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The fireball formed in a heavy-ion collision is characterized by the impact parame-

ter vector ~b, which is orthogonal to the beam direction and can be determined from
the multiplicity and the angular distribution of the reaction products. By appropri-

ate rotations, the ~b vectors of each collision can be oriented into a fixed direction.
Using the measured values of the momentum distributions of the vector mesons,
an integral equation can be formulated for the unknown emission densities (EM(~r))
and for the unknown absorption densities (∆µM(~r, p)) of the various vector mesons

M (ω0, ρ0, φ0, ψ0, ψ0′,Υ).
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1. Introduction

The most important aim of relativistic heavy -ion experiments is the observation
of the quark-gluon plasma. In order to detect the transition into the plasma state,
it is desirable to map the density profile of the fireball formed in the collision.
This mapping can be performed by various methods [1-3]. The Hanbury-Brown
and Twiss effect, observable by the help of pions produced in heavy-ion collision
[4], provides the possibility to measure the Fourier transform of the source density.
Its interpretation, however, in the case of the CERN and the RHIC data, is rather
difficult, since geometry of the fireball practically does not depend on the energy of
the collision [5]. Here we investigate an alternative possibility, namely the mapping
by tomography [6]. The tomography is a method for producing a picture of a thin
layer with the help of penetrating radiation. It is widely applied in medicine and

FIZIKA B 12 (2003) 1, 27–32 27



lovás: tomography of quark-gluon plasma by vector mesons

for material testing. We try to apply the tomography for the study of relativistic
heavy ion reactions in order to “see” the spot of the quark-gluon plasma formation.

The initial state of the fireball formed in heavy-ion collision can be defined as
the overlap of two identical, relativistically contracted pancakes. A collision of two
identical relativistic heavy ions produced by a collider can be characterized by the

impact parameter vector ~b which is orthogonal to the beam direction. Both the
geometry and the orientation of the initial fireball can be characterized by this
vector. Its length can be determined by the multiplicity of particles produced in
the collision and its direction can be obtained from the angular distribution of the
reaction products. The possibility of the application of the idea of the tomography
is based on the fact that by the help of an appropriate rotation around the beam
direction (z-axis) the impact parameter vector can be oriented into a standard
direction (x-axis). In this way the fireball of all particular collision events have the
same orientation in the laboratory frame of reference (see Fig. 1).

x

b

Fig. 1. In an individual collision event the fire-

ball, defined as the overlap of two identical

spheres, can be characterised by the impact

parameter vector ~b. The length and the ori-

entation of ~b can be obtained from the mul-

tiplicity and from the angular distribution of

the reaction products, respectively.

The neutral vector mesons of type M (ρ, ω, φ, ψ, ψ′,Υ) seem to be the most
appropriate for the purpose of tomography [7–9], since they can be observed as
well defined peaks above the background due to their large rest mass. Neverthe-
less, other type mesons may be considered, as well. It was discovered recently by
Gyulassy et al. [10] that the absorption of the produced jets may be a sensitive in-
dicator of the quark-gluon plasma formation. In a collision, the number of mesons
of type M emitted from the volume element d~r with momentum ~p is given by
EM(~r, ~p) d~r d~p. During the collision, the system has a large momentum anisotropy.
In the momentum distribution of the mesons, this anisotropy is inherently present.
We assume that this anisotropy is a global characteristic feature of the collision,
i.e. it is independent of ~r. Using this assumption, we write the emission density as
the product

EM(~r, ~p) = EM(~r)GM(~p) . (1)

The global momentum distribution GM(~p) can be obtained from the average mo-
mentum distribution of the emitted mesons of type M. The meson produced at ~r
and emitted with momentum ~p may reach the surface of the fireball if it is not ab-
sorbed. The absorption can be taken into account in the following way. The number
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of mesons at ~r ′ emitted at ~r in the direction ~p is denoted by NM(~r ′, ~r, ~p) d~r d~p.
This number is decreasing because of the absorption

dNM(~r ′, ~r, ~p) = −NM(~r ′, ~r, ~p) µ(~r ′, p) dl′ , (2)

where p = |~p| and the absorption coefficient is denoted by µ. The line element dl′

is taken along the straight line defined by

~r ′ = ~r + l′~p0, (3)

where the unit vector ~p0 is defined by ~p0 = ~p/p. The number of mesons of type M

starting at ~r and arriving to the surface of the fireball at ~R(~r, ~p0) is given by

