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Some physical restrictions and their influences on the boundary conditions for a
particle in a one-dimensional box are pointed out. We discuss the invariance of

the corresponding Hamiltonian under time-reversal T̂ and its relation with the de-
generacy of the energy eigenvalues. We also discuss the effect on the boundary

conditions of requiring the invariance of the Hamiltonian under parity P̂ and si-

multaneous space and time reflection P̂ T̂ . A condition, which depends only on the
boundary values of an eigenfunction of the Hamiltonian and its derivative, deter-
mines if the corresponding eigenvalue satisfies the inequality E > V (x) = const,
V (x) being the potential inside the box. Once these results have been presented, we
choose various representative analytically solvable examples of boundary conditions
(Hamiltonians) and supersymmetrize the corresponding problems. We find real and
complex valued supersymmetric partner potentials among all these systems.
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1. Introduction

In the last few years, supersymmetric quantum mechanics (SUSY QM) has be-
come a very active field of research, especially because it has the ability to find
new exactly solvable potentials with almost equal energy spectra [1]. For exam-
ple, many exactly solvable potentials have been studied, nevertheless, until a short
time ago, the supersymmetric version of the simplest model problem of quantum
mechanics with bound states, the free particle inside a one-dimensional box (with
Hilbert space L2(Ω), where Ω ⊂ ℜ), had been studied only when the ground state
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eigenfunction for the Hamiltonian Ĥ satisfies the Dirichlet boundary condition [2].
Recently, a (non standard) complex boundary condition was considered for the
same problem [3], also introducing an alternative approach to the general problem
of factorization that uses the probability density and current corresponding to the

ground-state eigenfunction of Ĥ. As is well known, this eigenfunction is especially
important in the SUSY QM procedure, peculiarly, the ground state eigenfunction
for a particle in a box could be specifically complex and nondegenerate, or complex
and degenerate, or simply real and nondegenerate or degenerate. More recently, in
Ref. [4], other representative boundary conditions were studied again by applying
the formalism introduced in Ref. [3]. (The approach used in Refs. [3, 4], with lo-
cal observable quantities, is specially useful for the consideration of bound states;
moreover, it complements other SUSY complexification procedures [5].) The SUSY
quantum mechanical treatment of the infinite square well potential (with Hilbert
space L2(R)), has also been studied [6]. In that paper, the SUSY version of the
finite square well potential was developed first, and then from these results, the
corresponding infinite square well was obtained.

In this paper, we complement, extend and discuss the results obtained in
Refs. [3, 4]. We supersymmetrize various interesting types of explicitly solvable
boundary conditions that are included within a four-parameter general family of
boundary conditions. By the way, some of these boundary conditions are physically
rare or unusual and lead to unexpected, interesting and not so common results (for
instance, as complex superpotentials, or two partner potentials corresponding to
only one potential). For this reason, we also obtain and introduce here several
results about boundary conditions for a particle in a box. These results have con-
sequences on the type of ground state eigenfunction that one has at first – for the

operator Ĥ – and, therefore, on the type of final energy eigenvalue problem, for its
respective partner.

The plan of this paper is as follows. In the following section, we present the
most general family of boundary conditions for the Schrödinger Hamiltonian that
describes a free particle in a one-dimensional box. We discuss the invariance of this

Hamiltonian under time-inversion T̂ and its relation with the degeneracy of the
energy eigenvalues. (We also have more results about this in section 4.) The re-

quirements of space-reflection P̂ and P̂ T̂ symmetry also restrict the general family
of boundary conditions, and this is discussed in this section as well. Likewise, we
obtain a condition, which depends only on the boundary values of a Hamiltonian
eigenfunction u(x) and its derivative u′(x), that determines does the corresponding
energy eigenvalue satisfies the inequality E > V (x) (= const). The content of this
section complements results previously obtained [7], moreover, all these results for
boundary conditions for a particle in a box may be of an independent interest. In
section 3, we briefly review our approach (introduced in Ref. [3]) to the problem of
factorization of a self-adjoint Hamiltonian operator with (possibly) complex eigen-
functions. (We also establish notation with this content.) In section 4, we use this
approach to supersymmetrize some representative Hamiltonians for a particle in a
box. Finally, some concluding remarks are given in section 5.
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2. Particle in a box

