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The potentials involving singularities considered in this work result from the con-
struction starting with higher-order-generation superpotentials. The second gen-
eration with a single base as well as the third one with a double base will be
discussed. According to the choice of these bases, a number of results, which may
be interesting from the theoretical point of view, can be observed such as the par-
tial breaking of the symmetry or the construction of a new type of exactly solvable
potentials which show existence of eigenstates with positive eigenvalues. Extension
to the third generation potential of the theorem on quasi-exact solvability will also
be discussed.
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1. Introduction

Exactly solvable potentials have the property that the entire set of eigenvalues
and eigenfunctions can be reached analytically by algebra, while for quasi-exactly
ones only part of them is available by the same methods.

Except perhaps for some very special cases, potentials involving singularities
are not exactly solvable, and whenever the solution may exist, it must be obtained
by other means, mostly numerical.

Singular potentials serving as models are nevertheless quite useful in many as-
pects of physics; some of them can also be tackled analytically. For instance, the
conventional multi-term singular potentials of the form

∑

m x−m widely used in
atomic physics can be analytically tractable from the point of view of collision the-
ory. In fact, when the quantities m are integer numbers, an analytical expression
of the phase shift can be constructed within the frame of the JWKB approxima-
tion [1] and more recently, it has also been shown that for non-integer (fractional)
numbers, an analytical approach remains still possible from the point of view of
the eigenspectra [2,3].
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In the past decade and chiefly making use of the advances in supersymmetric
quantum mechanics (see Refs. [4,5] and references therein) one may observe several
attempts to analytically deal with singular potentials either directly or indirectly
[6–13].

The type of singular potentials to be considered in this work differs from the
conventional one in the sense that the singular term x−m will be replaced by
d log[fn(x)]/dx in which the function fn(x) is a polynomial of order n. The ze-
ros of this function (fn(xi) = 0) constitute the set of singularities of the problem.

The present paper describes a number of recently obtained results in this rela-
tively new field of research. Three main points will be elaborated:

(a) As mentioned above, although the type of singular potentials considered
here (they will be referred to as the second generation potentials) are generally
not exactly solvable in the usual sense, and sometimes discarded a priori since
they would lead to non-hermitian Hamiltonians, it was shown that under certain
conditions, analytical and normalisable solutions can be attained in closed forms.
As an illustration, the method was applied to the case of anharmonic oscillator and
presented in Ref. [14]. For completeness, we present in this work a second example
which can be handled in the same way but after some modifications. These two
examples constitute two aspects of the multiple facets of the theory.

(b) If it is true that, taken separately, the second-generation potentials V (n)+,
V (n)+ depending on the bases m, n, . . . , are singular and generally lead to non-
hermitian Hamiltonians, it will be shown that by combining these bases according
to specific rules, there is a possibility to generate a new type of potentials V (n,m)

referred to as the third-generation potentials which, surprisingly, are free of sin-
gularities and furthermore exactly solvable in the conventional sense. From the
theoretical point of view, this undoubtly can constitute a useful tool if one wishes
to proceed a step further in the investigation. The examples discussed explain how
to initiate the transition from the second to the third type of potentials.

(c) When the second generation potentials V (n)+ are not exactly solvable, it was
also shown that regardless of the choice of the base |n〉, and under certain conditions,
a theorem on its quasi-exact solvability can be proved. It is then interesting to
extend the same idea to the new situation concerning the third-generation potentials
V (n,m) in order to see whether this theorem would remain valid and what can be
its consequences.

In the following, unnecessary repetitions can be avoided by first keeping exactly
the same notations and conventions as used in Ref. [14] (referred to as [I] from
now on). These notations will be gradually modified according to the needs of the
discussion as explained later.

2. Theory

Starting with a couple of SU(2) partners V ∓ = u2 ∓ u′, u being the usual
superpotential u(x), we have already shown that if V − is exactly solvable, the set
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of its eigenfunctions can be always be written as

φn = Xn exp

(

−

∫

udx

)

, (1)

where the Xn, referred to as the mixing functions (n = 0, 1, . . .), must be solutions
of the second order differential equation

X ′′
n − 2uX ′

n + EnXn = 0, (2)

which therefore links the ordinary second-order differential equation with integrable
systems [15,16].

