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We consider the U(1) gauge field defined over a six dimensional space-time with
extra dimensions compactified on a noncommutative toroidal orbifold, within the
context of coherent state approach to the noncommutative spaces. We demonstrate
that the fuzzines of extra dimensions can lead to the cancelation of the part of
electrostatic interaction mediated by the massive KK modes.

PACS numbers: 11.25.Mj, 11.10.Nx UDC 524.83

Keywords: noncommutative spaces, coherent state approach, toroidal orbifold, U(1) gauge

field, 6D space-time with extra dimensions

1. Introduction

Quantum theory of fields on noncommutative space-times, recognized as non-
commutative field theories, generalizes the familiar notions of the usual field theory
to the case of noncommutative space-time. Although, the idea of noncommutating
space-time coordinates is an old proposal [1], the recent discoveries in the string/M
theories were the main source of renewed interests in the subject [2]. In noncom-
mutative field theories, the space-time coordinates xµ are replaced with noncom-
mutating coordinates x̂µ, satisfying

[x̂µ, x̂ν ] = iθµν , (1)
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where θµν stands for a real antisymmetric matrix. Thus because of the uncertainty
relation

∆xµ∆xν ≥ θµν

2
, (2)

induced by Eq. (1), there will be a mixing between the short and large distance
scales implying for a mixing between the ultraviolet and infrared behaviors of the
field theories in noncommutative space-times. Such a problem, which is known as
the ”UV/IR mixing problem”, is a distinct feature of the noncommutative models
[3].

In a noncommutative space-time, the usual product between the fields must be
replaced by the Weyl-Moyal or star-product defined as

(

f ⋆ g
)

(x) = lim
x→y

exp

(

i

2
θµν∂x

µ∂
y
ν

)

f(x)g(y) (3)

= lim
x→y

f(x)g(y) +
i

2
θµν∂x

µ∂
y
νf(x)g(y) +O(θ2) .

So, because of the infinite series of the derivatives, star-product reveals an inherent
nonlocality accompanying the theory.

Recently, a new approach with a completely different point of view was proposed
to study the noncommutative space-times [4]. The main idea is to use the expec-
tation values of the operators between the coherent states of the noncommutative
space-time instead of using the star-product (3). In this approach, the free parti-
cle propagator acquires a Gaussian damping factor, which may act as a probable
mechanism to make the whole formalism of the perturbation theory finite. So in
the coherent state approach, the noncommutativity of space-time manifests itself
by modification of the propagators rather than the interaction vertices, and this is
to say that there is no UV/IR mixing problem in coherent state approach to the
noncommutative space-time. On the other hand, recently models of the noncom-
mutative space-times proposed by some authors, in which the noncommutativity
is restricted to the compact extra dimensions, leaving the four non-compact di-
mensions commutative [5, 6] (see also [7] for a pedagogical introduction to extra
dimensions). For example, the model developed in Ref. [6] assumes space-time with
noncommutative extra dimensions compactified on a toroidal orbifold T 2/Z2. The
massless gauge field is defined over the six-dimensional bulk, while the matter field
is confined to the four non-compact dimensions. The effective theory in four di-
mensions consists of massless photons and massive Kaluza-Klein (KK) modes. In
this letter, we shall study the effect of noncommutativity of a toroidal orbifold on
the electrostatic potential within the context of the coherent state approach to the
noncommutative space. We show that in this approach the fuzziness of the compact
extra dimensions acts as a cut-off over the KK modes and thus leads to cancelation
of the contributions made by the massive KK modes in the θ → ∞.
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2. Coherent state approach to the noncommutative space

Let’s consider a 2d-dimensional noncommutative space-time. It is always possi-
ble to find a set of coordinates such that [4]

[ŷ2
i , ŷ

1
i ] = iθ , (4)

where ~yi = (y2
i , y

1
i ) which is the position vector of the i-th plane. We also assume

for two distinct points ~yi and ~y ′
i

[ŷ′2i , ŷ
2
i ] = [ŷ′1i , ŷ

1
i ] = [ŷ′2i , ŷ

1
i ] = 0 . (5)

The associated raising and lowering operators are

Ai =
1√
2
(ŷ2

i + iŷ1
i ) , (6)

A†
i =

1√
2
(ŷ2

i − iŷ1
i ) .

Coherent states corresponding to the above operators are defined as the eigenstates
|αi〉 in the following sense

Ai|αi〉 = αi|αi〉 , (7)

〈αi|A†
i = 〈αi|α∗

i .

