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J. BOHÁČIKa and P. PREŠNAJDERb
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We discuss the problem of an effective description of the phase transition phenom-
ena in the pure gluodynamics in SU(2) symmetric QCD. The calculation method
is choosen following the conjecture that the infrared sector of the theory possesses
the same confinement characteristic as the full theory. It is shown that the analytic
description of this phenomena is beyond the Gaussian method of evaluations of
functional integrals. We point to a non-perturbative method of the evaluation of
functional integral for two dimensional Wiener integral for x4 theory which could
solve this problem.
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1. Introduction

The evaluations of the measurable quantities in quantum field theory (QFT) are
well defined theoretically, but many obstacles appear in the calculations connected
with the non-ability to realize the calculations corresponding to the theoretical def-
initions. The calculations in QFT are usually performed analytically using pertur-
bative calculus, numerically by lattice gauge theory (LGT), or by creating models
based on the results of previous methods of calculations. The perturbative methods
give analytical results, but various problems in QFT are non-perturbative phenom-
ena, therefore they are applicable for the narrow group of problems only. LGT,
the best method of evaluations at this time, suffers from finiteness of the lattice,
problems of definitions of mathematical objects on the lattice and the continuum
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limit problems. We adopt the method of analytical calculations in the continuum
to study of the transitions in dense matter. After a short introduction into the
problem in Section 2, we propose in Section 3 the non-perturbative solution of the
problem of evaluation of the functional integral with fourth-order term in the ac-
tion. We found the result in the form of an asymptotical series, and a method of
solution of the problem is described in articles [1] and [2].

2. Effective description of the confinement in continuum

The Euclidean finite temperature theory is defined by the functional integral
for the partition function

Z(β) = N

∫

[DAa
µ] exp (−SE) ,

where the Euclidean action is defined by

SE =
1

4

β
∫

0

dτ

∫

d3x Fa
µνFa

µν .

The Euclidean color field strength is defined as follows

Fa
µν = ∂µAa

ν − ∂νAa
µ − gεabcAb

µAc
ν .

We require the periodicity of color potentials in the direction of the imaginary time
variable

Aa
µ(τ + β, x) = Aa

µ(τ, x) .

The theory with corresponding partition function looks like a partition function for
the finite temperature theory in statistical physics. This ”isomorphism” allows us
to investigate the QCD problem by methods of statistical physics.

We are concerned with the phase transitions to the quark gluon plasma at high
densities of matter, the one of the challenging forecasts of QCD. We investigate some
problems of this phase transition, usually known as confinement/deconfinement
phase transition, by a model-independent method described below. Such description
of the confinement problem relies on the conjecture that the infrared sector of the
finite temperature theory possesses the same phase structure as the complete theory.
This is the assertion of Appelquist - Carrazone decoupling theorem [3], where it
was proven that by integrating off-massive modes of the theory, one obtains terms
in the potential controlling dynamics (in this case the infrared variables) of the
theory. With the help of this theorem, we reduce the infinite number of variables
of the original theory to a finite number in the infrared sector effectively describing
the phenomena studied.

To integrate over the massive modes, we proceed as follows:

1) We separate the field variable to the sum of the “classical” part and the
“quantum fluctuation”

Aa
µ(t, x) = Aa

µ(t, x) + aa
µ(t, x) .
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We use the static gauge for evaluations of the functional integrals over massive
modes. The saddle points of the action in this gauge are fixed as

Aa
i = 0, i, a = 1, 2, 3, A1

0 = A2
0 = 0, A3

0 = const.

We choose finite A3
0 in the color space for the simplicity.

2) The periodicity of color potentials in the imaginary time variable offers a
chance to use Fourier transformation of the potentials in this variable. This opera-
tion automatically separates the Fourier transforms of the potentials to the infrared,
zero frequency modes and massive modes, where nonzero Fourier frequency modes
(≡ Matsubara frequencies) appear as mass terms. Integrating over these “massive
modes” by the Gaussian method, we obtain their contribution to the effective po-
tential (in the scope of this article we take Veff = Veff(A3

0, b
3
0, b

a
i ), a, i = 1, 2, 3)

and contributions of the A3
0 dependent mass terms for the perpendicular quantum

fluctuation degrees of freedom (b1
i , b

2
i , i = 1, 2, 3) in the infrared sector of the theory.