For a free particle in a one-dimensional box (i.e., null or constant potential
inside a box) with walls at x = 0 and x = L, the Hamiltonian (real and self-

adjoint) is Ĥ = (−~
2/2m)(d2/dx2) + V , which is defined in the Hilbert space H

for functions u(x) such that ||u|| < ∞, in Ω = [0, L] (with the usual definition

of the norm). This Ĥ is an unbounded operator, and its domain D(Ĥ) are all

functions belonging to H satisfying ||Ĥ(u)|| < ∞. (Also, u(x) and du/dx = u′(x)
are absolutely continuous functions.) Furthermore, u(x) must satisfy some of the
following boundary conditions [7,8]

(
u(L) − iλu′(L)
u(0) + iλu′(0)

)
= U

(
u(L) + iλu′(L)
u(0) − iλu′(0)

)
. (1)

The primes in the preceding equation mean differentiation with respect to x. The
parameter λ is inserted for dimensional reasons and the matrix U belongs to U(2).
The potential inside a box V is real. It can be shown that for every function

u ∈ D(Ĥ), the density current j(x) = (~/m) Im(ū(x)u′(x)) (bar means the complex
conjugation) satisfies j(0) = j(L). Some of these boundary conditions verify j(0) =
j(L) = 0, which is the impenetrability condition at the walls of the box.

The unitary matrix in (1) can be written, for instance, as [7]

U = exp(iφ)

(
m0 − im3 −m2 − im1

m2 − im1 m0 + im3

)
. (2)

where φ ∈ [0, π], and quantities mk ∈ ℜ (k = 0, 1, 2, 3) satisfy (m0)
2 + (m1)

2 +
(m2)

2 + (m3)
2 = 1.

Physically, one can classify the boundary conditions included in (1) in many
ways; for example, only a subset of the boundary conditions always leads to real
eigenfunctions (up to an inessential constant factor), and these are the conditions

that are invariant under time-reversal T̂ . In fact, if we suppose that the Hamiltonian

operator Ĥ is invariant under time-reversal T̂ , we have (T̂−1ĤT̂ u)(x) = (Ĥu)(x), so

that the operator T̂ commutes with Ĥ and the time-reversal transformed function

must satisfy (T̂ u)(x) ∈ D(Ĥ). If we consider a stationary state of definite energy (in

that situation, T̂ is also called the complex conjugation operator), this invariance

implies that u(x) and (ū)(x) ≡ (T̂ u)(x) are two eigenfunctions of Ĥ with the
same eigenvalue and they both satisfy the same boundary condition. Thus, the
matrix U must satisfy U+ = Ū , which implies m2 = 0 [7]. Therefore, the number

of the parameters in U is reduced to three, and the eigenfunctions for these T̂ -
invariant Hamiltonians can be real functions. (This result has also been found in
the problem of a particle on a line with a hole; see Ref. [9] and references therein.)
If u(x) is complex, then Re(u) = (u+ ū)/2 and Im(u) = (u− ū)/2i are the two real

eigenfunctions of Ĥ (within a phase).
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It is important to emphasize that when u and ū are complex eigenfunctions

of Ĥ (or Re(u) and Im(u) belong to ℜ), there is a double degeneracy in the level
energies, such that the usual proof that forbids the degeneracy for a one-dimensional
system [10] cannot be applied to the problem of a particle inside a box. A necessary
condition for the existence of degeneracy in the level energies in this problem is that

the respective Hamiltonian be invariant under time-reversal. Hence, T̂ -invariant
boundary conditions also exist that cannot lead to degeneracy in the energies, for
example, the usual Dirichlet boundary condition u(0) = u(π) = 0, the Neumann
boundary condition u′(0) = u′(π) = 0, and the so-called mixed boundary conditions
u(0) = u′(π) = 0 and u′(0) = u(π) = 0. (All these boundary conditions are included
in a subfamily of boundary conditions that is introduced in section 4.) In conclusion,

if the (complex or real) eigenfunctions of the Hamiltonian Ĥ are doubly degenerate,

then the respective boundary condition is T̂ -symmetric. If the boundary condition is

not T̂ -symmetric, then the eigenfunctions are necessarily complex and, in addition,
they cannot be degenerate.

One can also require that the boundary conditions be invariant under parity

P̂ . That is, by supposing that the Hamiltonian operator Ĥ is invariant under the

parity operator P̂ , we have (P̂−1ĤP̂u)(x) = (Ĥu)(x) so that P̂ commutes with

Ĥ and the parity transformed function must additionally satisfy (P̂ u)(x) ∈ D(Ĥ).