Assuming exact solvability of V −, higher-order generation superpotential can
be constructed

v(n) = u(x) −
X ′

n

Xn

, (3)

Xn being any solution of Eq. (1) and |n〉 any excited state. Note that the ground
state |0〉 corresponds to n = 0; it does not bring anything new. In the following,
n /=0 and the state |n〉 refers to the “base” of the construction. The corresponding
couple of partners SU(2) potentials V (n)∓ is defined as

V (n)∓ = v(n)2 ∓ v(n)′ , (4)

and will be referred to as the second-generation potential.

It has also been shown that φ
(n)∓
m , the set of eigenfunctions relative to V (n)∓,

are of the form [15,16]

φ(n)−
m = X(n)

m exp

(

−

∫

v(n)dx

)

,

φ(n)+
m = Y (n)

m exp

(

−

∫

v(n)dx

)

, m = 1, 2, . . . , (5)

with obvious notations, φm representing the mth excited state. The second-

generation mixing functions X
(n)
m , Y

(n)
m are given by

X(n)
m =

Xm

Xn

,

Y (n)
m =

1

Xn

[

X ′
m −

X ′
n

Xn

Xm

]

, (6)

which correspond to the couple of potentials

V (n)− = V − + En,

V (n)+ = u2 + u′ + 2
X ′

n

Xn

[

X ′
n

Xn

− 2u

]

− En. (7)
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From Eq. (5), it is seen that if φ
(n)−
m can always be normalised (note that V (n)−

differs from V − only by a constant), this will not be the case for the second eigen-

function φ
(n)+
m , because of the singularities involving in the analytic expression of

Y
(n)
m (see Eq. (6)). The eigenspectrum of both V (n)− and V (n)+ is of the form

E(n)
m = −[Em − En].

If both components V (n)− and V (n)+ are equally exactly solvable, then we have
here an example of double degeneracy, a consequence of SU(2) symmetry according
to Witten. However, as pointed out above, the presence of these singularities (the-
orem of Sturm-Liouville) make normalization impossible for the whole or partial

set of φ
(n)+
m , leading to complete or partial destruction of the pairings between the

states of (V (n)−, V (n)+).

3. Quasi-exact solvability

It will be interesting to extend the present analysis by considering an alternative
construction of the second-generation potentials v(n) with

v(n) = u − t
X ′

n

Xn

, (8)

where u is the first-generation potential mentioned above, Xn is a set of mixing
functions corresponding to the base |n〉 and t is an arbitrary parameter. After
simplifications, the second-generation potential V (n)− is

V (n)− = u2 − u′ + t(t − 1)

(

X ′
n

Xn

)2

+ tEn.

Obviously, these types of potentials are not exactly solvable, the set of singularities
({x = xi}) which split the domain of the potential V (n)− into several separated
parts would now play a crucial role in the search for solutions. The “strength” of
the singularities (i.e. the coupling) will depend on the choice of both the magnitude
of the parameter t and the base |n〉. Generally, these couplings are “strong” so that
the boundary conditions to be imposed on the solutions should be φ(xi) = 0 [17,6].
Concerning the Schrödinger equation

φ′′ − V (n)−φ = Eφ ,

one may discern two different situations depending on the magnitude of the param-
eter t:

1) If 0 < t < 1, a theorem has already been presented in [I]. It states that inde-
pendently of the choice of the base |n〉, this equation has two exact solutions
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(φ+, φ−) which constitute then a “doublet”. They are

φ+ = X1−t
n exp

(

−

∫

udx

)

, E+ = (1 − 2t)En,

φ− = Xt
n exp

(

−

∫

udx

)

, E− = 0.

For completeness, the following remarks can be useful later:

(a) If xi are the zeros of the polynomial Xn, then one can note that φ(xi) ≡
0, confirming thus the prescription concerning the “strong coupling” case
mentioned above.

(b) The two members of this doublet merge into a single one when t = 1/2.
For other cases (t > 1 or t < 0), one is left with only one member (φ+

or φ−) since the other one cannot be normalised.

(c) Unicity of the existence of the “doublet” can be proved.

2) When t = 1, one may discern two cases:

(a)

V (n)− = V − + tEn

which means that by construction, V (n)− is also exactly solvable.

(b) But its partner V (n)+ (see (7)) is singular and generally leads to non-
hermiticity except eventually for some special choice of the base |n〉. This
is confirmed by the example concerning the case of anharmonic oscillator
potentials already discussed in [I].

