, 2], cal-
culations on the lattice [12, 13] and NNLO SχPT [14], produce numbers significantly
different from traditional expectations [7]. Convenient parameters relating the or-
der parameters to physical quantities can be introduced: Z(Nf ) = F0(Nf )2/F 2

π

and X(Nf ) = 2m̂Σ(Nf )/F 2
πM2

π , with m̂=(mu + md)/2. The large ss vacuum
fluctuations could lead to Z(3) ≪ Z(2), X(3) ≪ X(2). Analysis [8] of the Ke4

decay experimental results for the ππ s-wave scattering length [9] lead to values
X(2) = 0.81 ± 0.07, Z(2) = 0.89 ± 0.03. ππ and πK scattering data constrain the
three flavor parameters much less strictly [1, 4], X(3) < 0.8, Z(3) ∼ 0.2 − 0.9,
Y = X(3)/Z(3) < 1.1, r = ms/m̂ > 15. Sum rule approaches [5, 2] yield approxi-
mately X(2), Z(2) ∼ 0.9 and X(3),Z(3) ∼ 0.5 at r = 25.

Small X(3) and Z(3) would lead to irregularities of the chiral expansion con-
nected to numerical competition of the LO and NLO terms, which could be conse-
quently seen as unusually large higher-order corrections. An alternative approach,
dubbed ‘resummed’ χPT (RχPT), has been introduced recently [1]. It takes this
possible scenario into account and is based on the effective resummation of the
vacuum fluctuation discussed above. The goal of the article is to illustrate the
‘resummed’ approach on the sector of decay constants and to try to use it for
theoretical predictions of the η decay constant and related parameters, including
uncertainty estimates.

The SU(3)L × SU(3)R η decay constant in the isospin limit

ipµ Fη = 〈 0 |A8
µ | η(p) 〉, (3)

where Ai
µ are the QCD axial vector currents, can be calculated in SU(3)L×SU(3)R

χPT without the introduction of the η′ meson. In the usually investigated η-η′

mixing sector, the following definitions are used

ipµ F 8,0
η,η′ = 〈 0 |A8,0

µ | η, η′ 〉. (4)

As can be seen, the SU(3)L×SU(3)R constant Fη is defined identically to F 8
η in

the U(3)L×U(3)R framework. A general two-angle mixing scheme [15, 16]

F 8
η = F8 cos ϑ8, F 8

η′ = F8 sin ϑ8, F 0
η = −F0 sin ϑ0, F 0

η′ = F0 cos ϑ0 (5)

has been shown to provide better agreement with experimental data and χPT
predictions [16 – 18] than a single mixing angle scenario. Table 1 collects some
recent two-angle phenomenological analyses leading to a value of F 8

η . Older one-

angle mixing scheme results generally provided much lower numbers F 8
η ∼ Fπ.

Several recent χPT results can be cited. Standard χPT to O(p6) [22] gives
Fη/Fπ = 1 + 0.242 + 0.066 = 1.308. Large Nc χPT to NNLO [23] leads to F8 =
1.34Fπ, ϑ = −22o and thus F 8

η = 1.24Fπ. We build on the ‘resummed’ χPT result

[1] F 2
η = F 2

π (1.651 + 0.036Y ) (at r=24, remainders neglected).
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TABLE 1. Recent two angle η-η′ analyses leading to a value of F 8
η .

Year Cit. Model input F8 ϑ8 F 8
η

2005 [18] (1.51 ± 0.05)Fπ (−24 ± 1.6)◦ 1.38Fπ

2000 [19] sum rules 1.44Fπ −8.4◦ 1.42Fπ

1999 [20] VMD 1.27Fπ

1998 [21] 1.26Fπ −21.2◦ 1.17Fπ

2. Decay constants in ‘resummed’ χPT

‘Resummed’ χPT [1] starts from the same form of the effective Lagrangian as
the Standard variant (SχPT) [7]. The difference is in the treatment of the chiral
series, RχPT assumes possible irregularities. Overall convergence to all orders is
taken for granted, but only for expansions directly obtained from the generating
functional. These ‘bare’ expansions are then dealt with additional caution.