Thus, (P̂ u)(x) ≡ u(L − x) must satisfy the same boundary condition that u(x)

satisfies. By making use of this last relation and also of the following (P̂ u)′(x) =
d

dx
u(L − x) = − d

dx̃
u(x̃)

∣∣∣
x̃=L−x

, it can be seen that the matrix U must satisfy

σxU = Uσx, and this requires that m2 = m3 = 0. So, we see that any P̂ -invariant

boundary condition is at the same time T̂ -invariant. (This result has also been
found in the problem of a particle on a line with a hole [11].)

Likewise, if we require that the boundary conditions be invariant under simulta-

neous space (P̂ ) and time (T̂ ) reflection, that is, by supposing that the Hamiltonian

operator Ĥ is invariant under the operator P̂ T̂ , we have ((P̂ T̂ )−1ĤP̂ T̂ u)(x) =

(Ĥu)(x) so that P̂ T̂ commutes with Ĥ and the P̂ T̂ -transformed function must

additionally satisfy (P̂ T̂ u)(x) ∈ D(Ĥ). Thus, the function (P̂ T̂ u)(x) ≡ ū(L − x)
must obey the same boundary condition that u(x) satisfies. By using this fact

and the corresponding expression for the derivative (P̂ T̂ u)′(x) = d

dx
ū(L − x) =

− d

dx̃
ū(x̃)

∣∣∣
x̃=L−x

, it can be demonstrated that the matrix U satisfies σxU+ = Ūσx,

which requires that m3 = 0. (Several results about the P̂ T̂ -symmetric second
derivative operators with point interactions can be found in Ref. [12].) Clearly,
the set of boundary conditions invariant under the parity operator is also invariant

under the operator P̂ T̂ .

Finally, given a boundary condition, we can easily obtain a useful condition that
determines if an energy eigenvalue satisfies the inequality E > V (x) (= const), or
else if E > 0 in the case that V = 0. (For a particle in a box, the existence of
energy eigenvalues for which E < V is somewhat surprising; as a matter of fact, at
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the most, two of these eigenvalues might appear [7].) Certainly, E being the eigen-

value and u(x) the corresponding eigenfunction of Ĥ, we multiply the Schrödinger

equation (Ĥu)(x) = Eu(x) by ū(x) and integrate it between the boundaries of
the box. Now, by integrating by parts (once) the term that contains u′′(x), we
obtain the following result. If an eigenfunction satisfies the inequality ū(L)u′(L) −
ū(0)u′(0) ≤ 0, then its corresponding energy verifies E > V . It is worth mentioning
that the condition j(0) = j(L) implies that Im(ū(L)u′(L)− ū(0)u′(0)) = 0, so that
the inequality we have obtained here, in fact, takes the form

Re(ū(L)u′(L) − ū(0)u′(0)) ≤ 0 . (3)

This condition is automatically satisfied for some typical boundary conditions, and
therefore, all their corresponding eigenfunctions also satisfy this inequality. (Notice
that, generally, quantities u(x) and derivatives u′(x), evaluated at x = 0 or x = L,
depend on the respective eigenvalue.)

In this paper we will consider various examples of boundary conditions that are
included within the four parameter family (1) (see Table 1).

TABLE 1. Some boundary conditions (BC).

Name of

BC boundary Boundary condition m0 m1 m2 m3 φ

condition

(a) Dirichlet u(0) = u(L) = 0 1 (-1) 0 0 0 π (0)

(b) Neumann u′(0) = u′(L) = 0 1 (-1) 0 0 0 0 (π)

(c) Mixed u(0) = u′(L) = 0 0 0 0 1 π/2

(d) Another mixed u′(0) = u(L) = 0 0 0 0 -1 π/2

(e) Periodic u(0) = u(L), u′(0) = u′(L) 0 1 0 0 π/2

(f) Antiperiodic u(0) = −u(L), u′(0) = −u′(L) 0 -1 0 0 π/2

(g) “Complex” u(0) = iu(L), u′(0) = iu′(L) 0 0 1 0 π/2

(h) “Unusual” λu′(0) = −iu(L), λu′(L) = −iu(0) 0 0 1 0 0

Boundary conditions (a), (b), (c), (d), (e) and (f) are T̂ -invariant. The condi-

tions (a), (b), (e), (f), (g) and (h) are P̂ T̂ -invariant but only (a), (b), (e) and (f)

are P̂ -invariant. All eigenfunctions for the boundary conditions: (a), (b), (c), (d),
(e) (f) and (g) satisfy relation (3) for their respective potentials. The ground state
for the boundary condition (h) does not satisfy the inequality (3), as we will see in
section 4.
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3. Factorization with local observable quantities