Then the mean position of the particle on the i-th plane is defined as

~xi = 〈αi|~̂yi|αi〉 . (8)

More generally, any function F̂ (ŷ) defined over the noncommutative space-time will
be replaced by its mean value as

Fθ(x) =

d
∏

k=1

〈αk|F̂ (ŷ)|αk〉 =

d
∏

k=1

〈αk|
∫

dd~pk

(2π)d
f(p)ei~pk· ~̂yk |αk〉 (9)

=

d
∏

k=1

∫

dd~pk

(2π)d
f(p)ei~pk·~xke−

θ

2
~p2

k

=

∫

d 2dp

(2π)2d
f(p)eipxe−

θ

2
p2

, ~pk = (p2
k, p

1
k) .

where pµ = (~p1, . . . , ~pk) and p2 = pµpµ =
∑d

k=1 ~p
2
k . So, in the coherent state

approach, the fuzziness of space-time manifests itself by smearing the fields over
space by a modification of the kernel of integral via a Gaussian damping factor as
in (9). In particular, for the (Euclidean) free particle propagator we get

g(p) =
e−

θ

2
p2

p2 +m2
. (10)
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3. U(1) Gauge Field on T 2/ZZ2 Orbifold

In this section we briefly discuss the model considered in Ref. [6]. The model
assumes the U(1) gauge field to be defined over the six-dimensional bulk, while the
matter field is confined to the non-compact four dimensions. The two extra dimen-
sions are compactified on a noncommutative toroidal orbifold. The six-dimensional
Lagrangian of the free gauge field plus the gauge fixing term is

L6D = −1

4
FMNFMN − 1

2
ζ

(

∂µAµ +
1

ζ
∂mAm

)2

, m = 4, 5, (11)

with XM = (xµ, ym) as a position 6-vector in six-dimensional bulk. Note that we
have maintained the usual product between the fields as we are considering the
model within the context of coherent state approach [6]. The effective Lagrangian
in four dimensions decomposes to the Kaluza-Klein (KK) modes as

L4D = −1

4
F (~0)µνF (~0)

µν − 1

2
ζ
(

∂µA
µ(~0)

)2
(12)

+
∑

~n /=~0

(

−1

4
F (~n)µνF (~n)

µν +m2
~nA

µ(~n)A(~n)
µ − 1

2
ζ
(

∂µA
µ(~n)

)2
)

+
∑

~n /=~0

(

1

2
∂µA

(~n)
L ∂µA

(~n)
L +

1

2
m2

~nA
(~n)
L A

(~n)
L

)

+
∑

~n /=~0

(

1

2
∂µA

(~n)
H ∂µA

(~n)
H +

1

2ζ
m2

~nA
(~n)
H A

(~n)
H

)

,

with ~n = 0 or ~n = (n1 = 0, n2 > 0) or ~n = (n1 > 0, n2 = 0,±1 . . .). Every
individual KK mode has the rest mass

m2
~n =

n2
1

R2
1

+
n2

2

R2
2

, (13)

where R1 and R2 stand for the principal radii of the tours and the fields AL and
AH are the physical and un-physical scalars, respectively. In the limit ζ → 0,

the scalar A
(~n)
H decouples from the Lagrangian (12). So, the ordinary massless

photons, massive KK photons and the massive KK scalars are the three physical
fields incorporating the free field Lagrangian. The effective interaction term in four
dimension is

L4D,int = qψ̄(x)γµA
µ(~0)(x)ψ(x) + q

√
2

∑

~n /=0

ψ̄(x)γµA
µ(~n)(x)ψ(x) . (14)

The KK modes satisfy the Lorentz gauge condition, i.e. ∂µA
µ(~n) = 0, automatically.