NM(~R,~r, ~p) = NM(~r, ~r, ~p) exp

(

−

~R(~r,~p0)
∫

~r

dl′µM(~r ′, p)

)

, (4)

where ~R is defined by ~R = ~r + L~p0, and the length L(~r, ~p0) is the distance between

the points ~r and ~R. The quantity NM(~r, ~r, ~p) can be expressed as follows

NM(~r, ~r, ~p) = EM(~r) GM(~p). (5)

Now we define the dimensionless, “normalized”, momentum distribution, NM(~p, b),

NM(~p, b) = G−1
M (~p)

∫

V (b)

d~rNM(~R,~r, ~p), (6)

where the integral is taken over the volume V (b) of the fireball. It has to be noted
that both factors in this definition can be obtained from measured data. The inte-
gral gives the momentum distribution of the mesons of type M reaching the surface
of the fireball, i.e. reaching the detector. It is expected that the value of the “normal-

ized” momentum distribution NM(~p,~b) would be unity if there was no absorption.
In other words its momentum dependence is produced by the meson absorption.
The normalized momentum distribution can be expressed in the following form

NM(~p,~b) =

∫

V (b)

d~r EM (~r) exp

(

−

~R(~r,~p0)
∫

~r

dl′µM(~r ′, p)

)

. (7)

If one would know the emission density EM(~r) and the density of the absorption
µM(~r ′, p), then the number of mesons arriving to the detector could be computed.
As a matter of fact, one does not know these functions. Instead of them, it is
the distribution of the mesons arriving to a detector what is known, since it is
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measured. Thus the last equation can be considered an integral equation for the
unknown emission density EM(~r) and the unknown absorption density µM(~r, p).
This can be the basis of the tomography of the fireball by vector mesons. It is the
analogue of the tomography applied in medicine. In the case of the medical emission
tomography, the analogue of the mesons are the gamma rays emitted by previously

incorporated radionuclides. The impact parameter vector ~b corresponds to a vector
fixed to the body and the momentum vector ~p corresponds to the momentum of the
gamma quantum selected by the collimator of the gamma detector. The definition
of the fireball is given by

(

x −
b

2

)2

+ y2 +
z2

1 − v2/c2
< R2,

(

x +
b

2

)2

+ y2 +
z2

1 − v2/c2
< R2.

The fireball has the reflection symmetries:

x −→ −x,

y −→ −y,

z −→ −z.

These symmetries are not realised necessarily in every particular events. They must,
however, show up in the various densities averaged over a great number of events.
The two pancakes contracted in the z-direction at the moment of the collision seem
to be a narrow layer when viewed from the laboratory system of coordinates. Later
on, the extension of the fireball is increasing in the z-direction. We are unable to
follow the time development, therefore we restrict our study to a rather narrow
layer situated at z = 0 and we are going to make a pictures of this layer. The
actual picture of this layer will be a time average taken on the whole history of a
collision event.

2. Iterative solution of the integral equation

At a fixed value of M and b, the equation for NM (~p, b), can be rewritten in the
following form

NM(~p, b) =

∫

V (b)

d~r EM(~r) exp[−µ̄M(p)L(~r, ~p0)] exp






−

~R(~r,~p0)
∫

~r

dl′∆µM(~r ′, p)






, (8)

where the average value of the absorption coefficient having no ~r dependence is
denoted by µ̄M(p), while ∆µM is defined as ∆µM = µM − µ̄M. The length L(~r, ~p0)
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is obtained by solving the following equation
(

x + L sin θ cos φ +
b

2

)2

+ (y + L sin θ sinφ)
2

+
(z + L cos θ)