For completeness, in this section we briefly review our approach to the prob-

lem of factorization of a real (self-adjoint) Hamiltonian operator Ĥ that has a
purely discrete spectrum En and (possibly complex) eigenfunctions un(x) with
n = 0, 1, 2, . . .. The ground-state eigenfunction is u0(x), and its corresponding
energy is E0 = 0. Consequently, we write

(Ĥu0)(x) =

(
− ~

2

2m

d2

dx2
+ V (x)

)
u0(x) = 0 , (4)

with

V (x) =
~

2

2m

(u0)
′′(x)

u0(x)
= w2(x) − ~√

2m
w′(x) , (5)

where the complex quantity

w(x) = − ~√
2m

(u0)
′(x)

u0(x)
=

~√
2m

(
− (R0)

′(x)

R0(x)
− i

mj0
~

1

(R0)2(x)

)
(6)

is the so-called superpotential and the probability density for the ground-state
eigenfunction R0(x) and its corresponding probability current density j0 are given
by

R0(x) =
√

|u0|2, j0(x) =
~

m
Im(ū0(x)u′

0(x)) = const . (7)

The potential in (5) is real because Ĥ is self-adjoint [3, 4], however, as we have
explained previously, the eigenfunction u0(x) is not always real. For example, the
ground-state eigenfunction associated to the boundary condition (g), which was
mentioned in Section 2, is complex.

The Hamiltonian Ĥ defined in Eq. (4) can be factorized as

Ĥ = b̂ â , (8)

where we have defined the following linear differential operators

â ≡ ~√
2m

d

dx
+ w(x) , b̂ ≡ − ~√

2m

d

dx
+ w(x) . (9)

If the typical case of j0 = 0 is considered, for example, if we are using a real
ground-state eigenfunction or an eigenfunction verifying u0(x) ∝ ū0(x), which im-

plies that u0(x) can always be written real, one has (formally) b̂+ = â. (As a matter
of fact, the probability current density is constant for a stationary state, the ex-
ternal potential being a real function. This constant is zero, for example, if the
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respective eigenfunction or its derivative is zero at any point in the box and, there-

fore, the current vanishes everywhere.) It is important to note that (̂bâu0)(x) = 0,
but automatically (âu0)(x) = 0 (even if j0 /=0), which follows from (9), and the
polar form of the complex eigenfunction is u0(x) = R0(x) exp(iS0(x)/~) and implies
j0 = (R0)

2(S0)
′/m [3]. That is, u0(x), which is normalizable, is annihilated by the

operator â and, in this way, we are talking about a standard one-dimensional SUSY
QM.

A new SUSY partner Hamiltonian ĤS (with eigenvalues and eigenfunctions
denoted by ES and uS , respectively) can be constructed as

ĤS = − ~
2

2m

d2

dx2
+ VS = âb̂ , (10)

where the complex potential VS(x) is

VS(x) = w2(x) +
~√
2m

w′(x) . (11)

From Eqs. (8) and (10), it is clear that there is an intertwining between the

operators Ĥ and ĤS ,

ĤS â = âĤ , (12)

b̂ĤS = Ĥb̂ . (13)

Equation (13) is equivalent to

(
¯̂a
)+

ĤS = Ĥ
(
¯̂a
)+

, (14)

and it is obtained by taking the complex conjugation of Eq. (12), and then its

formal adjoint (it must be recalled that Ĥ is real, but, in general, ĤS =
(

¯̂
HS

)+

is complex). Remarkably, if u(x) is a solution of the Schrödinger eigenvalue equa-

tion (Ĥu)(x) = Eu(x), then uS(x) ∼ (âu)(x) /=0 is a solution of the equation

(ĤSuS)(x) = EuS(x) with the same energy E. The solutions u and uS can only

be considered eigenfunctions of Ĥ and ĤS , respectively, if they are physically ade-
quate, i.e., if they satisfy proper boundary conditions and are normalizable.