This process is known as dimensional reduction, described by Appelquist and Pis-
arski [4], and offers possible calculation scheme for finite temperature field theories.
The zero-modes action in quantum fluctuations fields reads

Szero =β

∫

d3x

{

1

4
Ga

ijG
a
ij +

1

2
(gA3

0)
2[(b1

i )
2+(b2

i )
2]+

1

2
(∂ib

3
0)

2+Veff(A3
0, b

3
0, b

a
i )

}

, (1)

with the field strength

Ga
ij = ∂ib

a
j − ∂jb

a
i − gεabcbb

ib
c
j .

We have found two different effective systems, depending on the value of the
static color potential A3

0.

1. Let A3
0 = 0. In this case, all quadratic terms in the zero frequency field

variables in Eq. (1) disappear. The effective infrared system depends on variables
ba
i , b3

0, a, i = 1, 2, 3. The color SU(2) symmetry of the system is maintained. This
system corresponds to the interaction of the effective Higgs field, represented by
chromoelectric potential b3

0, with the chromomagnetic fields represented by the
chromomagnetic potentials ba

i .

2. Let A3
0 ≫ 0, at least as the lowest Matsubara frequency. In this case, the

modes b1
i , b

2
i in Eq. (1) must be treated as massive, and these modes are integrated

off the zero mode system. Then the infrared system depends on variables b3
i , b

3
0, i =

1, 2, 3, and the remanent color symmetry group is Z(2). It is the well-known abelian
projection observed also in the lattice calculations. In the earlier continuum theory
studies [5 – 7], we find in this sector the confinement/deconfinement transition with
correct behavior of the potential between heavy quarks calculated as the corellators
of Polyakov’s loops.

But what happens when A3
0 grows from zero to a finite value and infrared system

undergoes the transition SU(2) → Z(2)? We named this phenomenon the “abelin-
ization transition” [8]. To study it, the use of the Gaussian method for evaluations
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of functional integrals is not sufficient. Preliminary investigations indicate that this
transition could be non-continuous, and consequently the lattice formalism may be
not powerful, too. We conclude that one needs some new formalism for the eval-
uations of the functional integrals with higher-power terms than the quadratic in
the potential. This formalism is well defined also in the case of the vanishing mass
term of the potential.

As a first attempt, we applied the semi-analytical method to evaluate the Wiener
functional integral with x4 term in the action. The short description of this method
is reported in the next section.

3. Evaluation of ϕ
4 Wiener functional integral

The simplest non-Gaussian functional integral is the Wiener functional integral
with the x4 term in the action. In the Euclidean sector of the theory, we have to
evaluate the continuum Wiener functional integral

Z =

∫

[Dϕ(x)] exp(−S) , (2)

In this case, the action possesses the fourth-order term

S =

β
∫

0

dτ

[

c/2

(

∂ϕ(τ)

∂τ

)2

+ bϕ(τ)2 + aϕ(τ)4

]

.

The continuum Wiener functional integral is defined by a formal limit

Z = lim
N→∞

ZN ,

where the finite dimensional integral ZN is defined by the time-slicing method

ZN =

+∞
∫

−∞

N
∏

i=1

(

dϕi
√

2π△/c

)

exp

{

−
N
∑

i=1

△
[

c/2

(

ϕi − ϕi−1

△

)2

+ bϕ2
i + aϕ4

i

]}

, (3)

where △ = β/N , and a, b, c are the parameters of the model. The quantity ZN

represents the unconditional propagation from ϕ = ϕ0 = 0 to any ϕ = ϕN (Eq. (3)
contains an integration over ϕN ).