In the following, we present another example which displays a different facet of
the method:

3.1. Example

Let

u(x) = a coth x −
b

shx
,

where a, b are arbitrary parameters.

The initial (first-generation) couple of potentials are

V ∓ = a2 +
a(a ∓ 1) + b2

sh2 x
∓ b

(

1 ± 2a
) ch x

sh2 x
. (9)
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One can solve Eq. (2) with the change of variable

y =
1

2

(

chx + 1
)

,

so that Eq. (2) can be cast into the usual hypergeometric form

y
(

y − 1
)d2X

dy2
+

[

(

α + β + 1
)

y − γ

]

dX

dy
+ αβX = 0, (10)

provided that

a = −
1

2

(

α + β
)

, γ = −
(

a + b
)

+
1

2
.

We note that hypergeometric function F (α, β, γ; y), the solution of Eq. (10), reduces
to a polynomial of order n if one takes α = −n, n = 0, 1, . . .. The corresponding
eigenvalue of the state |n〉 is

En = −
[(

n − a
)2

− a2
]

. (11)

It can be seen that normalization of the eigenfunctions (see Eq. (1)) requires two
conditions

b > a and n < a, (12)

which implies that for a given value of the parameter a, the number of acceptable
eigenstates must be limited by this second condition.

It is interesting to consider the first eigenstates |0〉, |1〉, |2〉. When n = 0,
the hypergeometric function X0 reduces to a constant with E0 = 0. The analytic
expression of this ground state is

φ0 =
(sh x)b−a

(1 + chx)b
F0, (13)

which exactly agrees with the result mentioned in Ref. [18].

On the other hand, for the next eigenstate n = 1, after some simple algebra, we
have the following analytic expression of the mixing function

X1 = A1

(

1 −
A2

A1
chx

)

, (14)

in which

A1 =
1

2

2(b − 1)

a + b − 1/2
, A2 =

1

2

2a + 1

a + b − 1/2
. (15)
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Since ch x ≥ 1, and taking into account the first condition (12), which means that
the polynomial X1 involves one zero, the corresponding solution has one node and,
therefore, must be attributed to the first excited eigenstate.

For the next case, n = 2, we find

X2 =
(

1 +
1

4
B2 −

1

2
B1

)

−
1

2

(

B1 − B2

)

chx +
1

4
B2 ch2 x,

B1 = 4
a − 1

a + b − 1/2
, B2 =

1

2
B1

2a − 1

a + b − 3/2
.

More generally, the mixing functions Xn can always be represented by a polynomial
of order n in terms of ch x.

Contrarily to the first example discussed in [I], in the present example, and
regardless of the choice of the base |n〉, the second-generation potential V (n)+ does
not lead to any acceptable solution (un-normalised) (see Eq. (6)).

4. The third generation

The corresponding superpotential is defined by

v(m,n) = v(n) −
Y

(n)
m

′

Y
(n)
m

, (16)

where v(n) refers to the second-generation potential (see Eq. (3)) and Y
(n)
m is the

mixing function Y defined in (6) for the second generation.

As above, consider the system of coupled first-order differential equation

φ(m,n)′ + F (m,n)φ(m,n) = 0 , (17)

in which

φ(m,n) =
(

φ
(m,n)
1 , φ

(m,n)
2

)†
, F (m,n) =

(

v(m,n) d(m,n)

0 v(m,n)

)

.

With obvious notation, the mixing function is defined as

φ
(m,n)−
1,r = X(m,n)

r φ
(m,n)
2 . (18)

The third-generation couple of potentials V (m,n)∓ are

V (m,n)∓ = v(m,n)2 ∓ v(m,n)′ , (19)
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and consider the Schrödinger equation relative to the first component φ
(m,n)−
1,r (r =

0, 1, 2, . . .)