4. Examples

In this section, we sum up the results we have obtained, that is to say, we present

the potentials V (x) (or Hamiltonians Ĥ with E0 = 0) for a particle in a box (the
diverse examples of boundary conditions were introduced in section 2, Table 1), the
supersymmetric partner potentials (VS(x)), the respective energy eigenvalues, and
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the superpotentials (some of these results are also given in Table 2). From now on
we write ~

2 = 2m = 1. The box width has been chosen to be L = π. The quantities
R0 and j0 are always written for normalized u0, and n is a positive integer (n ≥ 0)
except where otherwise indicated.

Since boundary conditions (a), (b), (c), (d), (e) and (f) are T̂ -invariant, all
their respective eigenfunctions can always be written real; nevertheless, we only
have degenerate and complex eigenfunctions for boundary conditions (e) and (f).
Actually, these two boundary conditions describe a free particle that is not really
confined in the box (i.e., the walls are transparent to the particle) and we do not
necessarily have a zero probability current density at the walls. In fact, we can
obtain an expression for the probability current density at the walls of the box

j(0) = j(π) =
−1

λ

[
sin(µ)

cos(µ) cos(θ) + cos(φ)

]
Re

[
exp(iσ)u(0)ū(π)

]
, (15)

where sin2(µ) = (m1)
2 + (m2)

2, cos2(µ) = (m0)
2 + (m3)

2, σ = tan−1(m1/m2) and
θ = tan−1(m3/m0). Notice that, by making sin(µ) = 0 (⇒ (m1)

2 + (m2)
2 = 0),

which implies m1 = m2 = 0, we obtain j(0) = j(π) = 0. The respective subfamily
of boundary conditions can be written (from (1)) as

u(π) + λ cot((φ − θ)/2)u′(π) = 0 , u(0) − λ cot((φ + θ)/2)u′(0) = 0 . (16)

We have to note that all boundary conditions included in (16) are automatically

T̂ -invariant as well, and neither of these conditions leads to degenerate eigenfunc-

tions. Certainly, let ua(x) and ub(x) be two eigenfunctions of Ĥ with the same
eigenvalue E. By making certain common operations with these solutions and the
two respective eigen-equations, we obtain uau′

b
− ubu

′

a = c = const [13]. Then, by
evaluating this relation, for example, at x = 0, we write ua(0)u′

b
(0)−ub(0)u′

a(0) = c,
and by using (16) we can write here u′

a(0) and u′

b
(0) as functions of ua(0) and ub(0),

respectively. We finally obtain c = 0, which implies ua ∝ ub, ∀x ∈ [0, π], i.e., we do
not have degenerate eigenfunctions. On the other hand, neither of the six bound-
ary conditions (a) – (f) leads to states with energy eigenvalues for which E < V ,
V = const being the respective potential for each boundary condition. Thus, we
obtain the following results for examples (a) – (f):

(a) We have V (x) = −1 and En = n(n+2). Then, j0 = 0, R0(x) =
√

2/π sin(x)
and the superpotential is w(x) = − cot(x). From these results, we obtain VS(x) =
2 csc2(x)−1 with eigenvalues (ES)n = (n+1)(n+3). The eigenfunctions (uS)n are
easily obtained from un(x) ∼ sin((n + 1)x) using uS ∼ âu. All these are the usual
results for this well known problem [2].

(b) We have V = 0, En = n2 and un(x) ∼ cos(nx). Then j0 = 0, R0(x) =
√

1/π
and the superpotential vanishes w(x) = 0. From all these results, we obtain VS(x) =
0 and (ES)n = (n+1)2. The eigenfunctions of VS(x) are (uS)n ∼ sin((n+1)x) which
are precisely those corresponding to the free particle inside a box with the Dirichlet
boundary condition. That is, the standard supersymmetric partner potential VS(x)
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of V (x) = 0 with the Neumann boundary condition is the potential for the infinite
square well [4] and, in this way, the respective Hamiltonians are only essentially iso-
spectral. (Note that another interesting situation is also met if one starts from the
first excited eigenfunction u1(x), that is, from its corresponding probability density

R1(x) =
√

2/π | cos(x)| and probability current j1 = 0, which implies w(x) =
tan(x). For these choices, the partner potentials and the corresponding eigenvalues
are V (x) = −1 and En = n2 − 1, so that E0 = −1 and E1 = 0. Likewise, we
obtain the potential VS(x) = 2 sec2(x) − 1 with spectra (ES)n = 4(n + 1)(n + 2)
and eigenfunctions (uS)n ∼ (2n + 3) sin((2n + 3)x)− tan(x) cos((2n + 3)x). In this
last factorization, the superpotential is singular at x = π/2, which requires the
wave function to vanish there. Thus, the almost absolute equality for the spectra
of V (x) and VS(x) is not valid. It is worth noting that the physical solutions uS we
have obtained obey uS(0) = uS(L) = 0. We believe this is a somewhat unexpected
result since VS(x) is finite at the walls of the box.)