We assume that the massless modes also satisfy the Lorentsz gauge, i.e.∂µA
µ(~0) =0.
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Since the noncommutativty restricted to the two extra dimensions, i.e. [ŷ5, ŷ4] = iθ,
the free propagator in six dimensions reads

gMN (k) =

exp

(

−θ
2
(k2

4 + k2
5)

)

k2 − k2
4 − k2

5

ηMN . (15)

Compactification of the extra dimensions on a torus leads to the quantization of
the conjugate momenta, i.e. (k4, k5) → (n1/R1, n2/R2). Thus from (12) and (13),
for the massless and massive modes we find

g(~n)
µν (k) =

exp

(

−θ
2
m2

~n

)

k2 −m2
~n

ηµν , (16)

g(~0)
µν (k) =

1

k2
ηµν . (17)

where we have assumed the noncompact dimensions to be Lorentzian. Therefore,
the ordinary massless mode is not affected by the noncommutativity of the extra
dimensions, but the massive modes get a Gaussian damping factor. Hence, for a
time-independent point-like distribution of charge, located at origin, from (16) and
(17) one immediately finds

A
(~0)
0 (~x) = q

∫

d3k

(2π)3
ei

~k·~x

~k 2
=

q

4πr
, (18)

A
(~n)
0 (~x) = q

√
2

∫

d3k

(2π)3
ei

~k·~x− θ

2
m2

~n

~k 2 +m2
~n

(19)

=
q
√

2

4πr

1√
π

∞
∫

0

ds√
s
e−se−( r

2

4s
+ θ

2
)m2

~n ,

with jµ(x) =
(

ρ(~x ),~0
)

=
(

qδ(~x ),~0
)

and r = |~x|. So the potential energy of two
particles with charges q1 and q2 will be

Uθ(r) =
q2q1
4πr



1 +
2√
π

∞
∑

~n /=0

∞
∫

0

ds√
s
e−s exp

(

−
(

r2

4s
+
θ

2

)

m2
~n

)



 . (20)

Then by means of σ1,2(s) =
[

r2/(2s) + θ
]

/2R1,2, the expression (20) for the
potential energy can be re-expressed as

Uθ(r) =
q2q1
4πr

1√
π

∞
∫

0

ds√
s
e−sΘ(iσ1(s)/π)Θ(iσ2(s)/π) , (21)
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Θ(ν, τ) =

+∞
∑

n=−∞

exp( iπn2τ + 2iπnν) , (22)

in particular

Θ(iσ/π) ≡ Θ(0, iσ/π) =

+∞
∑

n=−∞

exp( −σn2) , (23)

It should be noticed that in the lack of noncommutativity parameter in Eq. (21),
the Jacobi theta function diverges at the upper limit of integration. However, the
situation changes when the θ parameter appears because of the noncommutative
nature of extra dimensions. Now, lets define ρ1,2 = r/R1,2 and ϑ1,2 = θ/2R2

1,2.
Near the threshold, i.e. 1 ∼ ρ1,2, it will be enough to consider only modes with
lowest KK mass [8]. Thus

Uθ(r) =
q1q2
4πr

[

1 + 2
(

exp
(

− (ϑ1 + r/R1)
)

+ exp
(

− (ϑ2 + r/R2)
)

)

]

, (24)

where we have invoked [9]

∞
∫

0

ds√
s

exp
(

−
(

s+
α

s

))

=
√
π exp(−2

√
α) . (25)

However, in the limit ϑ1,2 → ∞, the second term of (24) vanishes and one may argue
that the fuzziness of compact dimensions blocks out the contribution of the higher
KK modes to the potential energy. A rather simple expression for the potential
energy can be achieved, if one integrates over the s variable in (20). The result is

Uθ(r) =
q2q1
4πr

(

1 + 2

∞
∑

~n /=0

exp

(

−m~nr −
θ

2
m2

~n

))

. (26)

which coincides with (24) when only the modes with lowest KK mass, i.e. ~n =
{(1, 0), (0, 1)} are considered.

4. Conclusion

Coherent state approach to the compact noncommutative dimensions provides
a mechanism to cancel the contribution coming from the higher KK modes when
the extra dimensions become extremely fuzzy. So in the case of a U(1) gauge
field defined over a six-dimensional space-time with two compact noncommutative
dimensions, it will be hard to detect the deviation of the electrostatic potential from
the Coulomb law if there is a very large noncommutativity between the compact
dimensions.
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BAŽDARNO POLJE U(1) U 6D PROSTORU-VREMENU S
NEKOMUTATIVNIM DIMENZIJAMA: PRISTUP KOHERENTNIH STANJA

Razmatramo baždarno polje U(1) definirano u šest-dimenzijskom prostoru-vremenu
s dodatnim dimenzijama i zbijeno u nekomutativnom toroidnom staznom umotu, u
svezi pristupa s koherentnim stanjima nekomunitativnim prostorima. Pokazujemo
da neodred–enost dodatnih dimenzija može voditi ponǐstenju dijela elektrostatskog
med–udjelovanja koje prenose masivni KK modovi.
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