The first step is to derive a strict chiral expansion fully expressed in terms of
the original parameters of the effective Lagrangian. In our case we have

F 2
π = F 2

0 (1 − 4µπ − 2µK) + 16B0m̂(L4(r + 2) + L5) + ∆
(4)
Fπ

(6)

F 2
K = F 2

0 (1−
3

2
µπ − 3µK −

3

2
µη) + 16B0m̂(L4(r + 2) +

1

2
L5(r + 1)) + ∆

(4)
FK

(7)

F 2
η = F 2

0 (1 − 6µK) + 16B0m̂(L4(r + 2) +
1

3
L5(2r + 1)) + ∆

(4)
Fη

. (8)

The expansions for the squares of the decay constants are used, as they are directly
related to the two-point Green functions obtained from the generating functional.
At this point, the chiral logs µP = m2

P /32π2F 2
0 ln(m2

P /µ2) contain non-physical

O(p2) masses m2
π = 2B0m̂, m2

K = B0m̂(1+ r), m2
η = 2/3B0m̂(1+2r). ∆

(4)
FP

denote
the higher-order remainders, not neglected in this approach.

The second step is the definition of the bare expansion, which usually involves
changes to the strict form in order to incorporate additional requirements, such
as physically correct analytical structure. In our case, this narrows down to the
question whether to replace the original leading-order masses inside the chiral log-
arithms with physical ones. In some cases (see [28]), this is a nontrivial question,
so we will keep both options and evaluate them.

The next stage is the reparametrization of the unknown LEC’s in terms of
physical observables. In RχPT the leading order ones are left free, only re-expressed
in terms of more convenient parameters r, Z and X resp. Y . Two NLO LEC’s are
present in our formulae, the equations for Fπ and FK (6, 7) can be used for the
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reparametrization. Note that this is done in a pure algebraic way, no additional
expansion is made. The final formula for the η decay constant [1] is then obtained
by insertion into (8)

F 2
η =

1

3

[
4F 2

K −F 2
π +

M2
πY

16π2
(ln

m2
π

m2
K

+(2r +1) ln
m2

η

m2
K

)+3∆
(4)
Fη

− 4∆
(4)
FK

+∆
(4)
Fπ

]
. (9)

The expression is valid to all orders, it’s only divided into an explicitly calculated

part and the unknown higher order remainders ∆
(4)
FP

.

The last step consists of the treatment of the remainders. We will use three
ways to estimate them. The first relies on an assumption about the convergence of
the chiral series [1, 4] and assumes that the typical size of the NNLO remainders

is |∆
(4)
FP

| ∼ 0.1F 2
P . These are added as squares to obtain the final uncertainty.

The result is a prediction in the sense that a value significantly outside of the
resulting variance is not compatible with such an assumption about a reasonably
quick convergence of the chiral expansion.

Then we try to use information outside the core χPT to get a feeling about
remainder magnitudes. As can be seen, the RχPT framework is very suitable for
incorporating such additional sources of information. We collect various published

estimates for Lr
5 and use them to check the remainder differences ∆

(4)
FK

− ∆
(4)
Fπ

and

∆
(4)
Fη

−∆
(4)
Fπ

. We also use the generalized χPT Lagrangian [24, 25] to get a sense of

the magnitude of the higher-order corrections

∆
(4)
FP

= (F
(2)
P )

GχPT
− F

(2)
P + ∆

(GχPT )
FP

. (10)

More details about this procedure will be published elsewhere [28].

3. Numerical results

For the numerical results, we use the physical values Mπ=135 MeV,
MK=496 MeV, Mη=548 MeV, Mρ=770 MeV, Fπ=92.4 MeV and FK=113 MeV. At
first, let us investigate the NLO standard χPT. There are several differences
compared to the procedure outlined in the previous section. One can use the
quadratic form of the expansion obtained from the two point Green function or
a linearized form, as is more usual. For the LEC reparametrization, inverted ex-
pansions for F 2

0 and 2B0m̂ are used, while r is fixed at r = r2 = 2M2
K/M2

π − 1 or
r = r̃2 = 3M2

η /2M2
π − 1/2. One then obtains the following formulae

Fη

Fπ

=1+2µπ−2µK +
8M2

π(r−1)

3F 2
π

Lr
5,

F 2
η

F 2
π

=1+4µπ−4µK +
16M2

π(r−1)

3F 2
π

Lr
5 (11)

where the chiral logs contain physical masses only µP = (M2
P /32π2)F 2

π ln(M2
P /µ2).
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kolesár and novotný: The η decay constant in ‘resummed’ chiral . . .

As for Lr
5, we opted to use the published values Lr

5(Mρ) = (1.4 ± 0.5) 10−3

(O(p4) fit [7, 26]) and Lr
5(Mρ) = (0.65 ± 0.12) 10−3 (O(p6) fit [27]).