(c) We have V (x) = −1/4, En = n(n + 1) and un(x) ∼ sin((2n + 1)x/2). Then

j0 = 0 and R0(x) =
√

2/π sin(x/2). The superpotential is w(x) = −(1/2) cot(x/2).
From these results, we obtain VS(x) = (1/2) csc2(x/2) − (1/4) with spectra
(ES)n = (n + 1)(n + 2) and eigenfunctions (uS)n ∼ −(2n + 3) cos((2n + 3)x/2) +
ctg(x/2) sin((2n + 3)x/2).

(d) We have in this case similar results for V (x), En and j0 as in the last case,

but un ∼ cos((2n + 1)x/2) and R0(x) =
√

2/π cos(x/2), which implies w(x) =
(1/2) tan(x/2). We obtain the partner potential VS(x) = (1/2) sec2(x/2) − (1/4),
with the same spectra we obtained before for VS(x) as in example (c) ((ES)n = (n+
1)(n+2)) and eigenfunctions (uS)n ∼ −(2n+3) sin((2n+3)x/2)+tan(x/2) cos((2n+
3)x/2)).

(e) In this case V (x) = 0 and En = 4n2. All eigenfunctions, with the exception
of u0(x), are doubly degenerate. The complex eigenfunctions can be written as

un(x) ∼ exp(±i2nx), and then j0 = 0, R0(x) =
√

1/π and w(x) = 0. We also
obtain VS(x) = 0 and (ES)n = 4(n + 1)2. The eigenfunctions (uS)n , which can
also be obtained from un(x) making the change n → n+1, are almost equal to those

of Ĥ but none of these is a constant function like u0(x). In fact, (uS)0 ∼ exp(±i2x).

The real eigenfunctions of Ĥ can be written as u0(x) ∼ 1, un(x) ∼ sin(2nx) and

un(x) ∼ cos(2nx), with n ≥ 1. Then the eigenfunctions of ĤS are respectively
(uS)n ∼ cos(2(n + 1)x) and (uS)n ∼ cos(2(n + 1)x). This set of functions, as well
as the complex set, is not complete in Ω = [0, π].

(f) We have in this case V (x) = −1 and En = 4n(n + 1). All eigenfunc-
tions, including the one corresponding to the ground state, are doubly degener-
ate un(x) ∼ exp(±i(2n + 1)x) (these are the complex ones), and j0 = ±2/π,

R0(x) =
√

1/π and w(x) = ∓ i. However, we obtain only one partner potential
VS(x) = −1. Furthermore, (ES)n = 4(n+1)(n+2) and (uS)n ∼ exp(±i(2n+3)x).
As in the periodic boundary condition, the set of complex functions (uS)n is not
complete. We found an unusual situation when we use the real eigenfunctions of

Ĥ. In fact, these functions are un(x) ∼ sin((2n + 1)x) and un(x) ∼ cos((2n + 1)x),
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but then j0 = 0 (since sin(x) and cos(x) are real functions), and furthermore

R0(x) =
√

2/π sin(x) and R0(x) =
√

2/π | cos(x)|, respectively. Obviously, from
these results we obtain two superpotentials (w(x) = − cot(x) and w(x) = tan(x))
and two partner potentials (VS(x) = 2 csc2(x) − 1 and VS(x) = 2 sec2(x) − 1).
Clearly, we must have only one potential VS(x) corresponding to V (x), but this is

so if there is only one function corresponding to the ground state of Ĥ. Finally, real
eigenfunctions for these two potentials can be obtained from uS ∼ âu with energies
(ES)n = 4(n + 1)(n + 2).

TABLE 2. Some potentials, their boundary conditions (BC) and partners. The box
width has been chosen to be L = π in units ~

2 = 2m = 1. The complex (CE) and
real eigenfunctions (RE) in example (f) give some different results.