3.1. Finite dimensional integral

An important task is to calculate the one-dimensional integral

I1 =

+∞
∫

−∞

dx exp{−(Ax4 + Bx2 + Cx)} ,
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where Re A > 0. The standard perturbative procedure relies on the Taylor’s de-
composition of exp(−Ax4) term with consecutive replacements of the integration
and summation order. The integrals can be calculated, but the sum is divergent.

Instead, we propose the power expansion in C

I1 =

∞
∑

n=0

(−C)n

n!

+∞
∫

−∞

dx xn exp{−(Ax4 + Bx2)} .

The integrals in the above relation can be expressed by the parabolic cylinder
functions D−ν−1/2(z). Then, for the integral I1 we have

I1 =
Γ(1/2)√

B

∞
∑

m=0

ξm

m!
D−m−1/2(z) , ξ =

C2

4B
, z =

B√
2A

, (4)

with the abbreviation

D−m−1/2(z) = zm+1/2 ez2/4 D−m−1/2(z) .

It was shown that sum in Eq. (4) is convergent and for finite values of z this sum
converges uniformly in the variable ξ.

Applying this idea of integration to the N -dimensional integral (3), we proved
[1] the exact formula for the N -dimensional integral (3)

ZN =

[

N
∏

i=0

2(1 + b△2/c)ωi

]− 1

2

SN ,

with

SN =
∞
∑

k1,···,kN−1=0

N
∏

i=0

[

(ρ)
2ki

(2ki)!
Γ(ki−1 + ki + 1/2)

√
ωi D−ki−1−ki−1/2 (z)

]

,

where k0 = kN = 0, ρ = (1+b△2/c)−1, z = c(1+b△2/c)/
√

2a△3, ωi = 1−A2/ωi−1,
ω0 = 1/2 + Ab△2/c, A = 1/[2(1 + b△2/c)]. We see that ρ is independent of the
coupling constant. Only the argument z of the parabolic cylinder function depends
on the coupling constant a.

To evaluate SN , we must solve the problem how to sum up the product of
two parabolic cylinder functions. The parabolic cylinder functions are related to
the representation of the group of the upper triangular matrices, so we implicitly
expect a simplification of their product. This problem is not solved completely
yet. We adopt less complex method of summation, namely we use the asymptotic
expansion of one of them, then, exchanging the order of summations we can sum
over ki. Surely, the result is degraded to an asymptotic expansion only, but still we
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have an analytical solution of the problem. This procedure was widely discussed in
detail in the article [1]. Here we show the result

SN =
J
∑

µ=0

(−1)µ

µ! (2z2△3)µ
△3µ

{

C2µ(N)
}

2µ,2µ
. (5)

The evaluation of the symbols
{

C2µ(N)
}

2µ,2µ
is described in the article [2]. We

explicitly present the first nontrivial contribution in the continuum limit (µ = 1,
△ → 0, △.N = β)

{

C2(a, b, c, τ)
}

2,2
=

3

8γ3

[

3γτ tanh2(γτ) + tanh(γτ) − γτ
]

, (6)

where γ =
√

2b/c. The dependence of S(a, b, c, τ) = limN→∞ SN on the variable
b, the mass-squared of anharmonic oscillator, is shown in Fig. 1.

The parameters a, c, τ are fixed constants, and we took J = 3 in Eq. (5). For
b < 0, we see the singularities for |γτ | = (n + 1/2)π. This divergent behavior
corresponds to the powers of tan (|γτ |).
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Fig. 1. b dependence of the continuum function S(a, b, c, τ) for fixed values a =
0.1, c = 0.5, τ = 1. The first three nontrivial terms of the asymptotic series (5) were
used.

3.2. Gelfand–Yaglom equation

Gelfand and Yaglom proved in Ref. [9] for the harmonic oscillator that nontrivial
continuum limit of the finite dimensional integral approximation to the functional
integral should be evaluated from N -dimensional integral results by a recurrent
procedure. For the harmonic oscillator, Gelfand and Yaglom derived for the uncon-
ditional measure integral Z(β) the differential equation

∂2

∂τ2
y(τ) =

2b

c
y(τ) , (7)

where Z(β) = limN→∞ ZN = y(β)−1/2
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Following the idea of Gelfand and Yaglom, we found [1] for an-harmonic oscilla-
tor the generalized Gelfand–Yaglom equation. We define the unconditional measure
functional integral Z(β) by the relation

Z(β) = lim
N→∞

ZN =
1

√

F (β)
.