2

1 − v2/c2
= R2

0 . (9)

Here θ and φ are the polar angles of the vector ~p0. The integral equation given
above can not be transformed into an exact system of linear equations. An iterative
procedure, however, can be constructed in such a way that in every iterative step a
linear system of equations must be solved. We expand the second exponential factor

in Taylor series. The zero-order approximation E
[0]
M (~r) is calculated by solving the

equation in which only the zero-order term of the Taylor expansion is kept

NM(~p, b) =

∫

V (b)

d~r exp[−µ̄M(p) L(~r, ~p0)]E
[0]
M (~r) . (10)

The first-order approximation, E
[1]
M (~r) and ∆µ

[1]
M (~r, p), is obtained by the solution

of the equation in which only the first order term of the Taylor expansion is kept

NM(~p, b) =

∫

V (b)

d~r exp[−µ̄M(p) L(~r, ~p0)]

[

E
[1]
M (~r) − E

[0]
M (~r)

×

~R(~r,~p0)
∫

~r

dl′ ∆µ
[1]
M (~r ′, p)

]

. (11)

This iterative procedure can be continued until the required precision is attained

NM(~p, b) =

∫

V (b)

d~r exp[−µ̄M(p) L(~r, ~p0)]

[

E
[n]
M (~r) − E

[n−1]
M (~r)

(n−1)
∑

k=0

1

(k + 1)!

×

(

−

~R(~r,~p0)
∫

~r

dl′ ∆µ
[n−1]
M (~r ′, p)

)k
~R(~r,~p0)
∫

~r

dl′ ∆µ
[n]
M (~r ′, p)

]

. (12)

Since the Taylor expansion of an exponential function is always convergent, we may
assume that this iterative procedure is also convergent.

The values of the emission density, EM(~r), and the absorption coefficient,
∆µM(~r, p), are defined on a lattice, taking into account the symmetry discussed
above. The integral equation given above, at each order of the iteration, can be
approximated by the following system of linear equations

NM(~p i, b) =

N
∑

k=1

[KM(~p i, ~r k, b)E
[n]
M (~r k) + HM(~p i, ~r k, b)∆µ

[n]
M (~r k, p)]

(i = 1, 2, ..., 2N). (13)
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3. Summary

The accuracy and the performance of this tomographic method can be and
will be checked by comparison of various assumed density profiles with their to-
mographic reconstruction. For this purpose, a computer code was written which
solves Eq. (8) by iteration. Up till now, it was demonstrated by the help of this
computer code that the iterative procedure advocated above really converges. So
the hope is justified that using the measured momentum distribution of a vector
meson of type M, at the fixed value of the impact parameter b, one can obtain maps
both for the emission density EM(~r) and for the absorption density ∆µM(~r). The
reliability of these maps can be increased by repeating the analysis for different
values of the momentum p. From the analysis of different vector mesons of type M,
independent maps can be obtained. Finally, it is necessary to emphasize that even
in the case of a perfect agreement among the independently obtained maps, the
result is a “map”, nothing more. The interpretation of the map requires additional
informations.
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[4] T. Csörgő, Heavy Ion Phys. 3 (1997) 33.

[5] M. Gyulassy and D. H. Rischke, Proc. Budapest ’02 Workshop on Quark and Hadron
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TOMOGRAFIJA KVARK-GLUONSKE PLAZME VEKTORSKIM MEZONIMA

Značajka vatrene lopte stvorene u sudaru teških iona je vektor parametra sudara ~b,
koji je okomit na smjer snopa i može se odrediti iz vǐsestrukosti i kutne raspodjele
produkata reakcije. Na osnovi mjerenih impulsnih raspodjela vektorskih mezona

(ω0, ρ0, φ0, ψ0, ψ0′,Υ) može se izvesti integralna jednadžba za emisijske i apsorpcij-
ske gustoće, EM(~r) odnosno ∆µM(~r, p).
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