All these possibilities differ merely in redefinitions of the usually neglected re-
mainders. Table 2 shows that it might be worth to spend the additional effort
to bring the higher-order uncertainties explicitly under control. Numerically, the
sensitivity to the change in Lr

5 is in the range ∆Fη/Fπ = (0.11 − 0.14)∆L5 · 103.

Proceeding to RχPT, we generally investigate a standard and a low r scenario
r ∼15 – 25 and vary Y in the range 0 – 1.6. Keep in mind, though, that the ππ and
πK scattering analyses [1, 4] suggest Y < 1.1.

Let us first neglect the remainders and have a look on the dependence of the
explicitly calculated part on the free parameters Y, r and the treatment of chiral
logs. As can be seen from Fig. 1, the dependence on both is very small. For physical
masses inside the logs one gets F 2

η /F 2
π = 1.661 − 0.011Y + 0.002Y r. The decay

constant sector might thus be insensitive to the particular scenario of SBχS and
more information is needed to extract the values of the parameters.

TABLE 2. Various NLO SχPT results for the η decay constant in Fπ units.

Expansion O(p4)L5, r=r2 O(p6)L5, r=r2 O(p4)L5, r=r̃2 O(p6)L5, r=r̃2

Fη 1.31±0.07 1.21±0.02 1.29±0.07 1.19±0.02√
F 2

η 1.27±0.06 1.19±0.01 1.25±0.05 1.17±0.01

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32

1.34

FΗ�FΠ

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32

1.34

FΗ�FΠ

Fig. 1. Fη in RχPT, remainders neglected. Chiral logs: solid - physical masses,
dashed - O(p2) masses. Dark: r = 25, light: r = 15.

Neglecting these weak dependencies one gets the sensitivity on the remainders

as ∆Fη/Fπ = 1.5 · 10−5
√

(3∆
(4)
Fη

)2 + (4∆
(4)
FK

)2 + (∆
(4)
Fπ

)2.
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Applying the 10% uncertainty remainder estimate, the following all-order ap-
proximation is obtained

Fη = (1.3 ± 0.1)Fπ. (12)

All phenomenological and theoretical results cited in the introduction fall in or
very close to this range and are thus compatible with a reasonable convergence of
chiral series. However, the mentioned one-mixing angle scheme results are signifi-
cantly outside.

The difference F 2
K −F 2

π (6, 7) depends only on Lr
5. This yields an order estimate

on the remainder difference ∆
(4)
FK

− ∆
(4)
Fπ

if independent information on Lr
5 can be

gathered. Several estimates for Lr
5 beyond O(p4) χPT are available:

- SχPT O(p6) fit: Lr
5(Mρ) ∼ (0.5 − 1.0) · 10−3 [27, 22]

- Resonance saturation: Lr
5 ∼ (1.6 − 2.1) · 10−3 [11]

- QCD sum rules: Lr
5(Mρ) > 1.0 · 10−3 [2, 5]

- χPT on lattice: Lr
5 ∼ 1.8 − 2.2 · 10−3 [12, 13]

The result of varying Lr
5(Mρ) in the range (0.5 − 2) 10−3 can be seen in Fig. 2.

O(p2) masses were kept inside logarithms, physical ones make the remainder esti-
mate somewhat larger. The estimate is compatible with small remainders.

0.25 0.5 0.75 1 1.25 1.5
Y

-0.1

0
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0.3
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DFK
H4L
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H4L�FK
2 at r=15
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DFK
H4L
-DFΠ

H4L�FK
2 at r=15

0.25 0.5 0.75 1 1.25 1.5
Y

-0.1
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0.1

0.2

0.3
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DFK
H4L
-DFΠ

H4L�FK
2 at r=25

0.25 0.5 0.75 1 1.25 1.5
Y

-0.1

0

0.1

0.2

0.3

0.4
DFK
H4L
-DFΠ

H4L�FK
2 at r=25

Fig. 2. ∆
(4)
FK

-∆
(4)
Fπ

estimate for Lr
5(Mρ) ∼ (0.5−2).10−3 (dark band). Upper bounds

correspond to low values of Lr
5. Left: r=15, right: r=25. Light: the expected

uncertainty ±0.12F 2
K from the 10% uncertainty estimate.

We can also utilize the information about the difference F 2
η − F 2

π (6,8). If we

use the latest phenomenological result F 8
η ∼ 1.38Fπ [18] as an input, an estimate

of ∆
(4)
Fη

− ∆
(4)
Fπ

is obtained. It should be stressed that older results produced lower

values, so this should be taken as a preliminary look on the possible consequences if
such a higher value of Fη was confirmed. We don’t make a full statistical analysis,

only provide some first feelings where it could lead to. Keep in mind |∆
(4)
FP

| ∼ 0.1F 2
P
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and Y < 1.1 as suggestions following from Refs. [1, 4]. These assumptions hint the
following consequences, demonstrated in Fig. 3

- r ∼ 15 and ∆
(4)
Fη

− ∆
(4)
Fπ

< 0.2F 2
η implies Y > 1 or Lr

5(Mρ) > 2 10−3.