The function S(τ) is given as the continuum limit of Eq. (5)

S(τ) = lim
N→∞

SN .

The generalized Gelfand–Yaglom equation reads

∂2

∂τ2
F (τ)+4

(

∂

∂τ
F (τ)

)(

∂

∂τ
lnS(τ)

)

=F (τ)

[

2b

c
−2

∂2

∂τ2
lnS(τ)−4

(

∂

∂τ
lnS(τ)

)2
]

,

(8)
accompanied by the initial conditions F (0) = 1, and (∂F (τ)/∂τ)

∣

∣

τ=0
= 0.

For S(τ), one can use a perturbative expansion in the coupling constant a and
then solve Eq. (8). This procedure gives a non-perturbative approximation of the
functional integral (2). For the harmonic oscillator limit, we have S(τ) → 1. In the
case when function S(τ) is known exactly, the problem of the functional integral
calculation is trivial. Problems arises in the situations, when S(τ) is known approx-
imately, as the result of a perturbative approach. Then τ dependence of the S(τ)
can be represented by a power expansion, where S(τ) is reasonably approximated
in proximity of τ = 0, but for τ = β, the perturbative approach to S(β) is not so
exact. The development of the function F (τ) from τ = 0 to τ = β is controlled by
the differential equation (8), therefore the approximative knowledge of the func-
tion F (τ) in the proximity of τ = 0 will lead to a more reliable result for F (β).
This philosophy of calculation corresponds to the idea of evaluation of the physical
values by the renormalization group approach.

The dependence of the function −2(∂2/∂τ2) ln S(τ) − 4 ((∂/∂τ) ln S(τ))
2

on τ
for positive fixed values of parameters a, b, c is shown in Fig. 2.
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Fig. 2. τ dependence of the continuum function −2∂2
µ ln(S(a, b, c, τ))−4[∂µ ln(S(a, b, c, τ))]2

for fixed a = 0.1, b = 5, c = 0.5. The first three nontrivial terms of the asymptotic
series (5) were used.
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4. Conclusions

We described some features of the confinement problem in the continuum theory,
which can’t be solved by the perturbative method of evaluations of the functional
integral. At the same time, in the second part of the article, we show a new approach
to the solution of such problems. We find for the functional integral of an an-
harmonic oscillator the non-perturbative equation (8). By solving this equation,
we can find the analytical solution of the partition sum for an-harmonic oscillator
problem.

The skeptic view of such solution of the problem may be expressed by the
comment that we reformulate the problem to the language of differential equations.
This is true. But our opinion is that the theory of differential equations is more
elaborated and flexible than approaches based on the naive perturbative theory and
it can give more reliable results than the perturbative theory.
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[7] O. Borisenko and J. Boháčik, Phys. Rev. D 56 (1997) 5086.

[8] A. Di Giacomo and M. Mathur, Nucl. Phys. B 531 (1998) 302; hep-th/9802050.

[9] I. M. Gelfand and A. M. Yaglom, J. Math. Phys. 1 (1960) 48.

PROUČAVANJE ABELIZACIJSKOG PRIJELAZA U SU(2) GLUODINAMICI
NA KONAČNOJ TEMPERATURI

Raspravljamo problem učinkovitog opisa pojava faznih prijelaza u čistoj gluodi-
namici u simetričnom SU(2) QCD. Odabrali smo računalni pristup slijedeći slut-
nju da infracrveni sektor teorije ima jednake značajke zarobljivanja kao potpuna
teorija. Pokazuje se da analitički opis problema nije moguć primjenom Gaussove
metode računanja funkcionalnih integrala. Ukazujemo na neperturbativan način
izračunavanja funkcionalnih integrala za dvodimenzijski Wienerov integral za x4

teoriju koji bi mogao riješiti problem.
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