φ
(m,n)
1,r

′′
− V (m,n)−φ

(m,n)
1,r = E(m,n)

r φ
(m,n)
1,r . (20)

It is exactly solvable if the mixing function X
(m,n)
r is a solution of the differential

equation

X(m,n)
r

′′
− 2

(

v(n) −
Y

(n)
m

′

Y
(n)
m

)

X(m,n)
r

′
+ E(m,n)

r X(m,n)
r = 0. (21)

In Appendix, it will be shown that this solution must be of the form

X(m,n)
r =

Y
(n)
r

Y
(n)
m

. (22)

For the second component V (m,n)+, one may proceed in the same way and

introduce a second mixing function Y
(m,n)
r defined by

φ
(m,n)+
1,r = Y (m,n)

r φ
(m,n)
2 . (23)

Here again, exact solvability of the Schrödinger equation means that the quantity

Y
(m,n)
r must satisfy the following equation

Y (m,n)
r

′′
− 2

(

v(n) −
Y

(n)
m

′

Y
(n)
m

)

Y (m,n)
r

′

−

[

2

(

v(n)′ −

(

Y
(n)
m

′

Y
(n)
m

)′)

− E(m,n)
r

]

Y (m,n)
r = 0. (24)

Noting that the last equation merely results from the differentiation of Eq. (21).
Therefore,

Y (m,n)
r = X(m,n)

r

′
=

(

Y
(n)
r

Y
(n)
m

)′

, (25)

and the eigenfunction corresponding to the potential V (m,n)+ is of the form

φ(m,n)+
r =

(

Y
(n)
r

Y
(n)
m

)′

exp

(

−

∫

v(m,n)dx

)

. (26)
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4.1. Discussion

Since the problem now involves simultaneously the two sets of singularities orig-
inating from the choice of the two bases |n〉, |m〉, normalisation of these solutions
must be considered more carefully:

1) For the first solution φ
(m,n)−
1,r , making use of the relations (22) and (18), one

has

φ
(m,n)−
1,r = Y (n)

r exp

(

−

∫

v(n)dx

)

.

where v(m,n) is given in (16). One can thus conclude that normalisation of the

solution φ
(m,n)−
r is always possible if the choice of the base |n〉 is such that the

second-generation component φ(n)+ is independent of the choice of the second
base |m〉. The legitimacy of this result can be checked by computing the third-
generation component V (m,n)− which, after simplifications, is simply

V (m,n)− = V (n)+ + const, (27)

(see Appendix).

2) In order to deal with the second solution and see whether normalisation is also
possible, one can use another approach based on the Wronskian formalism.

5. The Wronskian formalism

In relation (6), one can note that

Y (n)
m =

1

X2
n

(

X ′
mXn − X ′

nXm

)

, (28)

and the Wronskian is by definition

W (Xm,Xn) = X ′
mXn − X ′

nXm.

We write W (m,n) so that

Y (n)
m =

1

X2
n

W (m,n). (29)

Using Eqs. (26) and (29), the analytic expression of the eigenfunction φ
(m,n)+
r is

φ(m,n)+
r =

1

Xn

[

dW (r, n)

dx
−

dW (m,n)

dx

W (r, n)

W (m,n)

]

exp

(

−

∫

udx

)

. (30)

FIZIKA B 12 (2003) 1, 201–218 209



cao xuan chuan: singular and exactly solvable potentials

Noting that

dW (r, n)

dx
= X ′′

r Xn − X ′′
nXr,

dW (m,n)

dx
= X ′′

mXn − X ′′
nXm,

the above result can be written in a more transparent form

φ(m,n)+
r =

[

AX ′′
r + BX ′

r + CXr

]

exp

(

−

∫

udx

)

, (31)

in which, as can be verified after some simple algebra,

A = 1, B = −
1

W (m,n)

dW (m,n)

dx
,

C =
1

W (m,n)

[

X ′′
mX ′

n − X ′′
nX ′

m

]

. (32)

The solution (32) is not always normalisable because of the set of singularities
provided by the function W (m,n). However, since the choice of the two bases
|n〉, |m〉 is still arbitrary, it will become meaningful if this choice is such that the
Wronskian W cannot be equal to zero (i.e. it must be either positive or negative
everywhere).

The third-generation second-component potential can be, after simplifications,
written in the form

V (m,n)+ = u2 − u′ + 2
(

Em − En

)Xm

W 2

[

XnW ′ − 2X ′
nW

]

+ 2En − Em. (33)

5.1. Discussion

1) The potential is free of singularities if the Wronskian complies to the above
condition which dictates the choice of the bases |m〉, |n〉. Since the quantities
Xm, Xn are polynomials of order m and n, assuming the Fuchsian case and
using the Sturm-Liouville theorem, it can be shown (Ref. [17], p. 311) that,
for two successive states (i.e. n + 1, n), their “zeros” must be simple and
alternating. More explicitly, this means that if xi are the zeros of Xn and xj

that of Xn+1, then one must have

xi < xj < xi+1 ,

which shows the W must be different from zero.