BC V (x) w(x) VS(x)

(a) -1 − cot(x) 2 csc2(x) − 1

(b) 0 0 0

(c) -1/4 −(1/2) cot(x/2) (1/2) csc2(x/2) − (1/4)

(d) -1/4 (1/2) tan(x/2) (1/2) sec2(x/2) − (1/4)

(e) 0 0 0

(f)CE -1 ∓ i -1

(f)RE -1 − cot(x) and tan(x) 2 csc2(x) − 1 and 2 sec2(x) − 1

(g) -1/4 i/2 -1/4

(h) (1/λ)2

Re(w(x)) =
− (1/λ) tanh((2x − π)/λ)

Im(w(x)) =
(1/λ)sech((2x − π)/λ)

Re(VS(x)) = (1/λ)2

× (1 − 4sech2((2x − π)/λ))
Im(VS(x)) = −4(1/λ)2

× tanh((2x− π)/λ)sech((2x− π)/λ)

Since the boundary conditions (g) and (h) are not T̂ -invariant, all respective
eigenfunctions are necessarily complex and none of them are degenerate. Thus, we
have the following results for these two physically rare boundary conditions:

(g) In this case V (x) = −1/4, En = n(n + 1) and un(x) ∼ exp(i(−1)n+1(2n +

1)x/2). Then j0 = −1/π, R0(x) =
√

1/π and w(x) = i/2. We also obtain VS(x) =
−1/4 and (ES)n = (n+1)(n+2) with eigenfunctions (uS)n, which can be obtained
from un(x) making the change n → n + 1. The complex set of functions (uS)n

is obviously not complete. By the way, we can find very similar results for the
“twinned” boundary condition u(0) = −iu(L), u′(0) = −iu′(L).

(h) We have in this case V (x) = (1/λ)2 and E0 = 0, En = n2 + (1/λ)2, with
n ≥ 1 (note that E0 < V (x)). The complex eigenfunctions are respectively:

u0(x) = c0

[
exp(x/λ) +

1 + i exp(π/λ)

1 − i exp(−π/λ)
exp(−x/λ)

]
, (17a)
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which does not verify the inequality (3), and

un(x) = cn

[
exp(inx) +

nπ + (−1)n(π/λ)

nπ − (−1)n(π/λ)
exp(−inx)

]
. (17b)

From u0(x) we obtain

j0 =−8
|c0|2
λ

cosh(π/λ)

1+exp(−2π/λ)
, R0(x) = |c0|

√
exp(2x/λ)+exp(2(π−x)/λ) . (18)

The real and imaginary parts of the complex superpotential are

Re(w(x))=−(1/λ) tanh((2x−π)/λ) , Im(w(x))=(1/λ)sech((2x−π)/λ) . (19)

We also obtain

Re(VS(x)) = (1/λ)2(1 − 4 sech2((2x − π)/λ)) , (20a)

Im(VS(x)) = −4(1/λ)2 tanh((2x − π)/λ) sech((2x − π)/λ) . (20b)

Complex eigenfunctions (normalizable) for this complex potential could be obtained
from uS ∼ âu with energies (ES)n obtained from En, making the change n → n+1.
By the way, it is interesting to note that by making λ → ∞, we obtain the results
corresponding to the Neumann boundary condition (by starting from the ground-
state eigenfunction u0(x)). Finally, the boundary condition (h) was also studied in
the framework of SUSY QM in Ref. [3], but therein the first excited eigenfunction
u1(x) was used (inadvertently) instead of u0(x). This is not wrong, but the almost
absolute equality of the spectra of V (x) and the complex potential VS(x) is certainly
not valid.

On the other hand, since our potential is complex but the bound-state en-
ergy eigenvalues are real, we could be interested in the answer to the following

question: Is the corresponding Hamiltonian operator ĤS P̂ T̂ -symmetric? For one-

dimensional potentials in Ω = [0, L], the P̂ T̂ -invariance of VS(x) (and also of

ĤS) requires that VS(x) = V̄S(L − x), thus, Re(VS(x)) = Re(VS(L − x)) and
Im(VS(x)) = −Im(VS(L − x)). In fact, it can be easily checked that our VS(x) is

invariant under the combined P̂ T̂ reflection and that the eigenfunctions uS ∼ âu

are eigenfunctions of P̂ T̂ . Therefore, the spectrum of HS must be real (see, for
example, Ref. [14] for an excellent account of the subject).