- r ∼ 25 and ∆
(4)
Fη

− ∆
(4)
Fπ

< 0.2F 2
η implies Y > 0.5 or Lr

5(Mρ) > 2 10−3.

- Lr
5(Mρ) < 1 10−3 and r ∼ 25 implies Y > 1.2, ∆

(4)
Fη

− ∆
(4)
Fπ

> 0.2F 2
η .
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Y
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0.5
DFΗ
H4L
-DFΠ

H4L�FΗ
2 at r=25

Fig. 3. ∆
(4)
Fη

-∆
(4)
Fπ

estimate for Lr
5(Mρ) ∼ (0.5−2).10−3 (dark band). Upper bounds

correspond to low values of Lr
5. Left: r=15, right: r=25. Light: the expected

uncertainty ±0.11F 2
η from the 10% uncertainty estimate.

The remainder estimate using the generalized χPT Lagrangian [28] provides

3∆
(4)
Fη

−4∆
(4)
FK

+∆
(4)
Fπ

= 2Ar
2F

2
πm̂2(r−1)2+8Ar

3F
2
πm̂2(r2+1)−4Br

2(µ)F 2
πm̂2(r−1)2

− 8CP
1

r
(µ)F 2

πm̂2(r − 1)2 −
M2

π(X − 1)

16π2
ln

[
M2

π

µ2

]

−
4M2

K − 2M2
π(r + 1)X

16π2
ln

[
M2

K

µ2

]
+

3M2
η − M2

π(2r + 1)X

16π2
ln

[
M2

η

µ2

]
+∆

(5)
GχPT . (13)

We use two ways to estimate the unknown GχPT LEC’s. The first is the usual
simple variation of scale, the constants are set to zero at two different scales and the
sensitivity is checked. The second assumes a probabilistic distribution of possible
values depending on scale variation

Br
2(Mρ) = 0 ±

ZS
0 + ZP

0

4π2F 2
π

ln

[
1GeV

Mρ

]
, CP

1

r
(Mρ) = 0 ±

A0 − ZS
0

16π2F 2
π

ln

[
1GeV

Mρ

]
.

(14)
These are then added in squares. Note that the insensitivity in the first case assures
independence on where the central value is chosen in the latter one.
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The results for r = 25 can be seen in Fig. 4. Low values of r do not change the
overall picture. However, of the four GχPT LEC’s present, in our case only two
depend on scale, which is hardly a good statistical ensemble. Nevertheless, here is
no indication of large higher-order corrections.

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32
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FΗ�FΠ at r=25

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32

1.34

1.36

1.38

FΗ�FΠ at r=25

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32

1.34

1.36

1.38

FΗ�FΠ at r=25

0.25 0.5 0.75 1 1.25 1.5
Y

1.26

1.28

1.3

1.32

1.34

1.36

1.38

FΗ�FΠ at r=25

Fig. 4. GχPT remainder estimate for r=25. Dark: Z=0.9, light: Z=0.5. Left:
simple variation of scale, solid: µ = 1GeV, dashed: µ = Mρ. Right: the LEC
estimate described in the text, solid: error bars µ = 1GeV/Mρ, dashed: central
values µ = Mρ.

4. Summary

We have studied the case of pseudoscalar decay constants in the ’resummed’
χPT framework and tried to obtain an estimate for the η decay constant and related
parameters. We used several ways to get a feeling about the effect of higher-order
remainders.
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KONSTANTA RASPADA η U ‘PONOVO-ZBIRNOJ’ KIRALNOJ TEORIJI
SMETNJE

Razjašnjavamo nedavno razvijenu ‘ponovo-zbirnu’ χPT razmatranjem konstante
raspada pseudoskalarnih mezona. Pokušavamo dobiti ocjenu konstante raspada η,
koja nije dobro znana iz mjerenja, raznim pristupima, uključivši i poopćen la-
granžijan χPT, radi skupljanja podataka koji su iza drugog standardnog vodećeg
člana. Uspored–ujemo svoje rezultate s objavljenim predvid–anjima χPT, sa svojim
standardnim računima u okviru χPT i s poznatim fenomenološkim procjenama.
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