2) If one considers inversion of the bases, i.e. m ⇀↽ n, one may note that

W (m,n) = −W (n,m) . (34)
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In principle, we may have two potentials V (m,n)+, V (n,m)+. This does not
bring anything new since it can be verified that

V (m,n)+ = V (n,m)+ + Em − En ,

so that with the exchange of their origins, the eigenspectra are the same,
which is confirmed by examining the symmetry relative to the inversion of
the relations (31) and (32).

3) It can also be verified that for the two special cases r = m, r = n,

φ(m,n)+
m = φ(m,n)+

n = 0 ,

which means that two eigenvalues E
(m,n)
m , E

(m,n)
n do not exist in the eigen-

spectrum.

4) After rearrangement, one can write

E(m,n)
r = −

(

Er − 2
(

Em − En

))

(35)

to discern three different parts of the eigenspectrum.

(a) If Er > 2
(

Em − En

)

(assuming that Er increase with r), one has a
spectrum corresponding to bound states and isotropic with the original
one defined by {Er}.

(b) The two deleted states corresponding to E
(m,n)
m , E

(m,n)
n .

(c) When Er < 2
(

Em−En

)

one has positive eigenvalue states for which the
normalisation of the solutions can be achieved.

5.2. Example I

For illustration of the theory from the practical point of view, we discuss the
case of harmonic oscillator which had served as theoretical model in a wide range
of topics ranging from atomic and statistical to particle physics (see for instance
Ref. [20]).

Let u = 1
2x, so that Xn can be identified as the Hermite polynomials Hn(x).

1) Except for the special case n = 1, the second-generation potentials V (n)+,
although mathematically tractable, do not provide normaliseable solutions,
except for the exact “doublet” mentioned earlier. However, it always tends to
the initial harmonic oscillator potential at infinity.

2) Using the tabulated functions (see for instance Ref. [19], p. 411), we give
first some analytic expressions of the Wronskian W (m,n) which are always
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different from zero everywhere

W (2, 1) = x2 + 1,

W (3, 2) = x4 + 3,

W (4, 3) = x6 − 3x4 + 9(x2 + 1),

W (5, 6) = x8 − 8x6 + 30x4 + 45.

They give rise to the following exactly solvable potentials of the third-generation
(some of them may have multiple-well structure)

V (2,1)+ =
1

4
x2 −

1

2
+ 4

x2 − 1

(x2 + 1)2
,

V (3,2)+ =
1

4
x2 +

1

2
− 8

x4 − 9

(x4 + 3)2
,

V (4,3)+ =
1

4
x2 +

3

2
+

F10

W (4, 3)2
,

V (5,4)+ =
1

4
x2 +

5

2
+

F14

W (5, 4)2
.

F10 and F14 are polynomials of order 10 and 14, respectively, and will not be
reproduced here. These expressions also tend to the harmonic oscillator potential
at infinity. Note that since the eigenvalue En = n, the number of eigenstates with
positive eigenvalue must not exceed n in the present construction (m > n).

5.3. Example II

We construct the third-generation potential V (m,n)+ from the initial potential
defined in (9). Obviously, V (m,n)+ also depends on the parameters a and b, which
are arbitrary but must be subjected to the condition (12) (i.e., b > a).

Using the result (29), we consider the Wronskian W (2, 1) for the simplest case
(m = 2, n = 1) where the mixing functions X2, X1 are already given by (14) and
(16).

For the needs of the demonstration, it will be sufficient to consider only a special
case in which

a =
1

4
b, b > 2 .

The reason for this choice will be clarified below.

Therefore, the analytic expressions of the Wronskian W can be written as

W (2, 1) = −
1

2
shx

{

F3(b) −
B2

5b − 2

[

(

3b + 2
)

ch x +
( b

2
− 1

)

ch2 x

]}

,
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where F3(b) is a function of third order in terms of the parameter b. The requiring
F3(b) = 0, after simplifications, leads to the following third-order algebraic equation

b3 − 9b2 + 4.6b − 1.8 = 0.

The reason for the above special choice is that this equation always has a real and
unique solution

b = 12.55 and therefore a = 3.13.