5. Concluding remarks

We have complemented, discussed and extended the results obtained in
Refs. [3, 4] by supersymmetrizing several (usual and unusual) interesting exam-
ples of explicitly solvable boundary conditions, which are included within a four-
parameter general family of boundary conditions for the Hamiltonian that describes
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a free particle inside a one-dimensional box. We also discussed the invariance of
this Hamiltonian under time-reversal (and its relation to the degeneracy of the en-
ergy eigenvalues), parity and simultaneous space and time reflection, as well as its
influence on the boundary conditions. As we have seen, for a particle in a box, the
eigenfunctions (and particularly the ground state eigenfunction) could be specifi-
cally complex and nondegenerate, or complex and degenerate, or simply real and
degenerate or nondegenerate. It is precisely all this variety that gives unexpected
and not so common results (for instance, as complex superpotentials). Recently, a
more complete study about this issue has been made [15].

We indeed discovered some interesting facts. The standard supersymmetric

partner Hamiltonian (ĤS) of Ĥ with V (x) = 0 and Neumann boundary condi-
tions is precisely the Hamiltonian for the standard infinite square well. It must
be noticed that when we apply a boundary condition like u(0) = 0 or u(L) = 0,
the same condition is fulfilled (there) by the function uS and its derivative u′

S
.

This last result was verified in examples (a), (c) and (d). Likewise, when we im-
pose u′ = 0 at one wall, the function uS is zero there (see examples (b), (c) and

(d)). On the other hand, the set of functions (uS)n for an operator ĤS may not

be complete when we have complex eigenfunctions for Ĥ and also real eigenfunc-
tions with a degenerate or nondegenerate ground state (see the examples (e), (g)
and (f)). Moreover, we noticed in example (f) two different partner potentials
corresponding to only one potential V (x). Finally, we can obtain complex valued
potentials VS(x) with real spectra (which are SUSY partners of real potentials
with real discrete energy spectra) if j0 /=0 and (R0)

′ /= 0 (because of the fact that
Im(VS(x)) = 2~j0(R0)

′(x)/(R0)
3(x), see Ref. [3]). In all these cases, u0 must be a

non-trivial complex solution (i.e. different from exp(±iCx), with C = const) of the

eigenvalue equation (Ĥu0)(x) = E0u0(x) = 0, with V (x) = const /=0 (u0(x) may
be an explicitly solvable analytical solution). For example, in the boundary condi-
tion (h), u0(x) is a linear combination of two real functions with complex constants
(and is dependent on parameter λ). In this way, a free particle (although inside a
box) may be in a partnership relation with a particle in a complex potential.
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et al., Anales de F́ısica, Monograf́ıas Número 6 Spain (2002), p. 259 [Available at
http//www.fis.cinvestav.mx/∼orosas/].

[7] G. Bonneau, J. Faraut and G. Valent, Am. J. Phys. 69 (2001) 322; G. Bonneau, J.
Faraut and G. Valent, Self-adjoint extensions of operators and the teaching of quan-
tum mechanics, arXiv: quant-ph/0103153 (2001) (This is an extended version, with
mathematical details).

[8] V. Alonso and S. De Vincenzo, J. Phys. A 30 (1997) 8573; T. Fülöp and I. Tsutsui,
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NEKI REZULTATI ZA ČESTICU U KUTIJI I NJIHOVI SUPERSIMETRIČNI
PAROVI

Ističemo neka fizikalna ograničenja i njihov utjecaj na granične uvjete za česticu u
jednodimenzijskoj kutiji. Raspravljamo invarijantnost odnosnog hamiltonijana pri

vremenskoj inverziji T̂ i njen odnos s degeneracijom energijskih svojstvenih vrijed-
nosti. Raspravljamo i učinak zahtjeva za invarijantnost hamiltonijana pri zrcaljenju

P̂ i istovremenom zrcaljenju i vremenskoj inverziji P̂ T̂ na granične uvjete. Jedan
uvjet, koji ovisi samo o graničnim uvjetima neke svojstvene funkcije hamiltonijana
i njenih derivacija, odred–uje zadovoljava li odnosna svojstvena vrijednost nejed-
nakost E > V (x) = const, gdje je V (x) potencijal u kutiji. Nakon izlaganja gornjih
rezultata odabrali smo niz oglednih i analitički rješivih graničnih uvjeta (hamiltoni-
jana) i pronašli smo njihovu supersimetričnu inačicu. Našli smo realne i kompleksne
supersimetrične parove potencijala za sve razmatrane slučajeve.
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