Further, we write the analytic expression of the Wronskian W as

W (2, 1) = −
1

2
shx G2(ch x),

where

G2(ch x) = chx
(

0.331 + 0.044 ch x
)

> 0.

Returning now to the results (31) and (32), which display the complete analytic
expression of the eigenfunctions, one can observe that the second and third terms
always involve the differentiation dXi/dx (i = m,n), so that the factor shx can be
removed making the result analytic everywhere.

Finally, using the result (33), the third-generation potential V (2,1)+, after sim-
plifications, can be written as

V (2,1)+ = V − + α
f6(ch x)

sh2 x G2
2(ch x)

+ β
X2(ch x)

G2(ch x)
,

where V − is given in (9), α, β are mere numerical factors, f6(ch x) is a polynomial
of order 6 which will not be displayed here.

The interesting observation is that as x → ±∞, V (2,1)+ → V − + const as
expected from the theory.

5.3.1. Discussion

Since we must have m < a, (a = 3.13), there are in principle four states |r〉,
r = 0, 1, 2, 3, but as the two states r = 2, r = 1 should not be taken into account
as explained above, we are left with two states |0〉, |3〉 which correspond to two
eigenvalues −8.25 and +1.26.

6. The quasi-exact solvability

When our choice of the bases does not comply with the rule above (i.e., when
m/=n + 1), the potential V (m,n)− may involve singularities so that the preceding
treatment become inadequate.
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It will be interesting to test the theorem on quasi-exact solvability which has
already been proved for the second-generation potentials of the type V (n)+.

In the present case, the superpotential v(m,n) will be defined as

v(m,n) = v(n) − t
Y

(n)
m

′

Y
(n)
m

.

v(n), Y
(n)
m are defined above (Eqs. (3) and (6)), t is an arbitrary parameter.

Following exactly the same line of reasoning used for the second-generation
potentials (see [I]), let

X(m,n) =
F

Y
(n)S
m

.

For the moment, F is an unspecified function, S is an arbitrary parameter. The
problem is now reduced to the evaluation of the following quantity

[

X(m,n)′′ − 2

(

v(n) − t
Y

(n)
m

′

Y
(n)
m

)

X(m,n)′
]

X(m,n)−1
= A + B + C ,

where

A =
1

Y
(n)
m

S−1

[

F ′′ − 2v(n)F ′

]

,

B = S
F

Y
(n)
m

S

[

Y (n)
m

′′
− 2v(n)Y (n)

m

′
]

,

C =
Y

(n)
m

′

Y
(n)
m

[

2
(

t − S
)

F ′ +
[

S
(

S + 1
)

− 2tS
]Y

(n)
m

′

Y
(n)
m

F

]

.

Taking C = 0, one must have

F = Y (n)
m , S =

{

S+ = 2t
S− = 1

and therefore

A + B =
1

Y
(n)
m

S−1

(

1 − S±

)(

2v(n)′ + Em − En

)

,

so that the potential V (m,n)− now depends on S±, i.e.,

±V (m,n)− = v(m,n)2 − v(m,n)′ +
(

1 − S±

)(

2v(n)′ + Em − En

)

.
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More explicitly and after simplifications,

+V (m,n)− = v(n)2 +
(

1 − 2t
)

v(n)′ + t
(

t − 1
)

[

Y
(n)
m

′

Y
(n)
m

]2

+ t
(

Em − En

)

,

−V (m,n)− = v(n)2 +
(

2t − 1
)

v(n)′ + t
(

t − 1
)

[

Y
(n)
m

′

Y
(n)
m

]2

+ t
(

Em − En

)

,

and the corresponding exact eigenfunctions are

+φ = W 1−t(m,n)X2t−1
n exp

(

−

∫

udx

)

,

−φ = W t(m,n)X1−2t
n exp

(

−

∫

udx

)

.

The first case requires that

1

2
< t < 1 ,

and the second one

0 < t <
1

2
.

Note also that +V =− V when t = 1/2. In other words, if the theorem on quasi-
exact solvability remains operational in the transition from the second to the third
generation, one can note the removal of the existence of the exact “doublet” ob-
served for the second generation and appearance of a couple of potentials +V , −V .

This is the reason why, for the third generation, the theorem must be reformu-
lated as follows.

Theorem: For the third generation, regardless of the choice of the two bases
and under certain conditions which however mutually exclude themselves, it is
always possible to construct two exact solutions corresponding to a pair of singular
potentials.

7. Conclusion

Although singular potentials a priori do not seem adaptable to current research
in physics since, except for special cases, they usually lead to non-hermitian prob-
lems, the present approach may offer a somewhat different point of view and new
perspectives.
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It has been shown that concerning the second-generation singular potential V (n),
an appropriate choice of the base |n〉 may in some cases leads to exactly solvable
problems. When this is not the case, introduction of the parameter t can, in certain
conditions, lead to quasi-exactly solvable problems with the presence of an exact
“doublet”.

For the third-generation potentials, which involve two bases, an appropriate
choice of these bases, following certain specific rules, may lead to potentials of a
new type which are free of singularities and exactly solvable.

On the other hand, it can be seen that for the transition from the second to
the third generation potentials, extension of the theorem on quasi-exact solvability
remains valid, however, with different consequences.

Appendix

Differentiating (17) and making use of the mixing function X(m,n), one obtains
the following form

φ
(m,n)
1,r

′′
− V (m,n)−φ

(m,n)
1,r =

X
(m,n)
r

′′
− 2v(m,n)X

(m,n)
r

′

X
(m,n)
r

φ
(m,n)
1,r , (36)

which shows that solvability means that X
(m,n)
r must be solution of the equation

X(m,n)
r

′′
− 2v(m,n)X(m,n)

r

′
+ E(m,n)

r X(m,n)
r = 0. (37)

Substituting (22) into (37) and after simplifications

X(m,n)
r

′′
− 2v(m,n)X(m,n)

r

′
=

1

Y
(n)
r

(

Y (n)
r

′′
− 2v(n)Y (n)

r

′)

−
Y

(n)
r

Y
(n)
m

2

(

Y (n)
m

′′
− 2v(n)Y (n)

m

′)

.

On the other hand, it has been shown in previous work that the quantities Y
(n)
r ,

Y
(n)
m must satisfy [16]

Y (n)
r

′′
− 2v(n)Y (n)

r

′
=

(

2v(n)′ − E(n)
r

)

Y (n)
r , E(n)

r = Er − En,

Y (n)
m

′′
− 2v(n)Y (n)

m

′
=

(

2v(n)′ − E(n)
m

)

Y (n)
m , E(n)

m = Em − En.

Therefore,

X(m,n)
r

′′
− 2v(m,n)X(m,n)

r

′
=

(

Er − Em

)

X(m,n)
r = E(m,n)

r X(m,n)
r , (38)
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and the quantity E
(m,n)
r thus constitutes the eigenspectrum of the Schrödinger

equation.

Counter proof: From (22) and (18), the set of eigenfunctions can be written as (for
a state |r〉)

φ
(m,n)−
1,r =

Y
(n)
r

Y
(n)
m

exp

(

−

∫

(

v(n) −
Y

(n)
m

′

Y
(n)
m

)

dx

)

,

which, from (6), is

φ
(m,n)−
1,r =

(

X ′
r −

X ′
n

Xn

Xr

)

exp

(

−

∫

udx

)

,

which means that φ
(m,n)−
1,r is similar to φ

(m,n)+
1,r .

The analytical expression for V (m,n)− is

V (m,n)− = u2 + u′ + 2
X ′

n

Xn

[

X ′
n

Xn

− 2u

]

−
(

Em − 2En

)

,

that is, up to a constant, the two potentials V (m,n)− and V (n)+ are similar which
confirms the above statement.
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SINGULARNI I EGZAKTNO RJEŠIVI POTENCIJALI

Potencijali sa singularnostima koji se razmatraju u ovom radu slijede iz postavki
za generacije superpotencijala vǐseg reda. Raspravlja se druga generacija s jednom
osnovicom i treća generacija s dvije osnovice. Ovisno o odabiru osnovica, nalazi se
niz rezultata koji mogu biti zanimljivi sa stanovǐsta teorije, kao djelomično kršenje
simetrije ili postavka nove vrste egzaktno rješivih potencijala koji pokazuju pos-
tojanje svojstvenih stanja s pozitivnim svojstvenim vrijednostima. Raspravlja se
takod–er proširenje teorema o kvazi-egzaktnoj rješivosti za potencijale treće gene-
racije.
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